Symbolverzeichnis und wichtige Formeln

Dieses Verzeichnis ist danach geordnet, wie Symbole und Formeln in der Vorlesung vorkommen.

Preissetzung im Monopol:

p	Preis
$X\left(\cdot\right)$	Nachfragefunktion
X(p)	die nachgefragte Menge in Abhängigkeit des Preises
$p^{ m prohib}$	Prohibitivpreis, d.h. $X(p^{\text{prohib}}) = 0$
$x^{ m sätt}$	Sättigungsmenge, d.h. $x^{\text{sätt}} = X(0)$
$X\left(p\right) = d - ep$	Nachfragefunktion im linearen Fall
d	Sättigungsmenge im linearen Fall
$\frac{d}{e}$	Prohibitivpreis im linearen Fall
e	Anstieg der linearen Nachfragefunktion, d.h. erhöht sich der
	Preis um eine Einheit, sinkt die Nachfrage um e
$\varepsilon_{X,p} = \frac{dX}{dp} \cdot \frac{p}{X}$	Preiselastizität der Nachfrage - gibt an, um wie viel Prozent
•	die Nachfrage sinkt, wenn der Preis um ein Prozent steigt
$R\left(p\right) = pX\left(p\right)$	Erlös in Abhängigkeit des Preises
$C\left(p\right) = C\left[X\left(p\right)\right]$	Kosten in Abhängigkeit des Preises
c	Stückkosten
$\Pi\left(p\right) = R\left(p\right) - C\left(p\right)$	Gewinn in Abhängigkeit des Preises
MR_p	Grenzerlös nach dem Preis
$MR_p = X(p)(1 + \varepsilon_{X,p})$	Amoroso-Robinson Relation bezüglich des Preises
MC_p	Grenzkosten nach dem Preis
$MR_p \stackrel{!}{=} MC_p$	Gewinnmaximierungsbedingung im Monopol
$p^{R_{\max}}$	erlösmaximierender Preis
p^M	Monopolpreis / gewinnmaximierender Preis

Preiswettbewerb im Duopol:

p_i	Preis, der von Unternehmen i gewählt wurde
$x_i\left(p_i\right)$	Nachfrage von Unternehmen i
$X\left(p_{1},p_{2}\right)$	Gesamtnachfrage auf dem Markt
c_i	Stückkosten von Unternehmen i
Π_i	Gewinn von Unternehmen i
p_i^M	Preis, den Unternehmen i im Monopol wählt
$\Pi_i^M \ p_i^L$	Gewinn von Unternehmen i im Monopol
p_i^L	Limitpreis, d.h. derjenige Preis, den Unternehmen i maximal
	wählen darf, damit das konkurrierende Unternehmen nichts
	auf dem Markt anbietet
w	Wechselkosten
$p_i^{\text{eff}} = \min\left(p_1, p_2\right)$	effektiver Preis für Unternehmen i , falls es eine
	Minimum-Preis Garantie abgibt
$p_i^R\left(p_j\right)$	Reaktionsfunktion von Unternehmen i im Preiswettbewerb

Mengensetzung im Monopol

<i>m</i>	Menge
x	
$p\left(\cdot\right)$	inverse Nachfragefunktion
$p\left(x\right)$	Preis in Abhängigkeit der Menge
$R\left(x\right) = p\left(x\right) \cdot x$	Erlös in Abhängigkeit der Menge
$C\left(x\right)$	Kosten in Abhängigkeit der Menge
$\Pi\left(x\right) = R\left(x\right) - C\left(x\right)$	Gewinn in Abhängigkeit der Menge
$p\left(x\right) = a - b \cdot x$	inverse Nachfrage im linearen Fall
a	Prohibitivpreis
b	Anstieg der inversen Nachfragefunktion, d.h. wenn eine
	Einheit mehr verkauft werden soll, muss der Preis um b sinken
$\frac{a}{b}$	Sättigungsmenge
$MR_x := MR$	Grenzerlös nach der Menge
$MR_x = p(x) \cdot \left(1 + \frac{1}{\varepsilon_{x,p}}\right)$	Amoroso-Robinson Relation bezüglich der Menge
$MC_x := MC$	Grenzkosten nach der Menge
$MR_x \stackrel{!}{=} MC_x$	Gewinnmaximierungsbedingung im Monopol
$AC = \frac{C(x)}{x}$	Durchschnittskosten
CS	Konsumentenrente
PS	Produzentenrente
p^{cap}	Höchstpreis
t	Stücksteuer

Mengenwettbewerb im Duopol

x_i	Menge, die von Unternehmen i gewählt wurde
$X = x_1 + x_2$	Gesamtangebot
(37)	D : : All :: 1 :: 1 C

$$p(X) = p(x_1 + x_2)$$
 Preis in Abhängigkeit des Gesamtangebots
 $\Pi_i(x_1, x_2)$ Gewinn von Unternehmen i in Abhängigkeit der gewählten Mengen

$$x_i^R(x_j)$$
 Reaktionsfunktion von Unternehmen i im Mengenwettbewerb x_i^C Menge, die Unternehmen i im Cournot-Gleichgewicht produziert

$$x_i^S$$
 Menge, die Unternehmen i im Stackelberg-Gleichgewicht produziert x_i^L Limit-Menge / Menge die Unternehmen i mindestens produzieren muss,

$$s_i = \frac{x_i}{X}$$
 Marktanteil von Unternehmen i

$$C_k = \sum_{i=1}^k s_i$$
 mit die k -te Konzentrationsrate auf einem Markt mit n Unternehmen und $k \le n$ $s_1 \ge s_2 \ge \ldots \ge s_n$

$$H = \sum_{i=1}^{n} s_i^2$$
 Herfindahl-Index

$$H = \sum_{i=1}^{n} s_i^2 \qquad \qquad \text{Herfindahl-Index}$$

$$\frac{p - MC_i}{p} \qquad \qquad \text{Lerner-Index für Unternehmen } i$$

$$\sum_{i=1}^{n} s_i \frac{p - MC_i}{p} \qquad \qquad \text{Lerner-Index für eine Industrie result}$$

$$\sum_{i=1}^{n} s_i \frac{p - MC_i}{n}$$
 Lerner-Index für eine Industrie mit n Unternehmen

Innovationswettbewerb

\overline{c}	Stückkosten ve	or der	Innovation
	DUUCKKOSUCII V	or acr	minovation

$$\underline{c}$$
 Stückkosten nach der Innovation $\underline{c} < \overline{c}$ F_1, F_2 R&D-Aktivität von Unternehmen 1 bzw 2

$$C(F_i)$$
 Kosten der R&D-Aktivität

$$F_0$$
 Maß für die Schwierigkeit der Innovation

$$w_i = \frac{F_i}{F_0 + F_1 + F_2}$$
 Wahrscheinlichkeit, dass Unternehmen 1 innoviert $\overline{w} = \frac{F_0}{F_0 + F_1 + F_2}$ Wahrscheinlichkeit, dass keine Innovation stattfindet

$$F_i^N$$
 R&D-Ausgaben im Nash-Gleichgewicht

$$\Delta\Pi_i^A$$
 Arrow-Effekt

$$\Delta\Pi_i^{GN}$$
 Gilbert-Newbery-Effekt

$$\beta$$
 Spill-over-Effekt

 Δc_i Kostenreduktion durch die Innovation für Unternehmen i

Produktdifferenzierung

 $\frac{1}{2t\Delta a}$

a_i	Standort/Produktwahl des Unternehmens i
h	Standort/Produktwahl eines bestimmten Konsumenten
$\Delta a = a_2 - a_1$	Standort- bzw. Produktunterschied der Unternehmen
$\overline{a} = a_i + \frac{1}{2} \left(a_2 - a_1 \right)$	natürlicher Kundenstamm von Unternehmen i
$\frac{1}{2}$	

$$t(h-a_i)^2$$
 Transportkosten

$$p_i^{eff} = p_i + t (h - a_i)^2$$
 effektiver Preis des Produktes von Unternehmen i
 h^* der Konsument im Punkt h^* ist indifferent zwischen

$$q_i$$
 Qualität des Produktes von Unternehmen i