

Development of Financial Markets and Institutions

# XIII. Cryptocurrency and Central Bank Digital Currency

Leipzig University | January 22, 2024

Dr. Kristoffer J. M. Hansen | Institute for Economic Policy

# XIII. CRYPTOCURRENCY AND CENTRAL BANK DIGITAL CURRENCY

- 1. Bitcoin
- 2. Beyond Bitcoin
- 3. Central Bank Digital Currency
- 4. Literature

# 1. BITCOIN

#### THE PREHISTORY OF BITCOIN

# **Cypherpunk Monetary Discussions**

- The cypherpunks in the 1990s concerned with online privacy, security of information
- In part inspired by the desire for private (non-government issued) money
- In part inspired by free banking theory

# Early Attempts at Digital Money and Related Technologies

- E-gold, launched 1996 users held accounts denominated in gold
  - Legal troubles from 2007 meant decline
- Hashcash 1992, 1997: a proof-of-work protocol for email, to protect against spammers
- Bitgold proposed 1998 by Nick Szabo but never implemented
  - Combines many of the elements later used in bitcoin (cryptography, proof-of-work)

#### THE PROBLEM

# P2P in the Digital World

- Peer-to-peer transactions are not possible in the digital world
- There is no digital "cash" to send from person to person
- Trusted third parties necessary to facilitate and verify transactions (Byzantine Generals)
- Double-spending: the same amount is spent twice, defrauding one recipient (at least)

# Central Third Parties Necessary

- Central third parties: credit card companies, banks, paypal
- A system so dependent on central authorities is vulnerable: single point of failure
- Potential privacy concerns
- Abuse of authority → inflation

#### THE SOLUTION: BITCOIN

# "A Peer-to-Peer Electronic Cash System"

- Proposed by Satoshi Nakamoto in 2008
- A decentralized payments system, payments validated and recorded in the "blockchain"
- Individual transactions authorized by private key and broadcast to the network
- Only the public signature is known, the address from which or to which bitcoin is sent

#### The Blockchain

- Transactions collected in blocks and validated by proof-of-work
- A new block is added to the blockchain every 10 minutes
- The blockchain is a cryptographically "sealed" record of all transactions with bitcoin
- Miners rewarded for adding blocks, verifying payments overcoming P2P problems

#### BITCOIN MINING

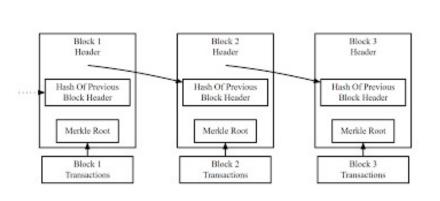
#### **Proof-of-Work**

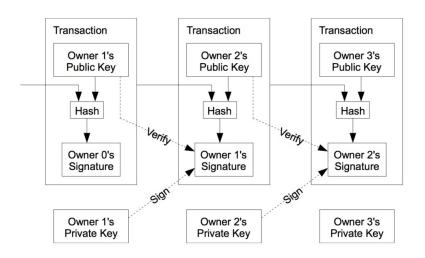
- Each block is secured by a mathematical puzzle, the proof-of-work
- Miners compete in solving the puzzle, the first to solve it broadcasts it to the network
- New bitcoin are created as a reward for mining blocks, at the moment 6.25 per block
- Proof-of-work difficulty automatically adjust to mining power

#### Blocks and Blockchain

- The longest blockchain is the correct one, new blocks only added to the longest chain
- If two blocks are broadcast simultaneously, different nodes work on different blocks
- Once next block broadcast, the longest chain is kept, the other discarded
- The production of bitcoin is capped at 21 million, thereafter rewards only from fees

#### MORE ON THE BLOCKCHAIN


#### Size of Blocks


- Originally, there was no size limit on the individual blocks
- Miners simply gathered all the transactions into the next block
- 1MB limit introduced early, to protect the blockchain from "bloat"
  - People with malicious intent could spam the blockchain with micro-payments
  - Thus making the blocks too big to be economically broadcast

# **Limited Space**

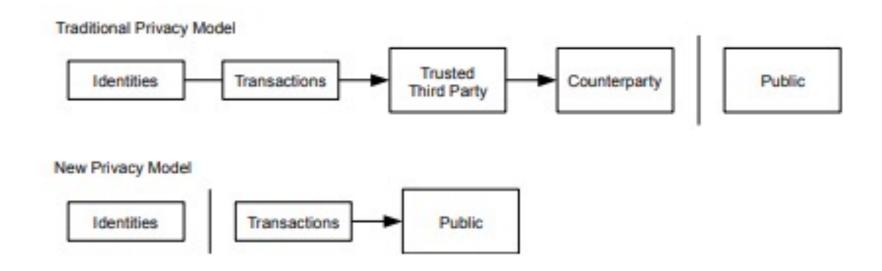
- Lack of space on each block for all transactions
- Transaction fees introduced to economize the space
- Fee automatically set according to the demand for space
- In times of high use, these fees have been high \$50 or more

#### **BLOCKCHAIN AND TRANSACTIONS**





#### BITCOIN AND PRIVACY


# **Traditional System**

- Intermediaries key, they have data on the transacting parties and the amounts sent etc.
- This data is private, not available to the public
- But potentially everything is accessible to everyone

#### Bitcoin

- Transactions data are public in the blockchain but they cannot be tied to individuals
- All that can be seen are the amounts sent and the addresses sent from and to
- It is still possible to lose privacy: if a link is made between an address and an individual
  - > KYC regulations on bitcoin exchanges
  - > Bitcoin detectives can track down ownership and spending of coins

# BITCOIN AND PRIVACY (BITCOIN WHITE PAPER)



#### **DOUBLE-SPEND AND 51-PERCENT ATTACKS**

# The Problem of Double-Spending

- Double-spend: the same bitcoin transferred to different wallets
- A coin first goes to one, but before validation, it is reversed and send to someone else
- Alternatively, a dishonest miner or node must replace one block with another
- This is no problem so long as a majority of nodes are honest

#### 51 Percent Attack

- A dishonest node will have to control 51 percent of computing power
- Limited rewards: he can only reverse the previous block, falsify the latest transactions
- Mining is costly, is dishonesty really profitable?
- High opportunity costs: honest bitcoin mining

#### **BITCOIN GOVERNANCE**

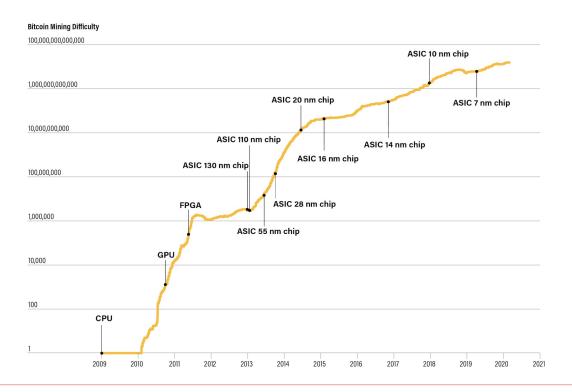
## **Open Source**

- The software behind bitcoin is all open source, publically available
- Bitcoin Improvement Proposals (BIP) debated in the community
- Once rough consensus is achieved, the proposal is integrated into the software
  - Uploaded to the recognized code repository
  - Only a few persons have access to the code repository
- The proposal is only integrated once users (nodes) download and install it

#### Consensus and Forks

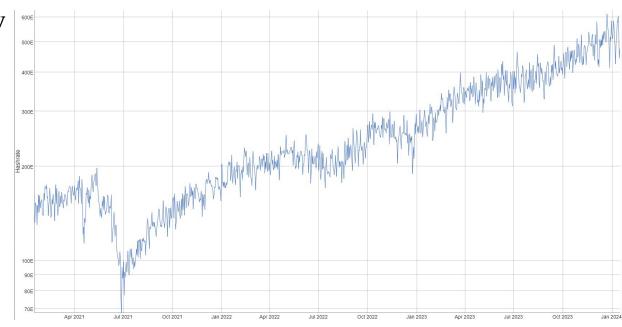
- Ultimately, there is no central authority
- If consensus is not achieved on a BIP, but some want to implement it, a fork happens
- Two blockchains emerge: one with the old and one with the new software
- Their past is the same, but from the fork, we are dealing with two new coins

#### MINING BOOM


# Technological Progress

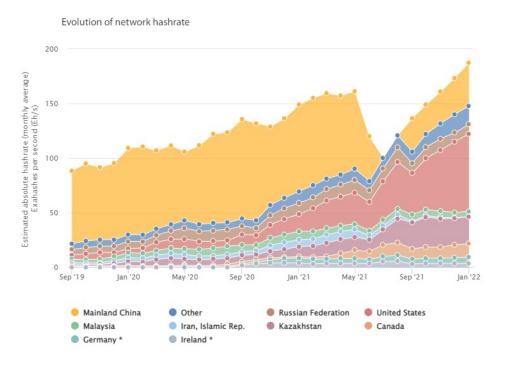
- Bitcoin mining began with simply downloading a client to your laptop
- As mining became more profitable, mining hardware advanced
- From CPU to GPU, from laptops to dedicated rigs to large-scale mining operations

# **Economic Factors Determining Mining**


- Bitcoin price, chance of mining the next block, input costs
- Rising bitcoin prices means more resources are dedicated to mining
- Falling bitcoin prices eliminate profits, mines are turned off, switched to other purposes
- The main inputs: hardware rigs and electricity
- Miners locate where electricity is cheap, migrate according to seasonal changes
  - E.g., wet season in China

# MINING DEVELOPMENT (SOURCE: COINDESK)




#### HASHRATE AND POW

- The number of "guesses" per second
- It measures the computational power assigned to the blockchain
- The larger, the more secure the blockchain is
- And the more resources are devoted to bitcoin mining



Source: bitinfocharts.com

# BITCOIN MINING BY COUNTRY, 2019 – JAN. 2022 (SOURCE: CBECI)





# 2. BEYOND BITCOIN

#### OTHER USES OF THE BLOCKCHAIN

- Secure records on the blockchain (sales, land titles, marriages)
- Smart contracts
- Contracts that automatically execute once certain conditions are met
- Decentralized finance (DeFi)
- Decentralized lending platforms
- Initial coin offerings ICOs
- To fund new startups
- ...there seems to be a lot of scam going on here
- The original bitcoin blockchain can be used for some, not all of these purposes

#### THE GENESIS BLOCK MESSAGE

| 00000000 | 01 | 00 | 00 | 00 | 00 | 00 | 00        | 00 | 00                     | 00 | 00        | 00 | 00 | 00 | 00 | 00 |                  |
|----------|----|----|----|----|----|----|-----------|----|------------------------|----|-----------|----|----|----|----|----|------------------|
| 00000010 | 00 | 00 | 00 | 00 | 00 | 00 | 00        | 00 | 00                     | 00 | 00        | 00 | 00 | 00 | 00 | 00 |                  |
| 00000020 | 00 | 00 | 00 | 00 | 3B | A3 | ED        | FD | 7A                     | 7B | 12        | B2 | 7A | C7 | 2C | 3E | ;£íýz{.²zÇ,>     |
| 00000030 | 67 | 76 | 8F | 61 | 7F | C8 | 1B        | C3 | 88                     | 8A | 51        | 32 | 3A | 9F | B8 | AA | gv.a.È.Ā^ŠQ2:Ÿ¸ª |
| 00000040 | 4B | 1E | 5E | 4A | 29 | AB | 5F        | 49 | FF                     | FF | 00        | 1D | 1D | AC | 2B | 7C | K.^J)«_Iÿÿ¬+     |
| 00000050 | 01 | 01 | 00 | 00 | 00 | 01 | 00        | 00 | 00                     | 00 | 00        | 00 | 00 | 00 | 00 | 00 |                  |
| 00000060 | 00 | 00 | 00 | 00 | 00 | 00 | 00        | 00 | 00                     | 00 | 00        | 00 | 00 | 00 | 00 | 00 |                  |
| 00000070 | 00 | 00 | 00 | 00 | 00 | 00 | FF        | FF | FF                     | FF | 4D        | 04 | FF | FF | 00 | 1D | ÿÿÿÿм.ÿў         |
| 08000000 | 01 | 04 | 45 | 54 | 68 | 65 | 20        | 54 | 69                     | 6D | 65        | 73 | 20 | 30 | 33 | 2F | EThe Times 03    |
| 00000090 | 4A | 61 | 6E | 2F | 32 | 30 | 30        | 39 | 20                     | 43 | 68        | 61 | 6E | 63 | 65 | 6C | Jan/2009 Chancel |
| 0A000000 | 6C | 6F | 72 | 20 | 6F | 6E | 20        | 62 | 72                     | 69 | 6E        | 6B | 20 | 6F | 66 | 20 | lor on brink of  |
| 000000B0 | 73 | 65 | 63 | 6F | 6E | 64 | 20        | 62 | 61                     | 69 | 6C        | 6F | 75 | 74 | 20 | 66 | second bailout f |
| 000000C0 | 6F | 72 | 20 | 62 | 61 | 6E | 6B        | 73 | $\mathbf{F}\mathbf{F}$ | FF | FF        | FF | 01 | 00 | F2 | 05 | or banksÿÿÿÿò.   |
| 000000D0 | 2A | 01 | 00 | 00 | 00 | 43 | 41        | 04 | 67                     | 8A | FD        | B0 | FE | 55 | 48 | 27 | ····CA.gŠý°þUH'  |
| 000000E0 | 19 | 67 | F1 | A6 | 71 | 30 | <b>B7</b> | 10 | 5C                     | D6 | <b>A8</b> | 28 | E0 | 39 | 09 | A6 | .gn q0\ö"(à9.    |
| 000000F0 | 79 | 62 | E0 | ΕA | 1F | 61 | DE        | B6 | 49                     | F6 | BC        | 3F | 4C | EF | 38 | C4 | ybàê.a⊅¶Iö½?Lï8Ä |
| 00000100 | F3 | 55 | 04 | E5 | 1E | C1 | 12        | DE | 5C                     | 38 | 4D        | F7 | BA | 0B | 8D | 57 | óu.å.Á.⊅\8M+ºW   |
| 00000110 | 8A | 4C | 70 | 2B | 6B | F1 | 1D        | 5F | AC                     | 00 | 00        | 00 | 00 |    |    |    | ŠLp+kñ¬          |
|          |    |    |    |    |    |    |           |    |                        |    |           |    |    |    |    |    |                  |

#### **NEW CRYPTOCURRENCIES**

- Since the basic software is publically available, it is very easy to launch your own crypto with your own specific features
- The joke coin dogecoin (2013) was an early example
- Mainly to make fun of crypto speculation
- Since then championed (?) by Elon Musk
- Dog Money by Remy
- Litecoin (2011) another early example
- Ethereum, announced in 2013 and public 2015 a more "advanced" blockchain
- More possibility for smart contracts
- Basis for tokens, scripting...
- Coins with enhanced privacy features another important category

#### PROOF-OF-WORK OR PROOF-OF-STAKE?

- PoW has been criticized for being too costly, using too much electricity
- Bitcoin mining uses more power than a country like the Netherlands (roughly 100 TWhs annually)
- These estimates come with a great deal of uncertainty, however
- PoS is an alternative way to mine new blocks
- How many coins a miner stakes determines his "power"
- Energy needs minimized
- Criticized for fostering centralization
- Implemented on ethereum, no plans for bitcoin

# **BITCOIN NETWORK POWER DEMAND, 2018-2023**



#### WHICH BITCOIN? THE BLOCKSIZE WARS

#### Hard Forks of Bitcoin

- Leading to several versions of bitcoin
- Bitcoin Core (BTC) and Bitcoin Cash (BCH) are the most important ones
- Each is an independent coin and blockchain
- Bitcoin Core is the "main" bitcoin

#### The Core Issue: the Blocksize

- Should there be a limit on the size of each block?
- Tradeoff: cheap transaction with bigger blocks
- Vs. larger fixed costs for mining, the danger of centralization

#### **BLOCKSIZE**

#### The Blocksize Limit

- The blocksize limit was added in 2010 by Satoshi, set at 1MB
- A security feature for the network: to avoid spamming that could take bitcoin down
- Transactions free at this point, therefore spamming was a potential risk
- Spamming could in theory raise the size of new blocks indefinitely
- Hence the limit but it was only meant as a temporary security measure

#### Problems of the Limit

- The number of transactions limited to about 3 per second much too little
- Scaling is impossible with this limit, transactions become very costly
- Transaction fees introduced, people bid for (artificially) scarce space on the blockchain
- Transaction fees became very high, defeating the purpose of bitcoin

#### THE BLOCKSIZE WARS

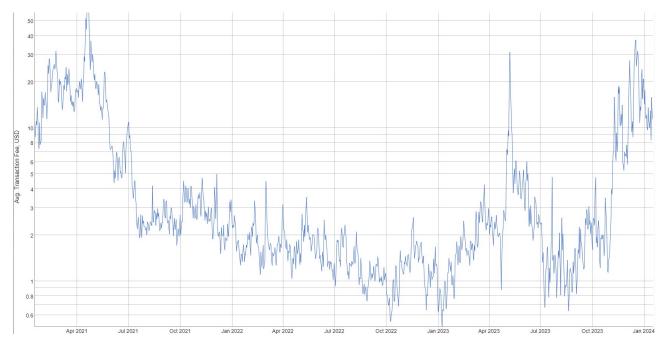
# The Big Block Arguments

- It's impossible to scale bitcoin with small blocks
- Blocksize increases can easily be programmed into bitcoin
- The extra data storage needed is not a real problem
- It's reasonable to expect continuing improvement Moore's Law also applies here

# The Small Block Arguments

- Bigger blocks compromise the bitcoin network
- Costs of running a node increases
- Centralization of mining into fewer hands results
- Larger blocks are not necessary: bitcoin is only for ultimate settlement

#### **RESOLUTION: BITCOIN CORE**


#### **Small Block Solutions**

- Block size limit, but BIP "segregated witness" would effectively raise the limit to 2MB
- Side chains and a "secondary layer" proposed: Blockstream and the Lightning Network
- Most of the (Chinese) miners were convinced by the Core team 2015

# **Developments Since**

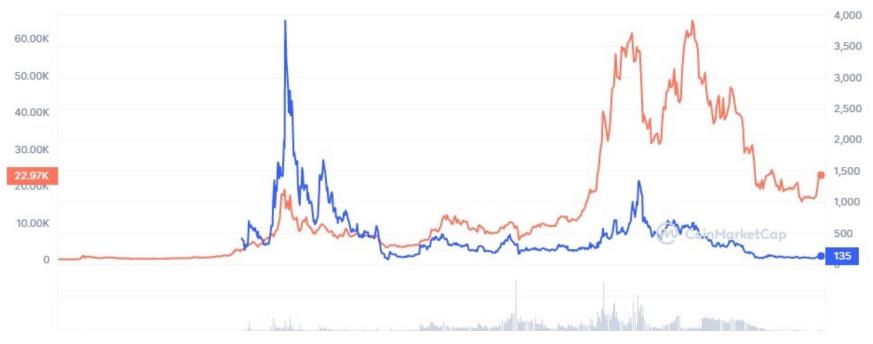
- Transaction costs rose on bitcoin from late 2016/early 2017 on, tops of over \$50
- Much less more recently generally below \$1, but daily purchases effectively priced out
- Widespread adoption hampered Steam discontinued December 2017
- The role of bitcoin (BTC): it's a store of value, a settlement asset not cash
- Lightning Network has grown in popularity since 2021

# BTC TRANSACTION FEES, 2021-2024



Source: bitinfocharts.com

#### **RESOLUTION: BITCOIN CASH**


#### Hard Fork

- BIP that would raise the blocksize limit to 8MB rejected
- Hard fork from bitcoin (BTC) in 2017 lead to Bitcoin Cash (BCH)
- Most hashing power with BTC, "original" developer team with BTC
- Market value of BTC higher

# **Development Since**

- Bitcoin Cash was very popular in the first years, but its popularity has since declined
  - Retail use of cryptos generally has declined
  - ➤ High fees on BTCs discourage it, confusion over forks?
- Innovation in traditional financial system caused costs to plummet
- In Europe, a hidden subsidy to credit card use make credit cards more desirable

#### BITCOIN CASH VERSUS BITCOIN CORE PRICE



Source: coinmarketcap.com



### **ORIGINS OF CBDCS**

# **Early Discussions**

- Academic discussions began around 2014-2015
- Discussions among central bankers in response to the rise of bitcoin
- Papers by BIS (2020), ECB (2020), Federal Reserve (2022)
- China (since 2014, active since 2020) and a few other countries already have a CBDC
- But little adoption so far: promoted via distributions, lotteries

#### Core Idea behind CBDC

- A digital form of the currently used currency (euro, dollar...)
- For use in the digital world, to promote financial inclusion
- Exchangeable at par with other forms (physical cash, bank money)

#### **DESIGNING A CBDC**

#### Blockchain or Central Issuer?

- Tokens
- Accounts with the central bank

#### Wholesale or Retail?

- Wholesale: a CBDC only available to banks and financial institutions, a settlement asset
- Retail: private persons have access to CBDC

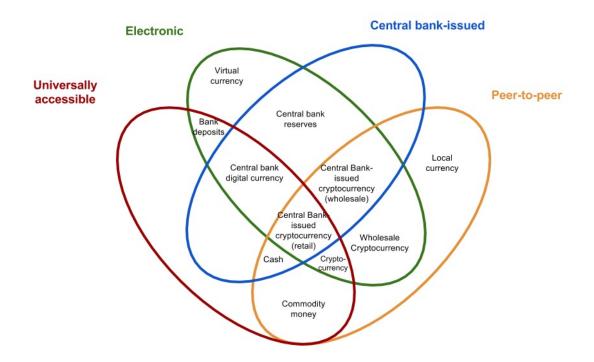
#### Immediate or Mediated Access?

- Immediate: private persons have immediate access to CBDC
- Mediated: CBDC is administrated in accounts by banks, others

#### **PURPOSES OF CBDC**

# Central Banks Want to Stay Relevant

- Claim that bitcoin shows demand for CBDC
- Claim that only central banks can provide a stable digital currency


# **CBDC** Necessary for Security

- To combat money laundering (Rogoff 2016)
- Prevent financing terrorism
- Privacy important, but conditional, CBs will have access to all transactions (ECB 2020)

# **CBDC** a Potential Tool for Monetary Policy

- Negative interest rates
- Limits on cash holdings

# THE MONEY FLOWER (BIS 2020)



#### CBDC AND MONETARY POLICY

# Potentials of CBDC for Monetary Policy

- The "zero lower bound" on interest rates (Goodfriend 2000; Bordo & Levin 2017)
- Interest rate manipulation is difficult/impossible when nominal rates are low
- Negative rates → cash hoarding
- With a CBDC, a negative rate can be imposed on cash holdings

# Encourage Spending, Penalizing Hoarding

- In a recession, it becomes possible to avoid "leakage" into hoards
- The central bank can penalize / outlaw "excessive" cash holding
- It can program money to lose value over time
  - E.g., after 1 month, holdings in excess of x euros will decline by 1 percent per month

## CBDC, MONETARY POLICY AND PHYSICAL CASH

# Physical Cash an Important Limit

- Negative rates can be avoided by shifting from CBDC to cash
- Same with programmed devaluation

# Physical Cash and Other Concerns

- Surveillance through CBDC can be avoided through cash, other payments systems
- "Transparency" in this case really means complete government oversight and control
- Cash, private cryptos make this impossible CBDC makes it possible, if no alternatives

# **Contradictory Central Bank Plans**

- They want to respect privacy, they don't want to eliminate cash
- Their stated goals for CBDC can only be achieved by eliminating financial privacy, cash

## CHINA, CBDCS AND INTERNATIONAL TRANSFERS

#### Wholesale CBDC as an Alternative to the Dollar

- China (and others) have plans for linking CBDCs
- E.g., BIS's Project mBridge (BIS 2022)
- One possible purpose: an alternative international payments system

# Independent of the Dollar System

- It would make international trade risk less costly for countries not aligned with the U.S.
  - E.g., Iran, Russia, China
- Alternative to SWIFT for international payments
- Possible purpose: fixing exchange rates, recreating a system like Bretton Woods
  - Very unlikely



#### LITERATURE

Bank for International Settlement. 2020. CBDC: Central Bank Digital Currencies: Foundational Principles and Core Features. Available online.

Bank for International Settlement. 2022. Project mBridge: connecting economies through CBDC. Available online.

Board of Governors of the Federal Reserve System. 2022. Money and Payments: The U.S. Dollar in the Age of Digital Transformation. Washington, D. C. <u>Available online</u>.

Bordo, M. and A. Levin. 2017. Central Bank Digital Currency and the Future of Monetary Policy. *NBER Working Paper* no. 23711.

European Central Bank. 2020. Report on a Digital Euro. Frankfurt am Main. Available online.

Goodfriend, M. 2000. Overcoming the Zero Bound on Interest Rate Policy. *Journal of Money, Credit and Banking* 32, no. 4: 1007-35.

Rogoff, K. 2016. The Curse of Cash. Princeton, N. J.: Princeton University Press.

Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. Available online.