Nullifying vs. dummifying players or nullified vs. dummified players: The difference between the equal division value and the equal surplus division value

Juli 2012

ISSN 1437-9384
Nullifying vs. dummifying players or nullified vs. dummifed players: The difference between the equal division value and the equal surplus division value

André Casajus\textsuperscript{1} and Frank Huettner\textsuperscript{1}

(February 2012, this version: July 11, 2012, 22:50)

Abstract

We provide new characterizations of the equal surplus division value and the equal division value as well as of the class of their convex mixtures. This way, the difference between the Shapley value, the equal division value, and the equal surplus division value is pinpointed to one axiom. Moreover, we shed light on solidarity principles embodied in the equal division value and in the equal surplus division values.

Key Words: Solidarity, nullifying player, equal division value, equal surplus division value, desirability

\textit{JEL code:} C71, D60

\textit{AMS subject classification:} 91A12

\textsuperscript{1}corresponding author, mail@casajus.de

\textsuperscript{1}LSI Leipziger Spieltheoretisches Institut, Leipzig, Germany.

\textsuperscript{1}Professur für Mikroökonomik, Wirtschaftswissenschaftliche Fakultät, Universität Leipzig, Grimmaische Str. 12, 04009 Leipzig, Germany.
1. Introduction

The class of convex mixtures of the equal surplus division value (ES-value) and the equal division value (ED-value) for cooperative games with transferable utility (TU-games) is particularly interesting in the context of the allocation of an indivisible good via auctions. Graham, Marshall and Richard (1990) derive a TU-game from the auction setup, which captures the consequences of bidder coalitions. The allocations resulting from the application of the Shapley value to this TU-game are not envy-free. van den Brink (2007) shows that the envy-free and Pareto-efficient allocations coincide with the payoffs prescribed by the convex mixtures of the ES-value and the ED-value. Hence, one might be interested in the properties that actually drive these concepts.

van den Brink (2007) suggests a surprising characterization of the ED-value that employs the nullifying player property instead of the null player property in the standard characterization of the Shapley value (Shapley, 1953), which also includes efficiency, additivity, and the equal treatment property. A player is called nullifying if his presence in a coalition prevents production, i.e., if his presence renders a coalition’s worth zero. The nullifying player property requires a nullifying player to obtain a zero payoff. This way, the difference between the Shapley value and the ED-value can be pinpointed to just one axiom.

van den Brink (2007) also provides a characterization of the ES-value, which deviates from his characterization of the ED-value above by restricting the nullifying player property to zero-normalized games and adding the invariance property. We feel that this characterization has a minor drawback. For, one would like to have that the difference of the solution concepts manifest itself in a single axiom.

We provide a characterization of the ES-value that replaces the null player property in the standard characterization of the Shapley value with the dummyifying player property. A player is called dummyifying if his presence in a coalition prevents cooperation, so that the players in this coalition fall back to their singleton productivities. The dummyifying player property then requires a dummyifying player to obtain his singleton worth as payoff. Further, another two axioms employed by van den Brink (2007) in order to characterize the ED-value are modified in order to characterize the ES-value.

Next, we turn to a feature that is shared by the nullifying player property and the dummyifying player property. Both axioms deal with a player who neutralizes
productivity or gains from cooperation. Alternatively, one could look at the effects on the players’ payoffs if one player’s productivity or his ability to create gains from cooperation is neutralized, i.e., if he is nullified (becomes a null player) or if he is dummified (becomes a dummy player).

Clearly, the ED-value changes the outcomes of all players by the same amount whenever a player is nullified or dummified. Hence, the ED-value satisfies the nullified player property (dummified player property), which requires that whenever a player is nullified (dummified) the payoffs of all players are changing in the same direction.

We show that replacing the null player property in the standard characterization of the Shapley value by the nullified player property yields a new characterization of the ED-value. At first glance, this seems to be surprising since Chun and Park (2012) employ a similar property, population solidarity, in order to characterize the ES-value. Whenever a number of players leaves the game, population solidarity requires that the payoffs of all players remaining in the game are changing in the same direction. In contrast to our nullified player property, their population solidarity axiom involves varying player sets.

While the ES-value violates the nullified player property, it turns out to satisfy the dummified player property, which demands that whenever a player is dummified it is not possible that one player gains while another one looses. Apart from the ES-value and the ED-value, there exists a multitude of other solution concepts that satisfy the dummified player property as well as efficiency, additivity, and the equal treatment property. Among them, we find the class of convex mixtures of the ES-value and the ED-value. We give characterizations of this class and of the ES-value employing the dummified player property.

This paper is organized as follows. Further definitions and notations are given in Section 2. Sections 3 and 4 provide new characterizations of the ES-value and the ED-value, respectively. In Section 5, we explore implications of the dummified player property.

2. Basic definitions and notation

A (TU-)game is a pair \((N, v)\) consisting of a non-empty and finite set of players \(N\) and a coalition function \(v \in \mathcal{V}(N) := \{f : 2^N \rightarrow \mathbb{R} | f(\emptyset) = 0\}\). Since we work within a fixed player set, we frequently drop the player set as an argument. In particular, we address \(v \in \mathcal{V}\) as a game. Subsets of \(N\) are called coalitions;
$v(S)$ is called the worth of coalition $S$. For $v, w \in \mathcal{V}$, $\alpha \in \mathbb{R}$, the coalition functions $v + w \in \mathcal{V}$ and $\alpha \cdot v \in \mathcal{V}$ are given by $(v + w)(S) = v(S) + w(S)$ and $(\alpha \cdot v)(S) = \alpha \cdot v(S)$ for all $S \subseteq N$. For $T \subseteq N$, $T \neq \emptyset$, the game $e_T \in \mathcal{V}$, $e_T(S) = 1$ if $T = S$ and $e_T(S) = 0$ for $T \neq S$, is called a standard game. The null game $0 \in \mathcal{V}$ is given by $0(S) = 0$ for a all $S \subseteq N$. For $T \subseteq N$, $T \neq \emptyset$, the game $u_T \in \mathcal{V}$, $u_T(S) = 1$ if $T \subseteq S$ and $u_T(S) = 0$ for $T \nsubseteq S$, is called a unanimity game. Any $v \in \mathcal{V}$ can be uniquely represented by unanimity games,

$$v = \sum_{T \subseteq N: T \neq \emptyset} \lambda_T(v) \cdot u_T, \quad \lambda_T(v) := \sum_{S \subseteq T: S \neq \emptyset} (-1)^{|T| - |S|} \cdot v(S).$$

For $x \in \mathbb{R}^N$, the modular game $m_x \in \mathcal{V}$ is given by $m_x(S) := \sum_{i \in S} x_i$. A game $v \in \mathcal{V}$ is called zero-normalized if $v(\{i\}) = 0$ for all $i \in N$; for $v \in \mathcal{V}$, the associated zero-normalized game $v^0 \in \mathcal{V}$ is given by $v^0(S) := v(S) - \sum_{i \in S} v(\{i\})$ for all $S \subseteq N$. A game $v \in \mathcal{V}$ is called monotonic if $v(S) \geq v(T)$ for all $S, T \subseteq N$ such that $T \subseteq S$. Player $i \in N$ is called a dummy player in $v \in \mathcal{V}$ if $v(S \cup \{i\}) - v(S) = v(\{i\})$ for all $S \subseteq N \setminus i$; player $i \in N$ is called a null player in $v \in \mathcal{V}$ if $v(S \cup \{i\}) = v(S)$ for all $S \subseteq N \setminus \{i\}$. Players $i, j \in N$ are called symmetric in $v \in \mathcal{V}$ if $v(S \cup \{i\}) = v(S \cup \{j\})$ for all $S \subseteq N \setminus \{i, j\}$.

A value on $N$ is an function $\varphi$ that assigns a payoff vector $\varphi(v) \in \mathbb{R}^N$ to any $v \in \mathcal{V}$. The equal division value (ED-value) is given by

$$\text{ED}_i(v) := \frac{v(N)}{|N|}, \quad \text{for all } i \in N.$$  

The equal surplus division value (ES-value) (Driessen and Funaki, 1991) is given by

$$\text{ES}_i(v) := v(\{i\}) + \frac{v(N) - \sum_{j \in N} v(\{j\})}{|N|} \quad \text{for all } i \in N.$$  

Later on, we employ the following standard axioms for values on $N$.

**Efficiency, E.** For all $v \in \mathcal{V}$, $\sum_{i \in N} \varphi_i(v) = v(N)$.

**Null player, N.** For all $v \in \mathcal{V}$ and every $i \in N$, who is a null player in $v$, $\varphi_i(v) = 0$.

**Additivity, A.** For all $v, w \in \mathcal{V}$, $\varphi(v + w) = \varphi(v) + \varphi(w)$.

**Linearity, A.** For all $v, w \in \mathcal{V}$ and $\alpha \in \mathbb{R}$, $\varphi(v + w) = \varphi(v) + \varphi(w)$ and $\varphi(\alpha \cdot v) = \alpha \cdot \varphi(v)$.

**Equal treatment, ET.** For all $v \in \mathcal{V}$ and $i, j \in N$, who are symmetric in $v$, $\varphi_i(v) = \varphi_j(v)$.
Symmetry, S. For all $v \in \mathcal{V}$, $i \in N$, and all bijections $\pi : N \to N$, $\varphi_{\pi(i)} (v \circ \pi^{-1}) = \varphi_i (v)$, where $v \circ \pi^{-1} \in \mathcal{V}$ is given by $v \circ \pi^{-1} (S) = v (\pi^{-1} (S))$, $S \subseteq N$.

Invariance, I. For all $v \in \mathcal{V}$, $\alpha \in \mathbb{R}$, and $b \in \mathbb{R}^N$, $\varphi (\alpha \cdot v + m) = \alpha \cdot \varphi (x) + b$.

3. Dummifying players

The standard characterization of the Shapley value (Shapley, 1953) employs efficiency, additivity, the equal treatment property, and the null player property. The null player property indicates the fact that the Shapley value particularly reflects a player’s own productivity. Within the null player property, van den Brink (2007) replaces null players by nullifying players. A player $i \in N$ is nullifying in $v \in \mathcal{V}$ if $v (S) = 0$ for all $S \subseteq N$ such that $i \in S$. This yields the following axiom.

Nullifying player, Ng. For all $v \in \mathcal{V}$ and $i \in N$ such that $i$ is nullifying in $v$, we have $\varphi_i (v) = 0$.

According to the nullifying player property, a zero payoff is assigned to nullifying players, i.e., to players whose presence renders a coalition’s worth zero. van den Brink (2007) justifies this axiom with a bargaining argument. Replacing the null player property by the nullifying player property, he obtains a new characterization of the ED-value.

Theorem 1 (van den Brink 2007). The ED-value is the unique value that satisfies efficiency, additivity, the equal treatment property, and the nullifying player property.

van den Brink (2007, Theorem 4.1) also provides a characterization of the ES-value, which deviates from his characterization of the ED-value above by restricting the nullifying player property to zero-normalized games and adding the invariance property. However, we feel that making use of the restricted nullifying property somewhat blurs the characteristic property of the equal surplus division rule.

A nullifying player does not only obstruct cooperation within any coalition containing him, but also neutralizes the productive potential of such a coalition. Dropping the latter feature of a nullifying player leads to the notion of a dummifying player, i.e., a player whose presence rules out any cooperation but does not neutralize the stand-alone productivities of the players in his coalition. Formally, a player $i \in N$ is dummifying in $v \in \mathcal{V}$ if $v (S) = \sum_{j \in S} v (\{j\})$ for all $S \subseteq N$ such that $i \in S$. Analogously to the nullifying player property one obtains the dummifying player property below.
Dummifying player, $Dg$. For all $v \in \mathbb{V}$ and $i \in N$ such that $i$ is dummifying in $v$, we have $\varphi_i (v) = v(\{i\})$.

Replacing the null player property in the standard characterization of the Shapley value by the dummifying player property, one obtains a characterization of the ES-value.\footnote{One easily checks that all characterizations in this paper are non-redundant.}

**Theorem 2.** The ES-value is the unique value that satisfies efficiency, additivity, the equal treatment property, and the dummifying player property.

**Proof.** By (3), it is clear that ES obeys $E$, $A$, and $ET$. Let $i \in N$ be dummifying in $v \in \mathbb{V}$. Hence, $v(N) = \sum_{j \in N} v(\{j\})$. By (3), we have $ES_i(v) = v(\{i\})$. Thus, ES meets $Dg$.

Now, let $\varphi$ be a value on $N$ that satisfies $E$, $A$, $ET$, and $Dg$. Clearly, $Dg$ implies the restriction of $Ng$ to zero-normalized games. In view of (the proof of) van den Brink (2007, Theorem 3.1), it suffices to show that $A$ and $Dg$ imply $\varphi(v + m_b) = \varphi(x) + b$ for all $v \in \mathbb{V}$ and $b \in \mathbb{R}^N$. By $A$, we have $\varphi(v + m_b) = \varphi(v) + \varphi(m_b)$. Since all players are dummifying in $m_b$, $Dg$ implies $\varphi(m_b) = b$ and we are done. \( \square \)

van den Brink (2007) suggests another two axioms in order to characterize the ED-value. The first axiom, coalitional standard equivalence\footnote{A solution $\varphi$ satisfies coalitional standard equivalence if for all $v, w \in \mathbb{V}$ and $i \in N$ such that $i$ is a nullifying player in $w$, we have $\varphi_i (v + w) = \varphi_i (v)$.} is related to a version of Chun’s (1989) coalitional strategic equivalence\footnote{A solution $\varphi$ satisfies coalitional strategic equivalence if for all $v, w \in \mathbb{V}$ and $i \in N$ such that $i$ is a null player in $w$, we have $\varphi_i (v + w) = \varphi_i (v)$.}. The second one, coalitional monotonicity\footnote{A solution $\varphi$ satisfies coalitional monotonicity if for all $v, w \in \mathbb{V}$ and $i \in N$ such that $v(S) \geq w(S)$ for all $S \subseteq N$, $S \ni i$, we have $\varphi_i (v) \geq \varphi_i (w)$.}, is related to Young’s (1985) strong monotonicity\footnote{A solution $\varphi$ satisfies strong monotonicity if for all $v, w \in \mathbb{V}$ and $i \in N$ such that $v(S \cup \{i\}) - v(S) \geq w(S \cup \{i\}) - w(S)$ for all $S \subseteq N \setminus \{i\}$, we have $\varphi_i (v) \geq \varphi_i (w)$.}. In coalitional standard equivalence, we replace nullifying players by dummifying players and obtain coalitional surplus equivalence below. In order to accommodate to the ES-value, we further modify coalitional monotonicity yielding coalitional surplus monotonicity below.

**Coalitional surplus equivalence, CSE.** For all $v, w \in \mathbb{V}$ and $i \in N$ such that $i$ is dummifying in $w$, we have $\varphi_i (v + w) = \varphi_i (v) + w(\{i\})$. 

Coalitional surplus monotonicity, CSM. For all $v, w \in \mathbb{V}$ and $i \in N$ such that $v^0 (S) \geq w^0 (S)$ for all $S \subseteq N$, $S \ni i$, we have $\varphi_i (v) - v (\{i\}) \geq \varphi_i (w) - w (\{i\})$.

Replacing coalitional standard equivalence in van den Brink’s (2007) characterization of the ED-value by coalitional surplus equivalence, one obtains a characterization of the ES-value.

**Theorem 3.** The ES-value is the unique value that satisfies efficiency, the equal treatment property, and either (i) coalitional surplus equivalence or (ii) coalitional surplus monotonicity.

**Proof.** By (3), it is clear that ES obeys E, ET, CSE, and CSM. Now, let $\varphi$ be a value on $N$ that satisfies E, ET, and CSE.

For all $v \in \mathbb{V}$, all players are dummyifying in $v - v^0$. By CSE, $\varphi_i (v) = \varphi_i (v^0) + v (\{i\})$ for all $i \in N$. Therefore, it suffices to restrict attention to the class of zero-normalized games. For this class, CSE becomes coalitional standard equivalence. Moreover, the proof of van den Brink (2007, Theorem 3.2) works within the class of zero-normalized games. Hence, $\varphi = \text{ES}$ for zero-normalized games, what establishes uniqueness for (i). Part (ii) follows from the observation that CSM implies CSE. □

In analogy to van den Brink (2007, Theorem 3.3), we establish that the equal treatment property can be relaxed into the weak equal treatment property in the second part of the above theorem.

**Weak equal treatment, ET−.** For all $v \in \mathbb{V}$ such that all players are pairwise symmetric in $v$, we have $\varphi_i (v) = \varphi_j (v)$ for all $i, j \in N$.

**Theorem 4.** The ES-value is the unique value that satisfies efficiency, the equal treatment property, and coalitional surplus monotonicity.

**Proof.** By (3), it is clear that ES obeys E, ET−, and CSM. Now, let $\varphi$ be a value on $N$ that satisfies E, ET−, and CSM.

We adapt the proof of van den Brink (2007, Theorem 3.3). For $v \in N$ and $i \in N$, define $v^*_i \in \mathbb{V}$ by

$$
v^*_i (S) = \begin{cases} 
v^0 (N), & S = N, \\
\min_{T \subseteq N} v^0 (T), & S \subset N, |S| > 1, \\
0, & S \subset N, |S| \leq 1.
\end{cases}
$$
By E and ET, \( \varphi_j(v^*) = v^0(N) / |N| \) for all \( j \in N \). Since \( v^0(S) \geq (v^*)^0(S) \) for all \( S \subseteq N \), CSM implies

\[
\varphi_i(v) - v(\{i\}) \geq \varphi_i(v^*) - v^*(\{i\}) = v^0(N) / |N|
\]

for arbitrary \( i \in N \). Hence, \( \varphi_i(v) \geq ES_i(v) \) for all \( i \in N \). By E, we have \( \varphi = ES \).□

The theorems in this section show that the equal surplus division rule treats dummifying players as the Shapley value treats dummy players, while the equal division rule handles nullifying players as the Shapley value treats null players.

4. Nullified players

Chun and Park (2012) employ population solidarity, in order to characterize the ES-value. This axiom refers to a situation where a number of players leaves the game and with them their productivity. Population solidarity then requires that the payoffs of all players remaining in the game are changing in the same direction. However, this axiom cannot be employed in order to characterize the ES-value on a fixed player set, i.e., when these player do not leave the game but stay as null players. Indeed, the ES-value fails the nullified player property.

Nullified player, Nd. For all \( v \in V \), and all \( i, j \in N \), \( \varphi_i(v) \geq \varphi_i(v^{\bar{i}}) \) implies \( \varphi_j(v) \geq \varphi_j(v^{\bar{i}}) \), where \( v^{\bar{i}} \in V \) is given by

\[
v^{\bar{i}}(S) = v(S \setminus \{i\}) \quad \text{for all } S \subseteq N.
\]

This axiom refers to a situation where some player \( i \) loses his entire productivity, i.e., player \( i \) becomes a null player, while the worths that can be achieved without him remain unaffected. In such a scenario, the axiom imposes some sort of solidarity among the players. In particular, it prevents that another player gains, while player \( i \) suffers losses.

Other than the ES-value, the ED-value clearly meets the nullified player property. In fact, together with additivity, efficiency and the equal treatment property, the nullified player property already characterizes the ED-value.

**Theorem 5.** The ED-value is the unique TU-value that satisfies efficiency, additivity, the equal treatment property, and the nullified player property.

**Proof.** It is easy to check that the ED-value satisfies E, A, ET, and Nd. Let now \( \varphi \) satisfy E, A, ET, and Nd. First, we show that

\[
\varphi_i(v) - \varphi_i(v^{\bar{i}}) = \varphi_j(v) - \varphi_j(v^{\bar{i}})
\]

(5)
for all $v \in V$ and all $i, j \in N$. Suppose there are $v \in V$ and $i, j \in N$ such that 
\[ \varphi_i(v) - \varphi_i(v^{N_i}) \neq \varphi_j(v) - \varphi_j(v^{N_i}). \]
By A, we are allowed to restrict attention to the case
\[ \eta_i := \varphi_i(v) - \varphi_i(v^{N_i}) > \varphi_j(v) - \varphi_j(v^{N_i}) =: \eta_j. \]
Then, there exists some $\xi \in \mathbb{R}$ such that $\eta_i > \xi > \eta_j$. Define $w := v - \xi \cdot |N| \cdot u_N$. By E, A, and ET, we have $\varphi_i(w) = \varphi_i(v) - \xi$ and $\varphi_j(w) = \varphi_j(v) - \xi$. Further, by (4), $w^{N_i} = v^{N_i}$. Hence, we obtain
\[ \varphi_i(w) - \varphi_i(w^{N_i}) = \varphi_i(v) - \varphi_i(v^{N_i}) - \xi = \eta_i - \xi > 0 \]
but
\[ \varphi_j(w) - \varphi_j(w^{N_i}) = \varphi_j(v) - \varphi_j(v^{N_i}) - \xi = \eta_j - \xi < 0, \]
a contradiction to Nd. This establishes (5) for all $v \in V$ and all $i, j \in N$.

Let now $\lambda \in \mathbb{R}$ and $T \subseteq N$, $T \neq \emptyset$. For $i \in T$, we have $(\lambda \cdot u_T)^{N_i} = 0$. By E and ET, $\varphi_j(0) = 0$ for all $j \in N$. Together with (5), we infer $\varphi_j(\lambda \cdot u_T) = \varphi_k(\lambda \cdot u_T)$ for all $j, k \in N$. Then, E implies $\varphi_j(\lambda \cdot u_T) = \lambda/|N|$ for all $j \in N$. Finally, A gives $\varphi = ED$. □

5. Dummified players

While the ES-value does not exhibit the kind of strong solidarity embodied in the nullified player property, it satisfies another solidarity requirement, the dummified player property.

**Dummified player, Dd.** For all $v \in V$, and all $i, j \in N$, $\varphi_i(v) \geq \varphi_i(v^{D_i})$ implies $\varphi_j(v) \geq \varphi_j(v^{D_i})$, where $v^{D_i} \in V$ is given by
\[ v^{D_i}(S) = \begin{cases} v(S \setminus \{i\}) + v(\{i\}), & i \in S, \\ v(S), & i \in N \setminus S, \end{cases} \quad \text{for all } S \subseteq N. \tag{6} \]

Compare this axiom with the nullified player property. While the nullified player property deals with players who not only lose their ability to cooperate but also lose their entire productivity, the dummified player property considers players who just lose their ability to cooperate, i.e., who become dummy players. In such a situation, the dummified player property rules out that one player gains while another player loses.

Clearly, the ED-value also satisfies the dummified player property. Hence, replacing the null player property in the standard characterization of the Shapley value
by the dummified player property does not give a characterization of the ES-value. A closer inspection of the dummified player property gives hints for why this is the case: A crucial difference between the nullified and the dummified player property is that the latter is silent whenever there are no gains from cooperation, i.e., for modular games. This gap can be bridged by the modularity axiom below.

**Modularity, M.** For all \( b \in \mathbb{R}^N \), \( \varphi (m_b) = b \).

This property states that whenever there are no gains from cooperation, the player remain with their stand-alone worths. Note that virtually all single-point solutions for TU-games except the ED-value satisfy this property.

**Theorem 6.** The ES-value is the unique value that satisfies efficiency, additivity, the equal treatment property, the dummified player property, and modularity.

**Proof.** It is clear that ES obeys E, A, ET, and M. Moreover, we have \( ES_i (v) - ES_j (v) = ES_i (v^{Di}) - ES_j (v^{Di}) \) for all \( v \in \mathcal{V} \) and \( i, j \in N \), i.e., ES satisfies Dd.

Let now \( \varphi \) satisfy E, A, ET, and Dd. For every \( v \in \mathcal{V} \), set \( m^v := v - v^0 \). Since \( m^v \) is modular, M entails \( \varphi_i (m^v) = v (\{i\}) \). Moreover, Dd implies Nd on the class of zero-normalized games. Since the proof of Theorem 5 works within this class, we have \( \varphi (v^0) = ED (v^0) \) for all \( v \in \mathcal{V} \). Thus by A, we have \( \varphi (v) = ED (v^0) + v (\{i\}) = ES (v) \).

Now we turn to the question which solution concepts apart from the ES-value and the ED-value are obtained if we no longer require modularity. Strengthening additivity into linearity, we obtain a first answer to this question.

**Proposition 7.** A value \( \varphi \) satisfies efficiency, linearity, the equal treatment property, and the dummified players property if and only if there is some \( \alpha \in \mathbb{R} \) such that \( \varphi = E^\alpha \) where

\[
E^\alpha := \alpha \cdot ES + (1 - \alpha) \cdot ED.
\]  

(7)

**Proof.** It is clear that \( E^\alpha \), \( \alpha \in \mathbb{R} \) obeys E, L, and ET. Moreover, we have \( E^\alpha_i (v) - E^\alpha_j (v) = E^\alpha_i (v^{Di}) - E^\alpha_j (v^{Di}) \) for all \( v \in \mathcal{V} \) and \( i, j \in N \), i.e., \( E^\alpha \) satisfies Dd.

Let now \( \varphi \) satisfy E, L, ET, and Dd. For \( |N| = 1 \), E implies \( \varphi = E^\alpha \) for any \( \alpha \). Now let \( |N| > 1 \). Since \( (v - \xi \cdot |N| \cdot u_N)^{Di} = v^{Di} \) for \( \xi \in \mathbb{R} \), an argument as in the proof of Theorem 5 yields

\[
\varphi_i (v) - \varphi_i (v^{Di}) = \varphi_j (v) - \varphi_j (v^{Di})
\]

(8)

for all \( v \in \mathcal{V} \) and all \( i, j \in N \).
Next, fix some \( i, j \in N, i \neq j \). Define \( \alpha := 1 - |N| \cdot \varphi_j (u_{i|j}) \). Malawski (2008, Theorem 2) shows that \( \mathbf{E}, \mathbf{L} \), and \( \mathbf{ET} \) imply \( \mathbf{S} \). Hence, \( \alpha \) is well-defined, i.e., it does not depend on the choice of \( i \) and \( j \).

We proceed by showing \( \varphi = \mathbf{E}^\alpha \). By \( \mathbf{L} \), it suffices to consider unanimity games, i.e., to show \( \varphi (u_T) = \mathbf{E}^\alpha (u_T) \) for all \( T \subseteq N, T \neq \emptyset \). For \( T = \{i\}, i \in N \). By definition of \( \alpha \), we have \( \varphi_j (u_{i|j}) = (1 - \alpha) / |N| = \mathbf{E}^\alpha_j (u_{i|j}) \) for \( j \in N \setminus \{i\} \). Hence by \( \mathbf{E}, \varphi_j (u_{i|j}) = 1 - (|N| - 1) / |N| \cdot (1 - \alpha) = \mathbf{E}^\alpha_j (u_{i|j}) \). Let now \( |T| > 1 \). For \( i \in T \), we have \( (u_T)^{D_i} = 0 \). By \( \mathbf{E} \) and \( \mathbf{ET} \), \( \varphi_j (0) = 0 \) for all \( j \in N \). Together with (8), we infer \( \varphi_j (u_T) = \varphi_k (u_T) \) for all \( j, k \in N \). Then, \( \mathbf{E} \) implies \( \varphi_j (u_T) = 1 / |N| = \mathbf{E}^\alpha (u_T) \) for all \( j \in N \). \( \square \)

The answer given in the previous proposition is not fully satisfactory. In particular, for \( \alpha < 0 \), the values \( \mathbf{E}^\alpha \) may not satisfy a desirable property as desirability (Maschler and Peleg, 1966) below.

**Desirability, \( \mathbf{D} \).** For all \( v \in \mathcal{V} \) and \( i, j \in N \) such that \( v (K \cup \{i\}) \geq v (K \cup \{j\}) \) for all \( K \subseteq N \setminus \{i, j\} \), we have \( \varphi_i (v) \geq \varphi_j (v) \).

Moreover, Kalai and Samet (1987) suggest the positivity axiom in order to characterize the weighted Shapley values. Positivity requires non-negative payoffs in monotonic games. Within the present context, a weakening of this property seems to be appropriate since the ES-value fails positivity: For \( N = \{1, 2, 3\} \), we have \( \text{ES}_3 (u_{\{1\}} + u_{\{2\}} - u_{\{1,2\}}) = -1/3 \). Note that this game is not weakly cohesive. A game \( v \in \mathcal{V} \) is called **weakly cohesive** if \( v (N) \geq \sum_{i \in N} v (\{i\}) \). Restricting positivity to weakly cohesive games leads to the following property.

**Positivity for weakly cohesive games, \( \text{PWC} \).** For all \( v \in \mathcal{V} \) that are monotonic and weakly cohesive, we have \( \varphi_i (v) \geq 0 \) all \( i \in N \).

Positivity for weakly cohesive games reflects the notion that no player needs to obtain a negative outcome whenever players are productive and the pie to be distributed is large enough. Yet, for \( \alpha > 1 \), the values \( \mathbf{E}^\alpha \) may fail this property: For \( N = \{1, 2\} \), we have \( \mathbf{E}^2_2 (u_{\{1\}}) = -1/2 \) while \( u_{\{1\}} \) is weakly cohesive and monotonic.

The following theorem identifies those parameters \( \alpha \) for which both of the properties mentioned above are met. Note that these parameters describe exactly the

---

\(^6\)Desirability is also known as **local monotonicity** (e.g. Levinský and Silársky, 2004) or **fair treatment** (e.g. Radzik and Driessen, 2012).
class of solutions that van den Brink (2007, Proposition 5.1) identifies to be interesting in the context of the allocation of an indivisible good as is indicated in the introduction.

**Theorem 8.** A value $\varphi$ satisfies efficiency, additivity, the desirability, the dummyfied players property, and positivity for weakly cohesive games if and only if there is some $\alpha \in [0, 1]$ such that $\varphi = E^\alpha$.

**Proof.** According to Proposition 7, $E^\alpha$ satisfies $E$, $A$, and $Dd$. Since $E_i^\alpha (v) - E_j^\alpha (v) = \alpha \cdot (v(\{i\}) - v(\{j\}))$, $E^\alpha$ satisfies $D$ for $\alpha \geq 0$. Moreover, for monotonic and weakly cohesive $v$, we have

$$E_i^\alpha (v) = \alpha \cdot \left(\frac{v(N) - \sum_{j \in N \setminus \{i\}} v(\{j\})}{|N|}\right) + (1 - \alpha) \cdot \frac{v(N)}{|N|} + \alpha \cdot v(\{i\}) \geq 0$$

for $\alpha \in [0, 1]$ and $i \in N$, i.e., $E^\alpha$ satisfies PWC.

Now let $\varphi$ obey $E$, $A$, $D$, $Dd$ and PWC. For $|N| = 1$, $E^\alpha$ does not depend on $\alpha$. Let now $|N| > 1$. According to Casajus and Huettner (2012, Lemma 3), $E$, $A$, and $D$ imply $L$. By Proposition 7, there exists some $\alpha \in \mathbb{R}$ such that $\varphi = E^\alpha$. Since $E_i^\alpha (u_{\{i\}}) - E_j^\alpha (u_{\{i\}}) = \alpha$ for $i, j \in N, i \neq j$, $\alpha < 0$ contradicts $D$. And since $E_i^\alpha (u_{\{i\}}) = (1 - \alpha) / |N|$ for $i, j \in N, i \neq j$, $\alpha > 1$ contradicts PWC.

**REFERENCES**


Universität Leipzig
Wirtschaftswissenschaftliche Fakultät

Nr. 1 Wolfgang Bernhardt
Stock Options wegen oder gegen Shareholder Value?
Vergütungsmodelle für Vorstände und Führungskräfte
04/1998

Nr. 2 Thomas Lenk / Volkmann Teichmann
Bei der Reform der Finanzverfassung die neuen Bundesländer nicht vergessen!
10/1998

Nr. 3 Wolfgang Bernhardt
Gedanken über Führen – Dienen – Verantworten
11/1998

Nr. 4 Kristin Wellner
Möglichkeiten und Grenzen kooperativer Standortgestaltung zur Revitalisierung von Innenstädten
12/1998

Nr. 5 Gerhard Wolff
Bräuchen wir eine weitere Internationalisierung der Betriebswirtschaftslehre?
01/1999

Nr. 6 Thomas Lenk / Friedrich Schneider
Zurück zu mehr Föderalismus: Ein Vorschlag zur Neugestaltung des Finanzausgleichs in der Bundesrepublik Deutschland unter besonderer Berücksichtigung der neuen Bundesländer
12/1998

Nr. 7 Thomas Lenk
Kooperativer Förderalismus – Wettbewerbsoorientierter Förderalismus
03/1999

Nr. 8 Thomas Lenk / Andreas Mathes
EU – Osterweiterung – Finanzierbar?
03/1999

Nr. 9 Thomas Lenk / Volkmann Teichmann
Die fiskalischen Wirkungen verschiedener Forderungen zur Neugestaltung des Länderfinanzausgleichs in der Bundesrepublik Deutschland:
Eine empirische Analyse unter Einbeziehung der Normenkontrollkräfte der Länder Baden-Württemberg, Bayern und Hessen sowie der Stellungnahmen verschiedener Bundesländer
09/1999

Nr. 10 Kai-Uwe Grow
Gedanken zur Entwicklung der Strukturen im Bereich der Wasserversorgung unter besonderer Berücksichtigung kleiner und mittlerer Unternehmen
10/1999

Nr. 11 Adolf Wagner
Materialien zur Konjunkturforschung
12/1999

Nr. 12 Anja Birke
Die Übertragung westdeutscher Institutionen auf die ostdeutsche Wirklichkeit – ein erfolgversprechendes Zusammenspiel oder Aufdeckung systematischer Mängel?
Ein empirischer Bericht für den kommunalen Finanzausgleich am Beispiel Sachsen
02/2000

Nr. 13 Rolf H. Hasse
Internationaler Kapitalverkehr in den letzten 40 Jahren – Wohlstandsmotor oder Krisenrucksack?
03/2000

Nr. 14 Wolfgang Bernhardt
Unternehmensführung (Corporate Governance) und Hauptversammlung
04/2000

Nr. 15 Adolf Wagner
Materialien zur Wachstumsforschung
03/2000

Nr. 16 Thomas Lenk / Anja Birke
Determinanten des kommunalen Gebührenaufkommens unter besonderer Berücksichtigung der neuen Bundesländer
04/2000

Nr. 17 Thomas Lenk
Finanzwirtschaftliche Auswirkungen des Bundesverfassungsgerichtsurteils zum Länderfinanzausgleich vom 11.11.1999
04/2000

Nr. 18 Dirk Büthel
Continuous linear utility for preferences on convex sets in normal real vector spaces
05/2000

Nr. 19 Stefan Dierkes / Stephanie Hanra
Steuerung dezentraler Investitionsentscheidungen bei nutzungabhängigem und nutzungsunabhängigem Vorschuss des Anlagenvermögens
06/2000

Nr. 20 Thomas Lenk / Andreas Mathes / Olaf Hirschfeld
Zur Trennung von Bundes- und Landeskompetenzen in der Finanzverfassung Deutschlands
07/2000

Nr. 21 Stefan Dierkes
Marktwerte, Kapitalkosten und Betafaktoren bei wertabhängiger Finanzierung
10/2000

Nr. 22 Thomas Lenk
Intergovernmental Fiscal Relationships in Germany: Requirement for New Regulations?
03/2001

Nr. 23 Wolfgang Bernhardt
Stock Options – Aktuelle Fragen Besteuerung, Bewertung, Offenlegung
03/2001
Nr. 24 Thomas Lenk  
Die „Kleine Reform“ des Länderfinanzausgleichs als Nukleus für die „große Finanzverfassungs-reform“? 10/2001

Nr. 25 Wolfgang Bernhardt  

Nr. 26 Thomas Lenk  

Nr. 27 Sören Bär  
Grundzüge eines Tourismusmarketing, untersucht für den Südostraum Leipzig 05/2002

Nr. 28 Wolfgang Bernhardt  
Der Deutsche Corporate Governance Kodex: Zuwahl (comply) oder Abwahl (explain)? 06/2002

Nr. 29 Adolf Wagner  
Konjunkturtheorie, Globalisierung und Evolutionsökonomik 08/2002

Nr. 30 Adolf Wagner  
Zur Profilbildung der Universitäten 08/2002

Nr. 31 Sabine Klinger / Jens Ulrich / Hans-Joachim Rudolph  

Nr. 32 Thomas Lenk / Anja Birke  

Nr. 33 Wolfgang Bernhardt  
Die Lust am Fliegen  Eine Parabel auf viel Corporate Governance und wenig Unternehmensführung 11/2002

Nr. 34 Udo Hilscher  

Nr. 35 Uwe Haubold / Michael Nowak  
Risikoanalyse für Langfristinvestments  Eine simulationsbasierte Studie 12/2002

Nr. 36 Thomas Lenk  
Die Neuregelung des bundesstaatlichen Finanzausgleichs auf Basis der Steuerschätzung Mai 2002 und einer aktualisierten Bevölkerungsstatistik 12/2002

Nr. 37 Uwe Haubold / Michael Nowak  
Auswirkungen der Renditeverteilungsannahme auf Anlageentscheidungen  Eine simulationsbasierte Studie 02/2003

Nr. 38 Wolfgang Bernhardt  
Corporate Governance Konjektur für den Mittelstand? 06/2003

Nr. 39 Hermut Kormann  
Familienunternehmen: Grundfragen mit finanzwirtschaftlichen Bezug 10/2003

Nr. 40 Matthias Folk  
Laufrhafte Trichter 11/2003

Nr. 41 Wolfgang Bernhardt  
Corporate Governance statt Unternehmensführung 11/2003

Nr. 42 Thomas Lenk / Karolina Kaiser  
Das Prämienmodell im Länderfinanzausgleich – Anreiz- und Verdienstwirkungen 11/2003

Nr. 43 Sabine Klinger  
Die Volkswirtschaftliche Gesamtrechnung des Haushaltssektors in einer Matrix 03/2004

Nr. 44 Thomas Lenk / Heide Köpping  
Strategien zur Armutsbekämpfung und –vermeidung in Ostdeutschland: 05/2004

Nr. 45 Wolfgang Bernhardt  
Sommernachtsfantasien: Corporate Governance im Land der Träume. 07/2004

Nr. 46 Thomas Lenk / Karolina Kaiser  
The Premium Model in the German Fiscal Equalization System 12/2004

Nr. 47 Thomas Lenk / Christine Falken  
Korporative Analyse ausgewählter Indikatoren des Kommunalwirtschaftlichen Gesamtergebnisses 05/2005

Nr. 48 Michael Nowak / Stephan Barth  
Immobilienanlagen im Portfolio institutioneller Investoren am Beispiel von Versicherungsunternehmen: Auswirkungen auf die Risikosituation 08/2005
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Autor/innen</th>
<th>Titel</th>
<th>Verlag</th>
<th>Datum</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Christian Milow</td>
<td>Der Griff des Staates nach dem Währungsgold</td>
<td></td>
<td>12/2005</td>
</tr>
<tr>
<td>51</td>
<td>Anja Eichhorst / Karolina Kaiser</td>
<td>The Institutional Design of Bailouts and Its Role in Hardening Budget Constraints in Federations</td>
<td></td>
<td>03/2006</td>
</tr>
<tr>
<td>53</td>
<td>Gunther Schnabl</td>
<td>Die Grenzen der monetären Integration in Europa</td>
<td></td>
<td>08/2006</td>
</tr>
<tr>
<td>56</td>
<td>Ulrich Heilemann / Annika Blaschzik</td>
<td>Indicators and the German Business Cycle A Multivariate Perspective on Indicators of Ifo, OECD, and ZEW</td>
<td></td>
<td>01/2007</td>
</tr>
<tr>
<td>59</td>
<td>Christine Falken / Mario Schmidt</td>
<td>Kameralistik versus Doppik Zur Informationsfunktion des alten und neuen Rechnungswesens der Kommunen Teil I: Einführende und Erläuternde Betrachtungen zum Systemwechsel im kommunalen Rechnungswesen</td>
<td></td>
<td>01/2007</td>
</tr>
<tr>
<td>60</td>
<td>Christine Falken / Mario Schmidt</td>
<td>Kameralistik versus Doppik Zur Informationsfunktion des alten und neuen Rechnungswesens der Kommunen Teil II: Bewertung der Informationsfunktion im Vergleich</td>
<td></td>
<td>01/2007</td>
</tr>
<tr>
<td>61</td>
<td>Udo Hilscher</td>
<td>Monti della città di finanza Innovative Finanzierungen im Zeitalter Der Medici. Wurzeln der modernen Finanzmärkte</td>
<td></td>
<td>03/2007</td>
</tr>
<tr>
<td>63</td>
<td>Adolf Wagner</td>
<td>Regionalökonomik: Konvergierende oder divergierende Regionalentwicklungen</td>
<td></td>
<td>08/2007</td>
</tr>
<tr>
<td>67</td>
<td>Wolfgang Bernhardt</td>
<td>5 Jahre Deutscher Corporate Governance Konnex Eine Erfolgsgeschichte?</td>
<td></td>
<td>01/2008</td>
</tr>
<tr>
<td>68</td>
<td>Ulrich Heilemann / Jens Ulrich</td>
<td>Viel Um oder wenig? Zur Empirie von Lohnformeln in der Bundesrepublik</td>
<td></td>
<td>01/2008</td>
</tr>
<tr>
<td>69</td>
<td>Christian Groth / Karl-Josef Koch / Thomas M. Steger</td>
<td>When economic growth is less than exponential</td>
<td></td>
<td>02/2008</td>
</tr>
<tr>
<td>70</td>
<td>Andreas Bohne / Linda Kochmann</td>
<td>Ökonomische Umweltbewertung und endogene Entwicklung peripherer Regionen Synthese einer Methodik und einer Theorie</td>
<td></td>
<td>02/2008</td>
</tr>
<tr>
<td>71</td>
<td>Andreas Bohne / Linda Kochmann / Jan Slavík / Lenka Slavíková</td>
<td>Deutsch-tschechische Bibliographie Studien der kontingenten Bewertung in Mittel- und Osteuropa</td>
<td></td>
<td>06/2008</td>
</tr>
<tr>
<td>Nr.</td>
<td>Authors</td>
<td>Title</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Paul Lehmann / Christoph Schröter-Schlaack</td>
<td>Regulating Land Development with Tradable Permits: What Can We Learn from Air Pollution Control? 08/2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Ronald McKinnon / Gunther Schnabl</td>
<td>China’s Exchange Rate Impasse and the Weak U.S. Dollar 10/2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Gunther Schnabl / Stephan Freitag</td>
<td>An Asymmetry Matrix in Global Current Accounts 01/2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Christina Ziegler</td>
<td>Testing Predictive Ability of Business Cycle Indicators for the Euro Area 01/2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Thomas Lenk / Oliver Rottmann / Florian F. Wittke</td>
<td>Public Corporate Governance in Public Enterprises Transparency in the Face of Divergent Positions of Interest 02/2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Thomas Steger / Lucas Bretschger</td>
<td>Globalization, the Volatility of Intermediate Goods Prices, and Economic Growth 02/2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Marcela Munoz Escobar / Robert Holländer</td>
<td>Institutional Sustainability of Payment for Watershed Ecosystem Services. Enabling conditions of institutional arrangement in watersheds 04/2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Robert Holländer / WU Chunyou / DUAN Ning</td>
<td>Sustainable Development of Industrial Parks 07/2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Georg Quaas</td>
<td>Realgrößen und Preisindizes im alten und im neuen VGR-System 10/2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Gunther Schnabl / Andreas Hoffmann</td>
<td>The Theory of Optimum Currency Areas and Growth in Emerging Markets 03/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Georg Quaas</td>
<td>Does the macroeconomic policy of the global economy’s leader cause the worldwide asymmetry in current accounts? 03/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Volker Grossmann / Thomas M. Steger / Timo Trimborn</td>
<td>Quantifying Optimal Growth Policy 06/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Wolfgang Bernhardt</td>
<td>Corporate Governance Kodex für Familienunternehmen? Eine Widerrede 06/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>Philipp Mandel / Bernd Süssmuth</td>
<td>A ReExamination of the Role of Gender in Determining Digital Piracy Behavior 07/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Philipp Mandel / Bernd Süssmuth</td>
<td>Size Matters, The Relevance and Hicksian Surplus of Agreeable College Class Size 07/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Thomas Kohstall / Bernd Süssmuth</td>
<td>Cyclic Dynamics of Prevention Spending and Occupational Injuries in Germany: 1886-2009 07/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Martina Padmanabhan</td>
<td>Gender and Institutional Analysis. A Feminist Approach to Economic and Social Norms 08/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Gunther Schnabl / Ansgar Balke</td>
<td>Finanzkrise, globale Liquidität und makroökonomischer Exit 09/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Ullrich Heilemann / Roland Schuh / Heinz Josef Münch</td>
<td>A “perfect storm”? The present crisis and German crisis patterns 12/2010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Gunther Schnabl / Holger Zemanek</td>
<td>Die Deutsche Wiedervereinigung und die europäische Schuldenkrise im Lichte der Theorie optimaler Währungsräume 06/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Andreas Hoffmann / Gunther Schnabl</td>
<td>Symmetrische Regeln und asymmetrisches Handeln in der Geld- und Finanzpolitik 07/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>Andreas Schöfer / Maik T. Schneider</td>
<td>Endogenous Enforcement of Intellectual Property, North-South Trade, and Growth 08/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Volker Grossmann / Thomas M. Steger / Timo Trimborn</td>
<td>Dynamically Optimal R&amp;D Subsidization 08/2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr. 98</td>
<td>Erik Gawel</td>
<td>Political drivers of and barriers to Public-Private Partnerships: The role of political involvement</td>
<td>09/2011</td>
<td></td>
</tr>
<tr>
<td>Nr. 99</td>
<td>André Casajus</td>
<td>Collusion, symmetry, and the Banzhaf value</td>
<td>09/2011</td>
<td></td>
</tr>
<tr>
<td>Nr. 100</td>
<td>Frank Hütter / Marco Sunder</td>
<td>Decomposing R² with the Owen value</td>
<td>10/2011</td>
<td></td>
</tr>
<tr>
<td>Nr. 101</td>
<td>Volker Grossmann / Thomas M. Steger / Timo Trimborn</td>
<td>The Macroeconomics of TANSTAAFL</td>
<td>11/2011</td>
<td></td>
</tr>
<tr>
<td>Nr. 102</td>
<td>Andreas Hoffmann</td>
<td>Determinants of Carry Trades in Central and Eastern Europe</td>
<td>11/2011</td>
<td></td>
</tr>
<tr>
<td>Nr. 103</td>
<td>Andreas Hoffmann</td>
<td>Did the Fed and ECB react asymmetrically with respect to asset market developments?</td>
<td>01/2012</td>
<td></td>
</tr>
<tr>
<td>Nr. 104</td>
<td>Christina Ziegler</td>
<td>Monetary Policy under Alternative Exchange Rate Regimes in Central and Eastern Europe</td>
<td>02/2012</td>
<td></td>
</tr>
<tr>
<td>Nr. 105</td>
<td>José Abad / Axel Löffler / Gunther Schnabl / Holger Zemanek</td>
<td>Fiscal Divergence, Current Account and TARGET2 Imbalances in the EMU</td>
<td>03/2012</td>
<td></td>
</tr>
<tr>
<td>Nr. 106</td>
<td>Georg Quaas / Robert Köster</td>
<td>Ein Modell für die Wirtschaftszweige der deutschen Volkswirtschaft: Das “MOGBOT” (Model of Germany’s Branches of Trade)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr. 107</td>
<td>Andreas Schöfer / Thomas Steger</td>
<td>Journey into the Unknown? Economic Consequences of Factor Market Integration under Increasing Returns to Scale</td>
<td>04/2012</td>
<td></td>
</tr>
<tr>
<td>Nr. 108</td>
<td>Andreas Hoffmann / Björn Urbansky</td>
<td>Order, Displacements and Recurring Financial Crises</td>
<td>06/2012</td>
<td></td>
</tr>
<tr>
<td>Nr. 109</td>
<td>Finn Marten Körner / Holger Zemanek</td>
<td>On the Brink? Intro-euro area imbalances and the sustainability of foreign debt</td>
<td>07/2012</td>
<td></td>
</tr>
<tr>
<td>Nr. 110</td>
<td>André Casajus / Frank Hütter</td>
<td>Nullifying vs. dummyfying players or nullfied vs. dummified players: The difference between the equal division value and the equal surplus division value</td>
<td>07/2012</td>
<td></td>
</tr>
</tbody>
</table>