Exploring Options for

Global Climate Policy

A New Analytical Framework

THE UNIQUE combination of features that characterize the climate change problem—diversity of temporal and spatial scales, complexities of the processes involved, and the multitude of social values and interests affected—requires novel frameworks of scientific inquiry

by Ferenc L. Toth, Thomas Bruckner, Hans-Martin Füssel, Marian Leimbach, Gerhard Petschel-Held, and Hans Joachim Schellnhuber
and policy support. Efforts to mitigate climate change face scientific uncertainties: How do atmospheric physics and chemistry determine the concentrations of different greenhouse gases and the magnitude and rate of warming they cause? How do changes in regional climate affect different sectors of societies and the environment? What are the costs of implementing mitigation technologies, and when should they be implemented? An international research project has recently developed a new analytical framework that helps to address these questions.

The only reasonable way to manage the climate change problem is to implement a series of policy packages over time.

Given all these complexities and uncertainties, the only reasonable way to manage the climate change problem is to implement a series of policy packages over time. Each package needs to contain a combination of mitigation and adaptation policies for the subsequent decade or two. The relative weights of these main components and the exact nature of the policies have to be revised regularly in light of new scientific information and changing social preferences. Setting an emission target for a period 10–15 years ahead is a key component of the policy package. The package should balance the costs of emission reductions and the risk of unnecessary implementation strategies for the second commitment period, with an expected target year of 2020, the uncertainties are not likely to be significantly reduced. Thus, setting a reasonable medium-term emission target such as 2020 would require the consideration of numerous factors, among them the plausible range of the long-term climate stabilization target. In particular, higher medium-term emissions might exclude the possibility of arresting global warming at a low level; however, enforcing medium-term emission levels that are too strict might turn out to be unwarranted. Currently, the long-term possibilities are not being adequately consid-
ered. The focus of the negotiations under UNFCCC on near-term emission reductions and their associated costs is in sharp contrast with its self-declared long-term objective to avoid “dangerous anthropogenic interference with the climate system,” as stated in Article 2 of UNFCCC.¹

The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) has attempted to help: Working Group II provided a list of “reasons for concern” based on expected effects associated with incremental levels of global mean temperature increase, and Working Group III reviewed the cost estimates of stabilizing greenhouse gas concentrations at different levels.² However, these two sets of data are difficult to consolidate because of the widely differing assumptions of the studies and the models behind them as well as because of the different metrics applied by the working groups.

A New Analytical Approach

To bridge the gaps between short-term and long-term solutions and between science and policy, the authors developed a new analytical concept for the climate change problem, dubbed the tolerable windows approach (it is also called the inverse approach, as it takes the form of an inverse optimization problem) and operationalized it in the ICLIPS (Integrated Assessment of Climate Protection Strategies) modeling framework.³

The model determines the critical boundaries for long-term greenhouse gas emissions according to a predefined set of normative climate policy concerns (defined by the model user—such as an adviser to a negotiator, a national ministry official, an environmental non-governmental organization, or a citizens group). These boundaries delin-
"
notes the emissions of one or more greenhouse gases over a given period of time. The analysis described here focuses on emissions of carbon dioxide (CO$_2$)—the most important anthropogenic greenhouse gas—throughout the twenty-first century.

The tolerable windows approach facilitates a balanced consideration of the impacts and the mitigation costs associated with specific climate policy strategies. It has now been implemented as the ICLIPS integrated assessment model. This model steps beyond the span of all other integrated assessment models by allowing users to establish climate stabilization objectives on the more tangible basis of what they consider unacceptable impacts (such as reduced food production potential or ecosystem change) rather than on the more abstract basis of greenhouse gas concentrations—and by providing a whole range of suitable climate protection strategies instead of just one.

The ICLIPS model can help in exploring the tradeoffs between different combinations of targets and costs—either as a stand-alone modeling tool or embedded in a participatory assessment. In a participatory assessment, representatives of different regions or nations decide upon the impacts and costs that are acceptable to them and then find out whether a global emission corridor exists that can fulfill their specifications. The levels of acceptable impacts can be defined at different scales— from impacts on small regions (such as changes in agricultural yields in Kenya or Germany) to globally aggregated indicators (such as the overall transformation of ecosystems for all nonagricultural areas of the Earth’s surface). Climate impact response functions provide the link between regionally acceptable impacts and the global climate change limit.

The global climate change limit corresponds to the impact limit of the region and impact sector that allows the smallest departure from the present-day climate. If the required emission reductions for the region or impact sector with the lowest tolerance for climate change turn out to be overly expensive, other countries could provide assistance (“side-payment”). Side-payment would reduce the region’s vulnerability and increase the magnitude of climate change it could handle. In turn, it would enhance the global climate change limit by easing the most binding “acceptable impact” constraint and widening the corridor of permitted emission paths, which would now include less expensive long-term emission trajectories.

The emission corridor—representing “policy space”—allows some degree of flexibility in choosing the actual emission path. Negotiators can consider policy details that are not explicitly modeled and can set near-term targets within the corridor accordingly. For example, experience from the negotiations about national emission targets for the Kyoto Protocol indicates that many domestic considerations (such as energy, industry, transport, and agriculture) determine the mitigation commitments that are decided upon in international agreements. These are impossible to represent adequately in a highly aggregated long-term model. However, the emission corridor is helpful because it clearly indicates the range inside which aggregated global emissions need to be in a given year.

Depending on the emission target being considered, the model can calculate a new subcorridor within the original emission corridor for the rest of the time horizon. This flexibility also allows mid-course corrections in light of new information and recalculation based on revised model parameters or normative targets.

The inverse framework separates normative choices about acceptable climate change targets and mitigation costs from the scientific analysis of their implications. This separation is important because political choices about acceptable climate change impacts and mitigation costs are socially determined. They reflect societies’ extremely diverse perceptions of and attitudes toward risk as well as their abilities and willingness to pay for climate protection—all of which represent their concerns about future generations as motivated by their perceptions of fairness within and across generations. In contrast, the scientific analysis carried out by the model is based on systematic observations of natural processes (such as atmospheric chemistry and physics, climate, and ocean systems)
and social processes (of economy or technology, for example).

This analysis provides an internally consistent—albeit imperfect and uncertain—representation of the system that climate policy intends to manage. Most other analytical frameworks (such as cost-benefit analysis, game theory, or behavioral decision theory) imply value-laden paradigms such as utilitarianism or efficiency at the outset. The models based on these frameworks can provide useful insights for policymaking, but users need to be aware of the normative choices hidden in the underlying framework.

The integrated model based on the ICLIPS inverse framework demarcates the complete emission policy space that results (instead of a single optimal or simulated path, which most other integrated models have produced to date). Thus, it combines willingness to accept climate change–related damages with willingness to pay for reducing them in a generalized cost-benefit framework.

Methodological Foundations

The tolerable windows approach puts the ultimate objective of UNFCCC’s Article 2—to avoid dangerous anthropogenic interference with climate—in the focus of the integrated assessment model’s application and the associated science-policy dialog. This approach requires a model-based derivation of the boundaries delineating the set of all admissible climate protection strategies that are compatible with predefined impact and cost constraints. The ICLIPS model characterizes a climate protection strategy by the associated path of greenhouse gas emissions. The determination of emission corridors in ICLIPS is fundamentally different from the methodology involved in traditional approaches to integrated assessments. Policy-evaluation and policy-optimization models primarily deal with a single path either by investigating the consequences of a predefined scenario or by deriving an optimal emission path that maximizes welfare (as in cost-benefit analyses) or minimizes mitigation costs subject to climatic constraints (as in cost-effectiveness analyses).

The methodological challenge associated with the inverse approach is to develop an algorithm for deriving the emission corridors and to implement it for solving the integrated assessment model. The transient behavior of the coupled global economy-climate system is described by a set of differential equations (state evolution equations) linking the evolution of the state vector to a causal control vector. The state vector comprises all variables that are necessary to describe the time evolution of the climate-economy system with sufficient precision (including the concentrations of all major greenhouse gases and global mean temperature change). Anthropogenic influence on this system stems from the emission of greenhouse gases. Therefore, global climate change can be at least partially controlled by human-
kind—by reducing emissions of these gases or by helping to remove them from the atmosphere (for example, via carbon sinks). Mathematically, the anthropogenic influence is described by the control vector, and it is expressed in terms of the net emission levels.

The climate policy targets to be explored in any given application of the tolerable windows approach impose environmental, climatic, economic, and social constraints on the climate-socioeconomic system. In mathematical terms, these related restrictions constrain the admissible values of the state and control vectors. In addition, while the state evolution depends on the level of control applied, state constraints quite often impose indirect restrictions on the control vector as well. To derive emission corridor boundaries, the exogenously defined constraints and the state evolution equations have to be investigated simultaneously. This problem can be treated most suitably by using the theories of differential inclusions and optimal control.\(^4\) On the basis of these theories, an algorithm was developed to obtain the boundaries of the emission corridors by successively solving a multitude of dynamic optimization problems subject to intertemporal constraints that encompass the predefined environmental, climatic, social, and economic constraints as well as the dynamic relationships between climate and society.\(^5\)

The Integrated Assessment Model

The core of the ICLIPS integrated assessment model contains a multi-gas reduced-form climate model and a highly aggregated multiregional model of the world economy. In contrast to most optimizing integrated assessment models, the ICLIPS dynamic optimization model includes carbon-cycle and non-\(\text{CO}_2\) chemistry as well as climate and sea-level rise modules that reflect state-of-the-art understanding of the dynamic behavior of the systems involved.

The model accounts for all of the major greenhouse gases—\(\text{CO}_2\), methane (\(\text{CH}_4\)), nitrous oxide (\(\text{N}_2\text{O}\)), halocarbons, sulfur hexafluoride (\(\text{SF}_6\)), tropospheric and stratospheric ozone (\(\text{O}_3\)), and stratospheric water vapor—as well as the radiative effects of aerosols originating from sulfur dioxide (\(\text{SO}_2\)) emissions and biomass burning. The biogeochemical modules convert emissions into concentrations, and the climate module translates the corresponding radiative forcing (changes in the radiative energy balance of the Earth) into global mean temperature increases over time. Finally, sea-level rise modules calculate changes from thermal expansion of oceans and exogenous (externally provided) population and endogenous (calculated within the model) investment dynamics, such as controlling the amount of capital available. Assumptions about productivity change are elaborated in a technological diffusion model that describes the process of less developed regions catching up with more developed ones as a result of technology transfer.

In this model, baseline emissions resemble the IPCC Special Report on Emission Scenarios (SRES) A1FI emission path through the twenty-first century.\(^6\) SRES has developed several emission paths, each of which corresponds to a different combination of storylines of socioeconomic development (such as economic and population growth and globalization) and additional assumptions (about the availability of fossil-fuel energy sources and technological development, for example). The storyline behind A1FI depicts a future with medium population growth, fast economic growth, and heavy reliance on fossil fuels, in which \(\text{CO}_2\) emissions increase in most regions (most drastically in China and India) and approach 25 gigatons of carbon (Gt C) in the year 2100.

This baseline emission path represents the upper limit of any single emis-
Greenhouse gas emissions link the ICLIPS climate model to the highly aggregated model of the world economy.

mitigation, the ICLIPS model incorporates results from a new technique of estimating dynamic regional carbon-mitigation cost functions. The procedure combines processes of technological change in energy systems over the long term in the context of macroeconomic models and establishes relatively simple relationships between cumulative mitigation actions, technological changes, and their effects on economic development. A multitude of scenarios is processed statistically to derive dynamic carbon-mitigation cost curves. These cost curves are used to determine the costs of CO₂ emission reductions relative to emissions in the baseline scenario. They take into account the cost-diminishing effects of emission reductions undertaken previously (dubbed “learning by doing”).

The potentially high costs of fast emission reductions stem from the early retirement of capital stock (before it reaches the end of its economic lifetime) that has been installed in the absence of a carbon constraint and needs to be replaced by low-carbon- or non-carbon-emitting capital stock to satisfy the emission limitation. Because capital stock dynamics in the energy sector are not explicitly modeled in the core impact models with representative samples of future climate conditions. The resulting CIRF indicates the relationship between the relevant climatic variables and a sectoral impact indicator that describes the degree to which the sector is affected. It thus efficiently represents simulated impacts of climate change across a wide range of plausible future climate scenarios. A pilot set of CIRFs has been developed for agricultural crops, water availability, and natural vegetation. CIRFs for natural vegetation are used below to illustrate the application of the ICLIPS integrated assessment model in inverse mode.

Climate and atmospheric composition are, among other factors such as land use, nutrient availability, and ultraviolet radiation, important determinants for the distribution of life on Earth. A rapidly growing body of evidence shows that recent climatic changes have affected the pheno-

logy of organisms, the range and distribution of species, and the composition and dynamics of ecological communities, and that they probably already have caused the extinction of species. About 200 million years ago, the end-Permian mass extinction event resulted in a turnover of more than 95 percent of megafaunal species (including dinosaurs and coelacanths). A threefold to fourfold increase in CO₂ (due to extensive basaltic volcanism), associated with a rise in global mean temperature of 3–4 degrees Celsius, has been suggested as the main cause of this mass extinction.

Variations of models are used to assess the likely effects of future changes in climatic factors on the distribution, productivity, and diversity of ecosystems. These models are distinguished into equilibrium and dynamic models, by their level of geographical and functional detail, and by whether they include nonclimatic factors.

The global scope of the analysis presented in this article and the need for an easily conceivable, aggregated indicator of climate impacts on natural ecosystems motivated the use of a suitably adapted version of the BIOME 1 regional vegetation model. This model deter-
Figure 1. Simulation results for ecosystem transformation

(a) Response to forcing variables (all continents)

(b) Impact trajectories for different emission scenarios

(c) Impact trajectories for IPCC's SRES A1 emission scenario

NOTE: IPCC stands for the Intergovernmental Panel on Climate Change, which developed the five baseline emission scenarios (marked "SRES" for Special Report on Emission Scenarios) and four stabilization scenarios shown in Figure 1b.

SOURCE: F. L. Toth et al.
The ICLIPS model incorporates results from a new technique of estimating dynamic regional carbon-mitigation cost functions.

woodland will be relatively unaffected (less than 10 percent of the current range), but wooded tundra is simulated to become unsuitable in all of its present locations. Given the simplicity of the applied model, the information in this figure should be interpreted as an indication of plausible future changes rather than an exact forecast. A comprehensive set of CIRFs developed in the ICLIPS project is now available as the ICLIPS Impacts Tool.16

Application of the ICLIPS Integrated Assessment Model

The ICLIPS integrated assessment model can be used in “forward mode” for unacceptable. In the second step, the “analysis step,” the model is applied to derive a carbon emission corridor that comprises all admissible climate protection strategies that are compatible with the predefined constraints.

This procedure makes the inverse approach especially suitable for deriving carbon emission corridors for discontinuous climate impacts that exhibit a qualitative change beyond a certain threshold of climate forcing.17 A typical example of such a discontinuous change is the potential collapse of the thermohaline ocean circulation that might be triggered by additional freshwater input in North Atlantic regions from increased precipitation and ice melting caused by a warming climate. An earlier application of the ICLIPS model involved a series of runs to establish emission corridors that preserve the thermohaline circulation.18

Illustrative Application of the ICLIPS Model

The authors completed an illustrative application of the ICLIPS model that considers climate change impacts on terrestrial ecosystems, the regional costs of mitigation measures, and the timing of emission reductions. Let us assume a global policy agreement that transforming more than 35 percent of the Earth’s ecosystems would constitute a dangerous climate change impact, while mitigation costs exceeding 2 percent of the per-capita consumption (relative to the baseline) of any present or future generation in any region would be socially unacceptable. In a sensitivity analysis, deviations from this central case are investigated by varying the impact constraint (percent of ecosystem change), the mitigation cost limit (percent of per-capita consumption), and the starting year for emission reductions (between the present year and 2035).

For the purposes of this analysis, a compromise-based allocation of emission rights is assumed to begin with the status quo (emission rights allocated according to actual emissions in the initial year of the model run) and gradually transform into an equal per-capita entitlement by 2050. This means that the emission entitlement of any region after 2050 is determined by the region’s population in the year 1990. In all of these experiments, energy-related CO₂ emissions are modeled endogenously. Emissions of other greenhouse gases are prescribed until 2100 according to the average of the four SRES marker scenarios and are kept constant thereafter.19 Radiative forcing from halocarbons is taken from Version 2.3 of the MAGICC model.20 SO₂ emissions are coupled with industrial CO₂ emissions, assuming a globally averaged desulfurization rate of 1.5 percent per year.
The carbon emission corridors that result from varying the different constraints are displayed in Figure 2 on this page. The area with the black borderline in Figure 2a shows the carbon emission corridor, selected paths to illustrate its internal structure, and the cost-effective path (the emission path that optimizes welfare for the given environmental and social targets). It follows from the conceptual foundations of the inverse approach that any point within the corridor can be reached by at least one permitted emission path, but an arbitrary path inside the corridor is not necessarily a permitted path. For example, the upper boundary of the corridor can be reached in 2065 only if emissions remain far inside the corridor (substantially below baseline emissions) for several decades in the first half of the twenty-first century (the path marked with orange triangles). The cost-effective path, in contrast, follows the baseline up to about 2040 and then switches to a path of accelerating reduction. This shift occurs as both autonomous and learning-by-doing types of technological development make mitigation efforts less expensive.

Figure 2a also shows the sensitivity cases when the acceptable ecosystem transformation varies between 30 and 50 percent. The 30-percent limit results in a drastically narrower emission corridor (the green line inside the 35-percent corridor). No corridor exists for the 25-percent limit. This suggests that, given the amount of greenhouse gases already in the atmosphere and the inertia of the climate system, it is not possible to limit ecosystem transformation to 25 percent of nonagricultural areas globally by controlling CO₂ emissions alone, with the given willingness to pay. (Future extensions of the model should explore how much flexibility would be provided by mitigating other greenhouse gases.) Conversely, if the global society were willing to allow half of the world’s ecosystems to undergo biome changes, the corridor of acceptable carbon emission paths (red line) would be much wider, permitting higher annual and cumulative emissions.

Figure 2. Corridors for energy-related CO₂ emissions

(a) Variation of the impact constraint

(b) Variation of socioeconomic constraints

(c) Variation of socioeconomic constraints

NOTE: These three figures show the sensitivity of the corridors to variations of different normative constraints. In Figure 2a, the internal structure is illustrated by emission paths that hit the upper or lower boundaries of the corridor (the area inside the black borderlines) in selected years. Figure 2b varies cost constraints for a 35-percent ecosystem transformation limit, and Figure 2c applies a stricter ecosystem transformation limit of 30 percent. Gt C/yr = gigatons of carbon per year.

SOURCE: F. L. Toth et al.
In Figure 2b, another set of corridors indicates the sensitivity of the emission policy space to societies’ willingness to pay for climate change mitigation. The limit to acceptable mitigation costs is varied between 0.3 and 3 percent consumption loss, for the central case of a 35-percent maximum ecosystem transformation. These variations mainly affect the lower boundary of the corridors.

The timing of mitigation action has been the subject of fierce debates in climate policy in recent years. The effects of delaying emission reductions are investigated in Figure 2b. If emissions proceed along the baseline path until 2015, 2025, and 2035 (marked with gray, orange, and light blue lines, respectively), while the impact and cost constraints remain those specified for the central case, the implications of delaying emission reductions are rather modest for the corridor.

Figure 2c shows that setting the limit of ecosystem transformation to 30 percent leads to much narrower corridors that also are much more sensitive to variations in socioeconomic constraints. At least about 1 percent consumption loss is required to have an open corridor. If emission reductions are postponed until 2015, 2025, and 2035, the resulting corridors (areas between the marked lines in Figure 2c) become increasingly narrower compared with a situation in which emission reductions are implemented without delay. The 2035 corridor (the light blue line) is a very tight lane of sustained emission reduction that approaches the maximum rate permitted by the declining-cost technologies and the emission reduction rate constraint.

Understanding the Implications of Climate Change

The tolerable windows approach and its implementation as an integrated assessment model allow long-term greenhouse gas-reduction options to be explored under a wide variety of normative concerns that shape the global climate policy debate. The results of the
model show the extreme importance of environmental targets in defining the climate policy space.

The model results also reveal, in particular, the strong nonlinearity and sensitivity of the climate policy space to impact constraints such as the transformation of ecosystems. They also disclose the intricate relationships among the numerous decision factors as they determine how near-term choices foreclose or preserve options for long-term climate policy.

The sensitivity analysis shows that the existence and the shape of the emission corridor are more sensitive to the maximum acceptable climate change impact than to the limits on mitigation costs or the timing of emission reductions. This confirms the fact that CO₂ is a stock pollutant—its detrimental effects are associated with its actual previous concentrations in the atmosphere and with the related climate forcing rather than with the amount of annual emissions. Therefore, its management requires long-term perspectives to secure both climate protection and sustainable development. The effectiveness of near-term emission reductions, even ambitious ones permitted by high willingness to pay, is limited.

The results highlight the importance of improving the understanding of the implications of climate change—as well as the options for and costs of reducing the vulnerability and increasing the adaptive capacity of the affected systems such as agriculture or water resources. It is clear that in the case of natural ecosystems considered here, human interventions may alleviate some negative effects of ecosystem changes, but they cannot prevent the changes altogether. Following the carbon-intensive baseline emission scenario for another few decades will progressively preclude potential climate stabilization (and impact) targets from being achievable at reasonable cost. The emission corridors show that over the long term, carbon emissions must decline significantly below their current levels for major transformations of the
Help Restore Our Burned Forests

Millions of acres damaged by wildfire urgently need native trees to prevent erosion and provide habitat for wildlife. These trees will purify our water, clean the air we breathe, and sequester climate-changing carbon dioxide for generations to come.

You can help restore wildfire-damaged forest ecosystems through Wildfire Relieve. For $25 we'll plant 25 native trees in an area burned by destructive wildfire.

Every dollar plants a tree.

NOTES

3. A conceptually similar but methodologically different approach is the "safe landing analysis" by J. Alcamo and E. Kreileman, "Emission Scenarios and Global Climate Protection," Global Environmental Change 6 (1996): 305-34. A preliminary version of the tolerable windows approach was proposed by the German Advisory Council on Global Change, "Scenario for the Derivation of Global CO2 Reduction Targets and Implementation Strategies" (Bremerhaven, Germany, 1995). The authors and other researchers have several papers on the Integrated Assessment of Climate Protection Strategies (ICLIPS) project forthcoming in a special issue of Climatic Change.

5. Leimbach and Bruckner, ibid.

15. Gitay, Brown, Easterling, and Jallow, note 11 above.

16. The ICLIPS Impacts Tool is a graphical user interface that provides convenient access to about 100,000 impact diagrams. It is freely available on CD-ROM from one of the authors (fuesel@ pik-potsdam. de). A more detailed description can be found in H.-M. Füssel, "The ICLIPS Impacts Tool: Presenting Climate Impact Response Functions for Integrated Assessments of Climate Change" (proceedings of the conference of the International Environmental Modelling and Software Society (iEMSs) 2002). Lugano, Switzerland, June 2002, 24-27.

17. Smith et al., note 2 above.

19. Nakićenović et al, note 8 above.

21. The model is equally capable of investigating the implications of scientific uncertainties on the existence and shape of the corridors.