André Casajus

The Shapley value without efficiency and additivity

November 2012

ISSN 1437-9384
The Shapley value without efficiency and additivity

André Casajus†

(November 2012, this version: November 30, 2012, 7:11)

Abstract

We provide a new characterization of the Shapley value neither using the efficiency axiom nor the additivity axiom. In this characterization, efficiency is replaced by the gain-loss axiom (Einy and Haimanko, 2011, Game Econ Behav 73: 615–621), i.e., whenever the total worth generated does not change, a player can only gain at the expense of another one. Additivity and the equal treatment axiom are substituted by fairness (van den Brink, 2001, Int J Game Theory 30: 309–319) or differential marginality (Casajus, 2011, Theor Decis 71: 163–174), where the latter requires equal productivity differentials of two players to translate into equal payoff differentials. The third axiom of our characterization is the standard dummy player axiom.

Key Words: Shapley value; gain-loss axiom; differential marginality; efficiency, additivity

JEL code: C71, D60
AMS subject classification: 91A12

†LSI Leipziger Spieltheoretisches Institut, Leipzig, Germany; e-mail: mail@casajus.de
‡Professur für Mikroökonomik, Wirtschaftswissenschaftliche Fakultät, Universität Leipzig, Grimmaische Str. 12, 04009 Leipzig, Germany.

We are grateful to Fank Huettner for comments on this note.
1. Introduction

The Shapley value (Shapley, 1953) probably is the most eminent one-point solution concept for TU games. Ever since its original characterization by Shapley himself, much effort has been put in the endeavor to provide alternative characterizations both for fixed player sets and for variable player sets as well as for certain subdomains, for example, the domains of superadditive games or of simple games.\footnote{In the literature, the term “simple game” is used both to games for which the worth is either 0 or 1 and to games that, in addition, are monotonic and non-null. We follow the first convention.}

One aim of these attempts is to get rid of the additivity axiom. Young (1985) comes up with the very elegant marginality axiom, which requires a player’s payoff to depend only on his own productivity measured by marginal contributions. Then, he characterizes the Shapley value by help of this axiom combined with efficiency and the equal treatment axiom. Recently, Casajus (2011) proposes a differential version of marginality, differential marginality, which demands two players’ payoff differential to be affected only by the differential of their own productivities, again, measured by the difference of marginal contributions. It turns out that differential marginality is equivalent to the fairness property suggested by van den Brink (2001). Together with efficiency and the null player axiom, differential marginality/fairness characterize the Shapley value. While the former characterizations work within a fixed player set, the ingenious characterization due to Myerson (1977) refers to variable player sets. Besides efficiency, it relies on just a single other axiom, balanced contributions, which requires that the loss/gain caused on one player when another player leaves the game is the same as if the role of these player is reversed. Roth (1977) and Chun (1989), for example, suggest alternative foundations of the Shapley value without additivity.

Recently, Eininy and Haimanko (2011) introduce the aesthetically (and otherwise) appealing gain-loss axiom as a substitute for efficiency in characterizations of Shapley value. Since their prior focus is on non-null simple monotonic games (henceforth, voting games), i.e., the worth generated by the grand coalition is 1, the main version of the gain-loss axiom just requires that one player can only gain when another player looses. When applied to general TU games, one has restrict the axiom to situations where the worth generated by the grand coalition remains constant. What they show is that the Shapley value on the domain of voting games is characterized by the gain-loss axiom (in the narrow sense) and three standard axioms—the transfer axiom (Dubey, 1975, additivity adjusted to simple games), the equal treatment
axiom or symmetry, and the dummy player axiom. In order to obtain a characterization on the full domain, they replace the transfer axiom by additivity and the gain-loss axiom with its broader-sense version. Since Shapley and Shubik (1954) apply the Shapley value to voting games as a measure voting power (also known as the Shapley-Shubik index), the former characterization is of particular interest. Other foundations of the Shapley value without efficiency have been proposed by Roth (1977), Blair and McLean (1990), and Laruelle and Valentiano (2001).

In this note, we “merge” the characterizations of Einy and Haimanko (2011) and van den Brink (2001)/Casajus (2011) and obtain a characterization of the Shapley value on the full domain of TU games via the dummy player axiom, the gain-loss axiom, and fairness/differential marginality (Theorem 2). This characterization can be restricted to certain subdomains, e.g., the domains of superadditive games or of convex games (Remark 2). Unfortunately, the domains of simple games and of voting games are not among these subdomains (Section 4). Yet, other than the van den Brink characterization, the Casajus characterization works within the domain of non-contradictory voting games, unless there are exactly two players (Proposition 3).

The plan of this note is as follows: Basic definitions and notation are given in the second section. The third section contains our characterization for general TU games. Our results on simple games can be found in the fourth section. Some remarks conclude this note.

2. Basic definitions and notation

A (TU) game is a pair \((N, v)\) consisting of a non-empty and finite set of players \(N\) and a coalition function \(v \in \mathbb{V}(N) := \{f : 2^N \to \mathbb{R} | f(\emptyset) = 0\}\), where \(2^N\) denotes the power set of \(N\). Since we deal with a fixed player set \(N\), the latter is dropped as an argument whenever possible. In particular, we refer to \(v \in \mathbb{V}\) as a game. Subsets of \(N\) are called coalitions, and \(v(S)\) is the worth of coalition \(S\). For \(v, w \in \mathbb{V}\), \(\alpha \in \mathbb{R}\), the coalition functions \(v + w \in \mathbb{V}\) and \(\alpha \cdot v \in \mathbb{V}\) are given by \((v + w)(S) = v(S) + w(S)\) and \((\alpha \cdot v)(S) = \alpha \cdot v(S)\) for all \(S \subseteq N\). For \(T \subseteq N\), \(T \neq \emptyset\), the game \(u_T\), \(u_T(K) = 1\) if \(T \subseteq K\) and \(u_T(K) = 0\) otherwise, is called a unanimity game; the game \(e_T\), \(e_T(T) = 1\) and \(e_T(K) = 0\) otherwise, is called a standard game. Any game \(v\) can be uniquely represented by unanimity games,

\[
v = \sum_{T \subseteq N: T \neq \emptyset} \lambda_T(v) \cdot u_T, \quad \lambda_T(v) := \sum_{S \subseteq T: S \neq \emptyset} (-1)^{|T| - |S|} \cdot v(S).
\]
A game \(v \) is called \textbf{simple} if \(v(S) \in \{0, 1\} \) for all \(S \subseteq N \); it is called \textbf{monotonic} if \(v(S) \leq v(T) \) for all \(S, T \subseteq N \) such that \(S \subseteq T \); it is called \textbf{superadditive} if \(v(S \cup T) \geq v(S) + v(T) \) for all \(S, T \subseteq N \) such that \(S \cap T = \emptyset \); it is called \textbf{convex} if \(v(S \cup T) + v(S \cap T) \geq v(S) + v(T) \) for all \(S, T \subseteq N \). By \(\mathbf{0} \), we denote the \textbf{null game}, i.e., \(\mathbf{0}(S) = 0 \) for all \(S \subseteq N \). A non-null monotonic simple game is called a \textbf{voting game}. Let \(\mathbb{V}^s_i \), \(\mathbb{V}^{vo} \), and \(\mathbb{V}^{sa} \) denote the sets of simple games, of voting games, and of superadditive games, respectively. For \(v, w \in \mathbb{V}^s \), we define \(v \lor w \in \mathbb{V}^s \) and \(v \land w \in \mathbb{V}^s \) by \((v \lor w)(S) = \min \{ v(S), w(S) \} \) and \((v \land w)(S) = \max \{ v(S), w(S) \} \) for all \(S \subseteq N \).

Player \(i \in N \) is called a \textbf{dummy player} in \(v \) iff \(v(S \cup \{i\}) - v(S) = v(\{i\}) \) for all \(K \subseteq N \setminus \{i\} \); if in addition \(v(\{i\}) = 0 \), then \(i \) is called a \textbf{null player}; players \(i, j \in N \) are called \textbf{symmetric} in \(v \) if \(v(K \cup \{i\}) = v(K \cup \{j\}) \) for all \(K \subseteq N \setminus \{i, j\} \). Player \(i \) is called a \textbf{dictator} in \(v \in \mathbb{V}^s \) if \(v(S) = 1 \) iff \(i \in S \) for all \(S \subseteq N \).

A \textbf{value} is an operator \(\varphi \) that assigns a payoff vector \(\varphi(v) \in \mathbb{R}^N \) to any \(v \in \mathbb{V} \). The \textbf{Shapley value} is given by\(^2\)

\[
\text{Sh}_i(v) = \sum_{T \subseteq N : i \in T} |T|^{-1} \cdot \lambda_T(v), \quad v \in \mathbb{V}, \ i \in N. \tag{2}
\]

Below, we list the standard axioms that are referred to later on.\(^3\)

\textbf{Efficiency, E.} For all \(v \in \mathbb{V} \), \(\sum_{i \in N} \varphi_i(v) = v(N) \).

\textbf{Additivity, A.} For all \(v, w \in \mathbb{V} \), \(\varphi(v + w) = \varphi(v) + \varphi(w) \).

\textbf{Transfer, T.} For all \(v, w \in \mathbb{V}^s \), \(\varphi(v \lor w) + \varphi(v \land w) = \varphi(v) + \varphi(w) \).

\textbf{Null game, NG.} \(\varphi_i(0) = 0 \) for all \(i \in N \).

\textbf{Null player, N.} For all \(v \in \mathbb{V} \) and all \(i \in N \) such that \(i \) is a null player in \(v \), \(\varphi_i(v) = 0 \).

\textbf{Dummy player, D.} For all \(v \in \mathbb{V} \) and all \(i \in N \) such that \(i \) is a dummy player in \(v \), \(\varphi_i(v) = v(\{i\}) \).

\textbf{Equal treatment, ET.} For all \(v \in \mathbb{V} \) and all \(i, j \in N \) such that \(i \) and \(j \) are symmetric in \(v \), \(\varphi_i(v) = \varphi_j(v) \).

\(^2\)Abusing notation, the restriction of the Shapley value to subdomains also is denoted by “\(\text{Sh} \)”.

\(^3\)When restricted to a subdomain, an axiom is required to hold whenever all games involved belong to this subdomain.
Symmetry, S. For all \(v \in \mathbb{V}, i \in N, \) and all bijections \(\pi : N \to N, \varphi_{\pi(i)}(N, v \circ \pi^{-1}) = \varphi_i(N, v) \), where \(v \circ \pi^{-1} \in \mathbb{V} \) is given by \((v \circ \pi^{-1})(S) = v(\pi^{-1}(S)) \), \(K \subseteq N \).

3. General TU games

As their main result, Einy and Haimanko (2011, Theorem 3) show that the Shapley value on the domain voting games is characterized by the transfer axiom, the equal treatment axiom, the dummy player axiom, the gain-loss axiom, below. Note that we already state the general version of this axiom. For voting games, the requirement \(v(N) = w(N) \) is void and can be dropped. This may enhance appeal of the gain-loss axiom, but only if one blocks out the fact that this condition is met in voting games by definition.

Gain-loss, GL. For all \(v, w \in \mathbb{V} \) and \(i \in N \) such that \(v(N) = w(N) \) and \(\varphi_i(v) > \varphi_i(w) \), there is some \(j \in N \) such that \(\varphi_j(v) < \varphi_j(w) \).

This axiom demands that whenever the size of the pie does not change one player can only gain at the expense of another one. Although this axiom has some flavor of efficiency—efficiency obviously entails the gain-loss axiom—, it is much weaker. In particular, it does not demand gains and losses to match.

Einy and Haimanko (2011, Remark 2) also obtain a characterization of the Shapley value on the full domain of games. The proof relies on their results for voting games, in particular, on Einy (1987, Lemma 2.3). We first provide a short and elementary proof of this result.

Theorem 1 (Einy and Haimanko 2011). The Shapley value is the unique value that satisfies A, D, ET, and GL.

Proof. It is well-known that Sh meets the axioms. Let \(\varphi \) obey A, D, ET, and GL. By A, it suffices to show \(\varphi_i(\lambda \cdot u_T) = \text{Sh}_i(\lambda \cdot u_T) \) for all \(i \in N, T \subseteq N, T \neq \emptyset, \lambda \in \mathbb{R} \). By D, the claim is immediate for \(i \in N \setminus T \). Set \(v := \frac{\lambda}{|T|} \cdot \sum_{i \in T} u(i) \). Obviously, \(v(N) = \lambda = (\lambda \cdot u_T)(N) \). By D,

\[
\varphi_i(v) = \frac{\lambda}{|T|}, \quad i \in T \quad \text{and} \quad \varphi_i(v) = 0, \quad i \in N \setminus T. \tag{3}
\]

Further, any \(i, j \in T \) are symmetric in \(\lambda \cdot u_T \). By ET,

\[
\varphi_i(\lambda \cdot u_T) = \varphi_j(\lambda \cdot u_T), \quad i, j \in T. \tag{4}
\]
Suppose, \(\varphi_i (\lambda \cdot u_T) \geq \frac{\lambda}{|T|} = \varphi_i (v) \) for some \(i \in T \). By (3) and (4), this entails \(\varphi_j (\lambda \cdot u_T) \geq \varphi_j (v) \) for all \(j \in T \). Since \(\varphi_j (\lambda \cdot u_T) = 0 = \varphi_j (v) \) for all \(j \in N \setminus T \), this contradicts GL. Hence, \(\varphi_i (\lambda \cdot u_T) = \frac{\lambda}{|T|} = \text{Sh}_i (\lambda \cdot u_T) \) for \(i \in T \). \(\square \)

van den Brink (2001) and Casajus (2011) characterize the Shapley value by efficiency, the null player axiom, and either the fairness axiom or differential marginality.

Fairness, F. For all \(v, w \in \mathbb{V} \) and \(i, j \in N \) such that \(i \) and \(j \) are symmetric in \(w \),

\[
\varphi_i (v + w) - \varphi_i (v) = \varphi_j (v + w) - \varphi_j (v).
\]

Differential marginality, DM. For all \(v, w \in \mathbb{V} \) and \(i, j \in N \) such that

\[
v(S \cup \{i\}) - v(S \cup \{j\}) = w(S \cup \{i\}) - w(S \cup \{j\}).
\]

for all \(S \subseteq N \setminus \{i, j\} \), \(\varphi_i (v) - \varphi_j (v) = \varphi_i (w) - \varphi_j (w) \).

Fairness requires two players’ payoffs to change by the same amount whenever a game is added where these players are symmetric. This property is quite plausible because adding such a game does not affect the differential of these players productivities measured by marginal contributions. Differential marginality imposes this requirement directly—equal productivity differentials should entail equal payoff differentials, i.e., two players’ payoff differential should only depend on their own productivity differential. Indeed, fairness and differential marginality are equivalent. More precisely, differential marginality implies fairness on arbitrary domains and is implied by fairness on any (linear) subspaces of the full domain of games (Casajus, 2011, Proposition 3).

While fairness quite often is more useful to work with, differential marginality is less technical and has more interpretational appeal. In particular, it is structurally similar to and shares some of the interpretational appeal of marginality employed by Young (1985) to characterize the Shapley value in combination with efficiency and the equal treatment axiom. Other than its differential cousin, marginality refers to a single player—a player’s payoff should depend only on his own productivity.

Marginality, M. For all \(v, w \in \mathbb{V} \) and \(i \in N \) such that

\[
v(S \cup \{i\}) - v(S) = w(S \cup \{i\}) - w(S)
\]

for all \(S \subseteq N \setminus \{i\} \), \(\varphi_i (v) = \varphi_i (w) \).

In the following, we show that van den Brink/Casajus characterization can be modified as follows. While efficiency is weakened into the gain-loss axiom, the null
player axiom is strengthened into the dummy player axiom. This result does not simply drop from Theorem 1. On the one hand, the null game axiom together with fairness or differential marginality implies the equal treatment property (van den Brink, 2001, Proposition 2.4). But on the other hand, we cannot simply employ Casajus (2011, Proposition 6), which says that efficiency, the null game property, and differential marginality imply additivity, unless the player set contains exactly two players.

Theorem 2. The Shapley value is the unique value that satisfies [F or DM], D, and GL.

Proof. It is clear that Sh obeys D and GL. Further, van den Brink (2001) and Casajus (2011, Corollary 5) show that Sh satisfies F and DM. As mentioned above, both axioms are equivalent on V. Let the value φ obey DM, D, and GL. If |N| = 1, then D already entails φ = Sh.

Let now |N| > 1. For v ∈ V, set

\[\mathcal{T}_1 (v) := \{ T \subseteq N \mid |T| > 1 \land \lambda_T (v) \neq 0 \} . \]

(5)

For v ∈ V and T ∈ \mathcal{T}_1 (v), let \(v^T \in V \) be given by

\[v^T := v - \lambda_T (v) \cdot \left(u_T - |T|^{-1} \sum_{i \in T} u_i \right) . \]

(6)

This implies

\[\varphi_i (v) - \varphi_i (v^T) \overset{DM}{=} \varphi_j (v) - \varphi_j (v^T) \quad \text{for all } i, j \in T \text{ and all } i, j \in N \setminus T . \]

(7)

We show φ = Sh by induction on |\mathcal{T}_1 (v)|.

Induction basis: If |\mathcal{T}_1 (v)| = 0 for v ∈ V, the claim follows from D. Let now |\mathcal{T}_1 (v)| = 1, i.e., \(\mathcal{T}_1 (v) = \{ T \} \) for some T ⊆ N, T ≠ ∅, i.e., \(v = \lambda \cdot u_T \) for some \(\lambda \in \mathbb{R}, \lambda \neq 0 \). If |T| = 1, D entails \(\varphi (v) = Sh (v) \). Let now |T| > 1. We have

\[\varphi_i (v) \overset{D}{=} \varphi_i (v^T) \overset{(2)}{=} Sh_i (v) \quad \text{for all } i \in N \setminus T . \]

(8)

Suppose, \(\varphi_i (v) \geq Sh_i (v) \overset{(2)}{=} Sh_i (v^T) \overset{D}{=} \varphi_i (v^T) \) for some \(i \in T \). By \(v^T (N) = v (N) \), GL, and (8), there is some \(j \in T \) such that \(\varphi_j (v) \leq \varphi_j (v^T) \), contradicting (7). Hence, \(\varphi_i (v) = Sh_i (v) \) for all \(i \in T \). By (8), we thus have \(\varphi (v) = Sh (v) \).

Induction hypothesis (IH): \(\varphi (v) = Sh (v) \) for all v ∈ V such that |\mathcal{T}_1 (v)| ≤ k.
Induction step: Let \(v \in \mathbb{V} \) be such that \(|T_i(v)| = k + 1 > 1 \). By (5) and (6), we have \(|T_i(v^T)| = |T_i(v)| - 1 \) and therefore
\[
\varphi(v^T) \equiv \text{Sh}(v^T) \equiv \text{Sh}(v) \quad \text{for all } T \in T_i(v).
\] (9)

Below, we find that
\[
\varphi_i(v) - \text{Sh}_i(v) = \varphi_j(v) - \text{Sh}_j(v) \quad \text{for all } i, j \in N. \tag{10}
\]

Suppose \(\varphi_i(v) \geq \text{Sh}_i(v) \equiv \varphi_i(v^T) \) for some \(i \in N \). By \(v^T(N) = v(N) \) and GL, there is some \(j \in N \) such that \(\varphi_j(v) \leq \varphi_j(v^T) \equiv \text{Sh}_j(v) \), contradicting (10). Hence, \(\varphi(v) = \text{Sh}(v) \).

Remains to show (10). By (7) and (9), (*) (10) holds for all \(i, j \in N \) such that there is some \(T \in T_i(v) \) with \(i, j \in T \) or \(i, j \in N \setminus T \). We consider a number of cases.

Case 1: \(T_i(v) \neq \{T, N \setminus T\} \) for all \(T \subseteq N \), \(T \neq \emptyset \), \(N \setminus T \neq \emptyset \). One of the following holds true: (i) There are \(S, T \in T_i(v) \), \(S \neq T \) such that \(S \cap T \neq \emptyset \). (ii) There are \(S, T \in T_i(v) \), \(S \neq T \) such that \(S \cup T \neq N \). Note that these subcases may not be mutually exclusive.

Case 1(i): Since \(S \neq T \), w.l.o.g., \(S \setminus T \neq \emptyset \). Let \(i \in S \cap T \), \(j \in S \setminus T \), \(k \in T \), and \(\ell \in N \setminus (S \cup T) \). Note that such an \(\ell \) might not exist. By (*), we have
\[
\varphi_\ell(v) - \text{Sh}_\ell(v) \overset{j \in T}{\equiv} \varphi_j(v) - \text{Sh}_j(v) \overset{i \in S}{\equiv} \varphi_i(v) - \text{Sh}_i(v) \overset{k \in T}{\equiv} \varphi_k(v) - \text{Sh}_k(v),
\]

i.e., (10) holds.

Case 1(ii): Since \(S \neq T \), w.l.o.g., \(S \setminus T \neq \emptyset \). Let \(\ell \in S \cap T \), \(j \in S \setminus T \), \(k \in T \setminus S \), and \(i \in N \setminus (S \cup T) \). Note that such \(k \) or \(\ell \) might not exist. By (*), we have
\[
\varphi_\ell(v) - \text{Sh}_\ell(v) \overset{j \in S}{\equiv} \varphi_j(v) - \text{Sh}_j(v) \overset{i \in T}{\equiv} \varphi_i(v) - \text{Sh}_i(v) \overset{k \in S}{\equiv} \varphi_k(v) - \text{Sh}_k(v),
\]

i.e., (10) holds.

Case 2: \(T_i(v) = \{T, N \setminus T\} \) for some \(T \subseteq N \), \(T \neq \emptyset \), \(N \setminus T \neq \emptyset \). Fix \(i \in T \) and \(j \in N \setminus T \). We have
\[
v = \lambda_T \cdot u_T + \lambda_{N \setminus T} \cdot u_{N \setminus T} + \sum_{k \in N} \lambda_k \cdot u_{\{k\}}
\]

for some \(\lambda_T, \lambda_{N \setminus T}, \lambda_k \in \mathbb{R}, k \in N \). Let \(w \in \mathbb{V} \) be given by
\[
w = \lambda_T \cdot u_T - \lambda_{N \setminus T} \cdot u_{((N \setminus T) \setminus \{j\}) \cup \{i\}} + \sum_{k \in N} \lambda_k \cdot u_{\{k\}}.
\]

Note that (**) \(w \) is as in Case 1(i) or \(|T_i(v)| \leq 1 \). Thus, we have
\[
\varphi_i(v) - \varphi_j(v) \overset{\text{DM}}{=} \varphi_i(w) - \varphi_j(w) \overset{(**)}{=} \text{Sh}_i(w) - \text{Sh}_j(w) \overset{\text{DM}}{=} \text{Sh}_i(v) - \text{Sh}_j(v).
\]
In view of (*), this entails (10). Done.

Remark 1. Our characterization is non-redundant. The Banzhaf value (Banzhaf, 1965; Owen, 1975) meets DM and D, but not GL. The equal division value fails D, while satisfying DM and GL. The pre-nucleolous (Schmeidler, 1969) obeys D and GL, but not DM.

Remark 2. Casajus (2011, Theorem 1 and Proposition 4) shows that both his and the van den Brink characterization of the Shapley value can be restricted to any convex cone\(^4\) within the full domain of games that contains all unanimity games. Combining the ideas of the proof of Theorem 2 and of Casajus (2011, Theorem 1), it is not too difficult to show that Theorem 2 also works within any convex cone that contains all unanimity games and, in addition, the “negative” unanimity games referring to singleton player sets, i.e., all \(-u(i)\), \(i \in N\). For example, the superadditive games are such a cone. For notational parsimony, the details of the proof are left to the reader. As in the proof above, one employs \(T_i(v)\) and \(v^T\) instead of \(T(v)\) and \(v - \lambda T(v) \cdot u_T\) from the original proof.

Remark 3. Within the Young characterization, efficiency also can be replaced by the gain-loss axiom. But then the dummy player axiom has to be added to the list of axioms, for example. In order to prove this claim, one combines the technique of the Young proof with the technique of the proof of Theorem 2.

4. Simple games

Unfortunately, Theorem 2 does not work within the domain of voting games or within the domain simple games for \(|N| > 1\). To see this consider the value \(\varphi^{si} \neq Sh\) be given by

\[
\varphi^{si}_i (v) = \begin{cases}
1, & v = u_{\{i\}}, \\
\frac{1}{2} \cdot Sh_i (v), & v \neq u_{\{i\}},
\end{cases}
\quad i \in N, \ v \in \mathbb{V}^{si}. \tag{11}
\]

In \(\mathbb{V}^{si}\), the only non-null dummy players are dictators, i.e., the players \(i\) in the games \(u_{\{i\}}\), which are dealt with explicitly. Afterwards, \(\varphi^{si}\) inherits D from Sh. To see GL, first consider \(u_{\{i\}}\) and \(u_{\{j\}}, \ i \neq j\). This gives \(\varphi^{si}_i (u_{\{i\}}) = 1 > 0 = \varphi^{si}_i (u_{\{j\}})\) and \(\varphi_j (u_{\{i\}}) = 0 < 1 = \varphi_j (u_{\{j\}})\). Consider now \(u_{\{i\}}\) and \(v \in \mathbb{V}^{si}, \ i \in N, \ v \neq u_{\{j\}}\) for all \(j \in N\). We have \(\varphi^{si}_i (u_{\{i\}}) = 1 > \frac{1}{2} > \frac{1}{2} \cdot Sh_i (v) = \varphi^{si}_i (v)\) and \(\varphi^{si}_j (u_{\{i\}}) = \varphi^{si}_j (v)\). \footnote{A subset \(\mathcal{C}\) of \(\mathbb{V}\) is a convex cone if for all \(v, w \in \mathcal{C}\) and \(\lambda \in \mathbb{R}, \ \lambda \geq 0\), we have \(v + w \in \mathcal{C}\) and \(\lambda \cdot v \in \mathcal{C}\).}
0 < \frac{1}{2} \cdot \text{Sh}_j(v) = \varphi_j(v) \text{ for some } j \in N \setminus \{i\} \text{ because there is no dictator in } v. \text{ If } v, w \in \mathbb{V}^{si} \text{ are such that } v, w \neq u_{(j)} \text{ for all } j \in N, \text{ then } \varphi^{si} \text{ inherits GL from Sh. If } v, w \in \mathbb{V}^{si} \text{ are such that } v, w \neq u_{(j)} \text{ for all } j \in N, \text{ then } \varphi^{si} \text{ inherits DM from Sh. For } u_{(i)} \text{ and } v \neq u_{(i)}, i \in N, \text{ the hypothesis of DM can only be satisfied for } k, \ell \in N \setminus \{i\}. \text{ In } u_{(i)}, \text{ such players are null players. Hence in } v, \text{ they have to be symmetric, which rules out } v = u_{(k)} \text{ or } v = u_{(\ell)}. \text{ Therefore, Sh passes DM to } \varphi^{si}. \text{ Recall that DM implies F.}

For |N| > 1, the value \varphi^{si} \text{ fails E. Now, one may wonder whether Theorem 2 would work in } \mathbb{V}^{si} \text{ or some subdomain with E in place of GL. Since dictators are the only non-null dummy players in } \mathbb{V}^{si}, \text{ one easily checks that E and N already imply D on } \mathbb{V}^{si} \text{ or any subdomain. So, the question is whether the van den Brink characterization or the Casajus characterization work within } \mathbb{V}^{si} \text{ or certain subdomains of } \mathbb{V}^{si}. \text{ For } \mathbb{V}^{si} \text{ itself, the answer is affirmative by van den Brink (2001, Theorem 3.1) together with Casajus (2011, Proposition 3).}

We now turn to } \mathbb{V}^{vo} \text{ and } \mathbb{V}^{vo} \cap \mathbb{V}^{sa}, \text{ where the latter domain contains those voting games that are non-contradictory, i.e., } v(S) = 1 \text{ implies } v(T) = 0 \text{ for all } T \subseteq N \setminus S. \text{ First note that in these domains F has no bite because } v + w \notin \mathbb{V}^{vo} \text{ for all } v, w \in \mathbb{V}^{vo}. \text{ Since } 0 \notin \mathbb{V}^{vo}, \text{ DM combined with N does not entail ET within } \mathbb{V}^{vo} \text{ for } |N| = 2. \text{ Indeed, one easily checks that the value } \varphi^{\circ} \neq \text{Sh on } N = \{1, 2\} \text{ given by}

\varphi^{\circ}_i(v) = \begin{cases}
i - 1, & v = u_N \lor v = u_N + e_{(1)} + e_{(2)}, \\
\text{Sh}_i(v), & v = u_{(1)} \lor v = u_{(2)}, \end{cases} \quad i \in N,

\text{meets E, N, and DM in } \mathbb{V}^{vo} \text{ or } \mathbb{V}^{vo} \cap \mathbb{V}^{sa}.

For |N| > 2, one easily checks that the value } \varphi^{vo} \neq \text{Sh on } \mathbb{V}^{vo} \text{ given by}

\varphi^{vo}_i(v) = \begin{cases} |N|^{-1}, & v = u_{(j)} + u_{N \setminus \{j\}} - u_N, \quad j \in N, \\
\text{Sh}_i(v), & \text{else}, \end{cases}

\text{inherits E and N from Sh. If } v, w \neq u_{(j)} + u_{N \setminus \{j\}} - u_N \text{ for all } j \in N, \text{ then the implication of DM drops from Sh obeying DM. If } v = u_{(k)} + u_{N \setminus \{k\}} \text{ and } w = u_{(\ell)} + u_{N \setminus \{\ell\}}, k, \ell \in N, k \neq \ell, \text{ then the implication DM trivially is fulfilled. Let now } w = u_{(k)} + u_{N \setminus \{k\}} - u_N, \quad k \in N. \text{ The hypothesis of DM is met by } v, w, \text{ and } i, j \in N \setminus \{k\} \text{ only if } i \text{ and } j \text{ are symmetric in } v. \text{ Since Sh obeys ET, the implication of DM follows. The hypothesis of DM is met by } v, w, k, \text{ and } i \in N \setminus \{k\} \text{ iff}

v(S \cup \{k\}) - v(S \cup \{i\}) = w(S \cup \{k\}) - w(S \cup \{i\}) = \begin{cases} 0, & S = N \setminus \{i, k\}, \\
1, & \text{else}.
\end{cases}
Since v is monotonic, we have $v(S \cup \{k\}) = 1$, $v(S \cup \{j\}) = 0$, and $v(S) = 0$ for all $S \subsetneq N \setminus \{i, k\}$ as well as $v(N) = 1$ and $v(N \setminus \{i\}) = v(N \setminus \{k\}) = 1$, i.e., $v = w$. Obviously, the implication of DM holds true.

Note that the games $u_{\{j\}} + u_{N \setminus \{j\}} - u_N$ employed in (12) are not in $V^{sa} \cap V^{vo}$. Indeed, the Casajus characterization works within $V^{sa} \cap V^{vo}$ for $|N| \neq 2$.

Proposition 3. For $|N| \neq 2$, the Shapley value is the unique value on $V^{sa} \cap V^{vo}$ that satisfies E, N, and DM.

Proof. We know that Sh satisfies the axioms. Let the value φ on $V^{sa} \cap V^{vo}$ obey E, N, and DM. By E, $\varphi = Sh$ for $|N| = 1$. Let now $|N| > 2$. Any $v \in V^{vo}$ is determined by the set $W(v)$ of its minimal winning coalitions. In particular, $v = \bigvee_{T \in W(v)} u_T$.

We show $\varphi = Sh$ by induction on $|W(v)|$.

Induction basis: If $|W(v)| = 1$ for $v \in V^{sa} \cap V^{vo}$, then $v = u_T$ for some $T \subseteq N$, $T \neq \emptyset$. By E and N, $\varphi(v) = Sh(v)$.

Induction hypothesis (IH): $\varphi(v) = Sh(v)$ for all $v \in V^{sa} \cap V^{vo}$ such that $|W(v)| \leq k$.

Induction step: Let $v \in V^{sa} \cap V^{vo}$ be such that $|W(v)| = k+1 > 1$. For $T \in W(v)$, let $v(T) \in V^{sa} \cap V^{vo}$ be given by $v(T) = \bigvee_{S \in W(v) \setminus \{T\}} u_S$. This implies

$$\varphi_i(v) - \varphi_j(v) \overset{\text{DM}}{=} \varphi_i(v(T)) - \varphi_j(v(T)) \overset{\text{IH}}{=} Sh_i(v(T)) - Sh_j(v(T)) \overset{\text{DM}}{=} Sh_i(v) - Sh_j(v)$$

(13)

for all $i, j \in T$ and all $i, j \in N \setminus T$.

Since $|W(v)| > 1$ and $v \in V^{sa} \cap V^{vo}$, there are $T_1, T_2 \in W(v)$ such that $T_1 \cap T_2 \neq \emptyset$, $T_1 \setminus T_2 \neq \emptyset$, $T_2 \setminus T_1 \neq \emptyset$. Let $i \in T_1 \setminus T_2$, $j \in T_1 \cap T_2$, $k \in T_2 \setminus T_1$, and $\ell \in N \setminus (T_1 \cap T_2)$, where the latter may not exist. By (13), we have

$$\varphi_i(v) - Sh_i(v) \overset{T_1 \setminus T_2}{=} \varphi_k(v) - Sh_k(v) \overset{k \in T_2}{=} \varphi_j(v) - Sh_j(v) \overset{j \in T_1}{=} \varphi_i(v) - Sh_i(v).$$

Hence, $\varphi_i(v) - Sh_i(v) = \varphi_j(v) - Sh_j(v)$ for all $i, j \in N$. Since both φ and Sh meet E, $\varphi(v) = Sh(v)$.

Remark 4. The use of DM in Proposition 3 indicates that DM can be replaced by the following version of fairness.

Transfairness, TF. For all $v, w \in V^{si} \cap V^{sa}$ and $i, j \in N$ such that i and j are symmetric in w and $v \lor w \in V^{si} \cap V^{sa}$,

$$\varphi_i(v \lor w) - \varphi_i(v) = \varphi_j(v \lor w) - \varphi_j(v).$$
5. Concluding remarks

We conclude this note by establishing a relation between the equal treatment axiom and symmetry on the domain of voting games—the equal treatment axiom combined with the transfer axiom and the null player axiom already yields symmetry. Note that Malawski (2008, Theorem 2) shows a similar relation for general TU games—the equal treatment axiom together with additivity entails symmetry. Given the former relation, Einy and Haimanko (2011, Theorem 3) is immediate from their second theorem.

Lemma 4. If a value \(\varphi \) on \(\mathbb{V}^{\infty} \) satisfies \(T, N, \) and \(ET \), then \(\varphi \) also satisfies \(S \).

Proof. Let the value \(\varphi \) on \(\mathbb{V}^{\infty} \) meet \(T, N, \) and \(ET \). We first show (*) \(\varphi_i (u_S) = \varphi_j (u_T) \) for all \(i, j \in N \) and \(S, T \subseteq N \) such that \(|S| = |T| \) and \([i \in S \text{ and } j \in T] \) or \([i \in N \setminus S \text{ and } j \in N \setminus T] \). Since \(\varphi \) meets \(N \), the claim drops from the following chain of reasoning. Let \(i, j \in N, i \neq j, \) and \(T \subseteq N \setminus \{i, j\} \), we have

\[
\varphi_i (u_{T \cup \{i\}}) \overset{N}{=} \varphi_i (u_{T \cup \{i\}}) + \varphi_i (u_{T \cup \{j\}}) \quad \overset{T}{=} \varphi_i (u_{T \cup \{i\}} \lor u_{T \cup \{j\}}) + \varphi_i (u_{T \cup \{i\}} \land u_{T \cup \{j\}}) \quad \overset{ET}{=} \varphi_j (u_{T \cup \{i\}} \lor u_{T \cup \{j\}}) + \varphi_j (u_{T \cup \{i\}} \land u_{T \cup \{j\}}) \quad \overset{T}{=} \varphi_j (u_{T \cup \{i\}}) + \varphi_j (u_{T \cup \{j\}}) \overset{N}{=} \varphi_j (u_{T \cup \{j\}}).
\]

Recall \(v = \bigvee_{T \in \mathcal{W}(v)} u_T \) for all \(v \in \mathbb{V}^{\infty} \). Thus, Einy (1987, Lemma 2.3) entails

\[
\varphi (v) = \sum_{T \subseteq \mathcal{W}(v): T \neq \emptyset} (-1)^{|T|+1} \cdot \varphi \left(u_{\bigcup_{T \in \mathcal{W}(v)}} \right).
\]

(14)

For any bijection \(\pi : N \to N \), we have

\[
v \circ \pi^{-1} = \left(\bigvee_{T \in \mathcal{W}(v)} u_T \right) \circ \pi^{-1} = \bigvee_{T \in \mathcal{W}(v)} u_{\pi(T)}.
\]

(15)

For \(i \in N \), this yields

\[
\varphi_{\pi(i)} (v \circ \pi^{-1}) \overset{(15)}{=} \varphi_{\pi(i)} \left(\bigvee_{T \in \mathcal{W}(v)} u_{\pi(T)} \right) \overset{(14)}{=} \sum_{T \subseteq \mathcal{W}(v): T \neq \emptyset} (-1)^{|T|+1} \cdot \varphi_{\pi(i)} \left(u_{\bigcup_{T \in \mathcal{W}(v)}} \right) = \sum_{T \subseteq \mathcal{W}(v): T \neq \emptyset} (-1)^{|T|+1} \cdot \varphi_i \left(u_{\bigcup_{T \in \mathcal{W}(v)}} \right) \overset{(14)}{=} \varphi_i (v),
\]

where the third equality is due to (*) and the fact that for all \(T \subseteq \mathcal{W}(v) \), we have \(i \in \bigcup_{T \in \mathcal{W}(v)} T \) iff \(\pi (i) \in \bigcup_{T \in \mathcal{W}(v)} \pi (T) \). Thus, \(\varphi \) meets \(S \). \(\square \)
References

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Autor/Autorin</th>
<th>Thema</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wolfgang Bernhardt</td>
<td>Stock Options wegen oder gegen Shareholder Value? Vergütungsmodelle für Vorstände und Führungskräfte 04/1998</td>
</tr>
<tr>
<td>2</td>
<td>Thomas Lenk / Volkmar Teichmann</td>
<td>Bei der Reform der Finanzverfassung die neuen Bundesländer nicht vergessen! 10/1998</td>
</tr>
<tr>
<td>4</td>
<td>Kristin Wellner</td>
<td>Möglichkeiten und Grenzen kooperativer Standortgestaltung zur Revitalisierung von Innenstädten 12/1998</td>
</tr>
<tr>
<td>5</td>
<td>Gerhard Wolff</td>
<td>Brauchen wir eine weitere Internationalisierung der Betriebswirtschaftslehre? 01/1999</td>
</tr>
<tr>
<td>6</td>
<td>Thomas Lenk / Friedrich Schneider</td>
<td>Zurück zu mehr Föderalismus: Ein Vorschlag zur Neugestaltung des Finanzausgleichs in der Bundesrepublik Deutschland unter besonderer Berücksichtigung der neuen Bundesländer 12/1998</td>
</tr>
<tr>
<td>7</td>
<td>Thomas Lenk</td>
<td>Kooperativer Föderalismus – Wettbewerbsorientierter Föderalismus 03/1999</td>
</tr>
<tr>
<td>8</td>
<td>Thomas Lenk / Andreas Mathes</td>
<td>EU – Osterweiterung – Finanzierbar? 03/1999</td>
</tr>
<tr>
<td>9</td>
<td>Thomas Lenk / Volkmar Teichmann</td>
<td>Die fiskalischen Wirkungen verschiedener Forderungen zur Neugestaltung des Länderfinanzausgleichs in der Bundesrepublik Deutschland: Eine empirische Analyse unter Einbeziehung der Normenkontrollketten der Länder Baden-Württemberg, Bayern und Hessen sowie der Stellungnahmen verschiedener Bundesländer 09/1999</td>
</tr>
<tr>
<td>10</td>
<td>Kai-Uwe Graw</td>
<td>Gedanken zur Entwicklung der Strukturen im Bereich der Wasserversorgung unter besonderer Berücksichtigung kleiner und mittlerer Unternehmen 10/1999</td>
</tr>
<tr>
<td>11</td>
<td>Adolf Wagner</td>
<td>Materialien zur Konjunkturforschung 12/1999</td>
</tr>
<tr>
<td>12</td>
<td>Anja Birke</td>
<td>Die Übertragung westdeutscher Institutionen auf die ostdeutsche Wirklichkeit – ein erfolgversprechendes Zusammenspiel oder Aufdeckung systematischer Mängel? Ein empirischer Bericht für den kommunalen Finanzausgleich am Beispiel Sachsen 02/2000</td>
</tr>
<tr>
<td>14</td>
<td>Wolfgang Bernhardt</td>
<td>Unternehmensführung (Corporate Governance) und Hauptversammlung 04/2000</td>
</tr>
<tr>
<td>15</td>
<td>Adolf Wagner</td>
<td>Materialien zur Wachstumsforschung 03/2000</td>
</tr>
<tr>
<td>16</td>
<td>Thomas Lenk / Anja Birke</td>
<td>Determinanten des kommunalen Gebührenaufkommens unter besonderer Berücksichtigung der neuen Bundesländer 04/2000</td>
</tr>
<tr>
<td>17</td>
<td>Thomas Lenk</td>
<td>Finanzwirtschaftliche Auswirkungen des Bundesverfassungsgerichtsurteils zum Länderfinanzausgleich vom 11.11.1999 04/2000</td>
</tr>
<tr>
<td>18</td>
<td>Dirk Büchel</td>
<td>Continuous linear utility for preferences on convex sets in normal real vector spaces 02/2000</td>
</tr>
<tr>
<td>19</td>
<td>Stefan Dierkes / Stephanie Hannath</td>
<td>Steuerung dezentraler Investitionsentscheidungen bei nutzungabhängigem und nutzungsunabhängigem Vorschlag des Anlagenvermögens 06/2000</td>
</tr>
<tr>
<td>20</td>
<td>Thomas Lenk / Andreas Mathes / Olaf Hirschefeld</td>
<td>Zur Trennung von Bundes- und Landeskompetenzen in der Finanzverfassung Deutschlands 07/2000</td>
</tr>
<tr>
<td>21</td>
<td>Stefan Dierkes</td>
<td>Marktwerte, Kapitalkosten und Betafaktoren bei wertabhängiger Finanzierung 10/2000</td>
</tr>
<tr>
<td>22</td>
<td>Thomas Lenk</td>
<td>Intergovernmental Fiscal Relationships in Germany: Requirement for New Regulations? 03/2001</td>
</tr>
<tr>
<td>23</td>
<td>Wolfgang Bernhardt</td>
<td>Stock Options – Aktuelle Fragen Besteuerung, Bewertung, Offenlegung 03/2001</td>
</tr>
<tr>
<td>Nr.</td>
<td>Autor/innen</td>
<td>Titel</td>
</tr>
<tr>
<td>------</td>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>24</td>
<td>Thomas Lenk</td>
<td>Die „Kleine Reform“ des Länderfinanzausgleichs als Nukleus für die „große Finanzverfassungs-reform“?</td>
</tr>
<tr>
<td>27</td>
<td>Sören Bär</td>
<td>Grundzüge eines Tourismusmarketing, untersucht für den Südraum Leipzig</td>
</tr>
<tr>
<td>28</td>
<td>Wolfgang Bernhardt</td>
<td>Der Deutsche Corporate Governance Kodex: Zuwahl (comply) oder Abwahl (explain)?</td>
</tr>
<tr>
<td>29</td>
<td>Adolf Wagner</td>
<td>Konjunkturtheorie, Globalisierung und Evolutionsökonomik</td>
</tr>
<tr>
<td>30</td>
<td>Adolf Wagner</td>
<td>Zur Profilbildung der Universitäten</td>
</tr>
<tr>
<td>32</td>
<td>Thomas Lenk / Anja Birke</td>
<td>The Measurement of Expenditure Needs in the Fiscal Equalization at the Local Level Empirical Evidence from German Municipalities</td>
</tr>
<tr>
<td>33</td>
<td>Wolfgang Bernhardt</td>
<td>Die Lust am Fliegen Eine Parabel auf viel Corporate Governance und wenig Unternehmensführung</td>
</tr>
<tr>
<td>35</td>
<td>Uwe Haubold / Michael Nowak</td>
<td>Risikoanalyse für Langfristinvestments Eine simulationsbasierte Studie</td>
</tr>
<tr>
<td>36</td>
<td>Thomas Lenk</td>
<td>Die Neuregelung des bundesstaatlichen Finanzausgleichs auf Basis der Steuerschätzung Mai 2002 und einer aktualisierten Bevölkerungsstatistik</td>
</tr>
<tr>
<td>37</td>
<td>Uwe Haubold / Michael Nowak</td>
<td>Auswirkungen der Renditeverteilungsannahme auf Anlageentscheidungen Eine simulationsbasierte Studie</td>
</tr>
<tr>
<td>38</td>
<td>Wolfgang Bernhardt</td>
<td>Corporate Governance Konzept für den Mittelstand</td>
</tr>
<tr>
<td>39</td>
<td>Hermut Kormann</td>
<td>Familienunternehmen: Grundfragen mit finanzwirtschaftlichen Bezug</td>
</tr>
<tr>
<td>40</td>
<td>Matthias Folk</td>
<td>Launhardtische Trichter</td>
</tr>
<tr>
<td>41</td>
<td>Wolfgang Bernhardt</td>
<td>Corporate Governance statt Unternehmensführung</td>
</tr>
<tr>
<td>42</td>
<td>Thomas Lenk / Karolina Kaiser</td>
<td>Das Prämienmodell im Länderfinanzausgleich – Anreiz- und Verteilungswirkungen</td>
</tr>
<tr>
<td>43</td>
<td>Sabine Klinger</td>
<td>Die Volkswirtschaftliche Gesamtrechnung des Haushaltsektors in einer Matrix</td>
</tr>
<tr>
<td>44</td>
<td>Thomas Lenk / Heide Köpping</td>
<td>Strategien zur Armutsbekämpfung und –vermeidung in Ostdeutschland:</td>
</tr>
<tr>
<td>45</td>
<td>Wolfgang Bernhardt</td>
<td>Sommernachtsfantasien Corporate Governance im Land der Träume</td>
</tr>
<tr>
<td>46</td>
<td>Thomas Lenk / Karolina Kaiser</td>
<td>The Premium Model in the German Fiscal Equalization System</td>
</tr>
<tr>
<td>47</td>
<td>Thomas Lenk / Christine Falken</td>
<td>Komparative Analyse ausgewählter Indikatoren des Kommunalwirtschaftlichen Gesamtergebnisses</td>
</tr>
<tr>
<td>48</td>
<td>Michael Nowak / Stephan Barth</td>
<td>Immobilienanlagen im Portfolio institutioneller Investoren am Beispiel von Versicherungsunternehmen Auswirkungen auf die Risikosituation</td>
</tr>
<tr>
<td>Nr.</td>
<td>Autor/innen</td>
<td>Titel</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>50</td>
<td>Christian Milow</td>
<td>Der Griff des Staates nach dem Währungsgold</td>
</tr>
<tr>
<td>51</td>
<td>Anja Eichhorst / Karolina Kaiser</td>
<td>The Institutional Design of Bailouts and Its Role in Hardening Budget Constraints in Federations</td>
</tr>
<tr>
<td>53</td>
<td>Gunther Schnabl</td>
<td>Die Grenzen der monetären Integration in Europa</td>
</tr>
<tr>
<td>56</td>
<td>Ulrich Heinemann / Annika Blaschak</td>
<td>Indicators and the German Business Cycle A Multivariate Perspective on Indicators of Ilo, OECD, and ZEW</td>
</tr>
<tr>
<td>59</td>
<td>Christine Falken / Mario Schmidt</td>
<td>Kameralistik versus Doppik zur Informationsfunktion des alten und neuen Rechnungswesens der Kommunen Teil I: Einführende und Erläuternde Betrachtungen zum Systemwechsel im kommunalen Rechnungswesen</td>
</tr>
<tr>
<td>60</td>
<td>Christine Falken / Mario Schmidt</td>
<td>Kameralistik versus Doppik zur Informationsfunktion des alten und neuen Rechnungswesens der Kommunen Teil II: Bewertung der Informationsfunktion im Vergleich</td>
</tr>
<tr>
<td>63</td>
<td>Adolf Wagner</td>
<td>Regionalökonomik: Konvergierende oder divergierende Regionalentwicklungen</td>
</tr>
<tr>
<td>67</td>
<td>Wolfgang Bernhardt</td>
<td>5 Jahre Deutscher Corporate Governance Konex Eine Erfolgsgeschichte?</td>
</tr>
<tr>
<td>69</td>
<td>Christian Groth / Karl-Josef Koch / Thomas M. Steger</td>
<td>When economic growth is less than exponential</td>
</tr>
<tr>
<td>70</td>
<td>Andreas Bohne / Linda Kochmann</td>
<td>Ökonomische Umweltbewertung und entogene Entwicklung peripherer Regionen Synthese einer Methodik und einer Theorie</td>
</tr>
<tr>
<td>71</td>
<td>Andreas Bohne / Linda Kochmann / Jan Slavík / Lenka Slavková</td>
<td>Deutsch-schweizerische Bibliographie Studien der kontingenten Bewertung in Mittel- und Osteuropa</td>
</tr>
<tr>
<td>Nr.</td>
<td>Authors</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>72</td>
<td>Paul Lehmann / Christoph Schröter-Schlaack</td>
<td>Regulating Land Development with Tradable Permits: What Can We Learn from Air Pollution Control? 08/2008</td>
</tr>
<tr>
<td>73</td>
<td>Ronald McKinnon / Gunther Schnabl</td>
<td>China's Exchange Rate Impasse and the Weak U.S. Dollar 10/2008</td>
</tr>
<tr>
<td>76</td>
<td>Gunther Schnabl / Stephan Freitag</td>
<td>An Asymmetry Matrix in Global Current Accounts 01/2009</td>
</tr>
<tr>
<td>77</td>
<td>Christina Ziegler</td>
<td>Testing Predictive Ability of Business Cycle Indicators for the Euro Area 01/2009</td>
</tr>
<tr>
<td>78</td>
<td>Thomas Lenk / Oliver Rottmann / Florian F. Wottek</td>
<td>Public Corporate Governance in Public Enterprises Transparency in the Face of Divergent Positions of Interest 02/2009</td>
</tr>
<tr>
<td>79</td>
<td>Thomas Steger / Lucas Bretschger</td>
<td>Globalization, the Volatility of Intermediate Goods Prices, and Economic Growth 02/2009</td>
</tr>
<tr>
<td>80</td>
<td>Marcelo Munoz Escobar / Robert Holländer</td>
<td>Institutional Sustainability of Payment for Watershed Ecosystem Services. Enabling conditions of institutional arrangement in watersheds 04/2009</td>
</tr>
<tr>
<td>81</td>
<td>Robert Holländer / WU Chunya / DUAN Ning</td>
<td>Sustainable Development of Industrial Parks 07/2009</td>
</tr>
<tr>
<td>82</td>
<td>Georg Quaas</td>
<td>Realgrößen und Preisindizes im alten und im neuen VGR-System 10/2009</td>
</tr>
<tr>
<td>84</td>
<td>Gunther Schnabl / Andreas Hoffmann</td>
<td>The Theory of Optimum Currency Areas and Growth in Emerging Markets 03/2010</td>
</tr>
<tr>
<td>85</td>
<td>Georg Quaas</td>
<td>Does the macroeconomic policy of the global economy's leader cause the worldwide asymmetry in current account? 03/2010</td>
</tr>
<tr>
<td>86</td>
<td>Volker Grossmann / Thomas M. Steger / Timo Trümborn</td>
<td>Quantifying Optimal Growth Policy 06/2010</td>
</tr>
<tr>
<td>87</td>
<td>Wolfgang Bernhardt</td>
<td>Corporate Governance Kodex für Familienunternehmen? Eine Widerrede 06/2010</td>
</tr>
<tr>
<td>88</td>
<td>Philipp Mandel / Bernd Süssmuth</td>
<td>A ReExamination of the Role of Gender in Determining Digital Piracy Behavior 07/2010</td>
</tr>
<tr>
<td>89</td>
<td>Philipp Mandel / Bernd Süssmuth</td>
<td>Size Matters, The Relevance and Hicksian Surplus of Agreeable College Class Size 07/2010</td>
</tr>
<tr>
<td>90</td>
<td>Thomas Kohstall / Bernd Süssmuth</td>
<td>Cyclic Dynamics of Prevention Spending and Occupational Injuries in Germany: 1886-2009 07/2010</td>
</tr>
<tr>
<td>91</td>
<td>Martina Padmanabhon</td>
<td>Gender and Institutional Analysis. A Feminist Approach to Economic and Social Norms 08/2010</td>
</tr>
<tr>
<td>92</td>
<td>Gunther Schnabl / Ansgar Balke</td>
<td>Finanzkrise, globale Liquidität und makoökonomischer Exit 09/2010</td>
</tr>
<tr>
<td>93</td>
<td>Ullrich Heilemann / Roland Schuhr / Heinz Josef Münch</td>
<td>A "perfect storm"? The present crisis and German crisis patterns 12/2010</td>
</tr>
<tr>
<td>94</td>
<td>Gunther Schnabl / Holger Zemanek</td>
<td>Die Deutsche Wiedervereinigung und die europäische Schuldendrucke im Lichte der Theorie optimaler Währungsräume 06/2011</td>
</tr>
<tr>
<td>95</td>
<td>Andreas Hoffmann / Gunther Schnabl</td>
<td>Symmetrische Regeln und asymmetrisches Handeln in der Geld- und Finanzpolitik 07/2011</td>
</tr>
<tr>
<td>96</td>
<td>Andreas Schöfer / Maik T. Schneider</td>
<td>Endogenous Enforcement of Intellectual Property, North-South Trade, and Growth 08/2011</td>
</tr>
<tr>
<td>97</td>
<td>Volker Grossmann / Thomas M. Steger / Timo Trümborn</td>
<td>Dynamically Optimal R&D Subsidization 08/2011</td>
</tr>
</tbody>
</table>
Nr. 98 Erik Gawel
Political drivers of and barriers to Public-Private Partnerships: The role of political involvement
09/2011

Nr. 99 André Casajus
Collusion, symmetry, and the Banzhaf value
09/2011

Nr. 100 Frank Hüttner / Marco Sunder
Decomposing R with the Owen value
10/2011

Nr. 101 Volker Grossmann / Thomas M. Steger / Timo Trimborn
The Macroeconomics of TANSTAAFL
11/2011

Nr. 102 Andreas Hoffmann
Determinants of Carry Trades in Central and Eastern Europe
11/2011

Nr. 103 Andreas Hoffmann
Did the Fed and ECB react asymmetrically with respect to asset market developments?
01/2012

Nr. 104 Christina Ziegler
Monetary Policy under Alternative Exchange Rate Regimes in Central and Eastern Europe
02/2012

Nr. 105 José Abad / Axel Löffler / Gunther Schnabl / Holger Zemanek
Fiscal Divergence, Current Account and TARGET2 Imbalances in the EMU
03/2012

Nr. 106 Georg Quaas / Robert Köster
Ein Modell für die Wirtschaftszweige der deutschen Volkswirtschaft: Das “MOGBOT” (Model of Germany’s Branches of Trade)
04/2012

Nr. 107 Andreas Schöfer / Thomas Steger
Journey into the Unknown? Economic Consequences of Factor Market Integration under Increasing Returns to Scale
05/2012

Nr. 108 Andreas Hoffmann / Björn Urbansky
Order, Displacements and Recurring Financial Crises
06/2012

Nr. 109 Finn Marten Körner / Holger Zemanek
On the Brink? Intro-euro area imbalances and the sustainability of foreign debt
07/2012

Nr. 110 André Casajus / Frank Hüttner
Nullifying vs. dummyfying players or nullified vs. dummified players: The difference between the equal division value and the equal surplus division value
07/2012

Nr. 111 André Casajus
Solidarity and fair taxation in TU games
07/2012

Nr. 112 Georg Quaas
Ein Nelson-Winter-Modell der deutschen Volkswirtschaft
08/2012

Nr. 113 André Casajus / Frank Hüttner
Null players, solidarity, and the egalitarian Shapley values
08/2012

Nr. 114 André Casajus
The Shapley value without efficiency and additivity
11/2012