Microeconomics

Monetary assessment

Harald Wiese

Leipzig University

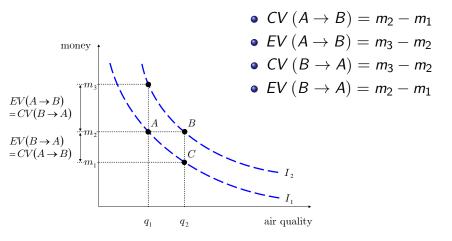
Structure

Introduction

- Household theory
- Theory of the firm
- Perfect competition and welfare theory
 - Perfect competition
 - The first welfare theorem
 - Monetary assessment of environmental impacts
- Types of markets
- External effects and public goods

Pareto-optimal review

Overview


• Compensating and equivalent variation

- Definitions
- Example: air pollution
- Willingness to pay and compensation claim
- Example: price change
- Consumer and producer surplus
 - Compensating or equivalent variation?
 - Consumer surplus from the perspective of inverse demand
 - Producer surplus
- Welfare theory based on consumer and producer surplus
 - Minimum prices
 - Quantity tax

Compensating and equivalent variation Definitions

- Compensating variation CV: change in income as a compensation for a change in environment (in the largest sense).
- Equivalent variation *EV*: change in income **instead of** a change in environment (in the largest sense).

Compensating and equivalent variation Example: air pollution

Compensating and equivalent variation Example: air pollution

Increase in quality $q_1
ightarrow q_2$ for income m_2 , i.e., A
ightarrow B

 Compensating variation: Change and payment for change; initial utility remains the same:

$$U^{A} = U(m_{2}, q_{1}) = U(m_{2} - CV(A \rightarrow B), q_{2})$$

 Equivalent variation: No change and payment instead of change:

$$U^{B} = U(m_{2} + EV(A \rightarrow B), q_{1}) = U(m_{2}, q_{2})$$

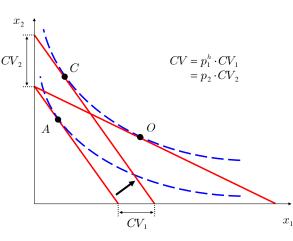
Compensating and equivalent variation

Willingness to pay and compensation claim

The amount of money that establishes indifference between two economic situations

- increases income. \implies compensation claim
- decreases income. \implies willingness to pay

Problem


What does marginal willingness to pay mean in the context of indifference curves? Compensating or equivalent variation?

Compensating and equivalent variation

Willingness to pay and compensation claim

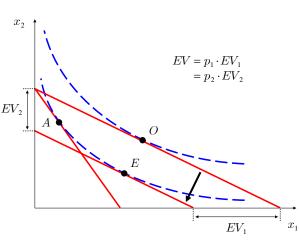
	willingness to pay	compensation claim
environmental	How much would	Which sum would
improvement	you pay at most for	you pay at most if
	an improvement?	the improvement
		did not happen?
	$CV(A \rightarrow B)$	$EV(A \rightarrow B)$
environmental	How much would	What would you
deterioration	you pay at most to	request as
	prevent the	compensation for
	deterioration?	the deterioration?
	$EV(B \rightarrow A)$	$CV(B \rightarrow A)$

Compensating variation Example: price change of good 1

- Initial situation point *O*
- Price increase good 1
- Parallel shift of the new budget line to the old indifference curve
- CV real versus
- CV nominal

Compensating var. for a price decrease of good 1

Cobb-Douglas utility function:


$$U(x_1, x_2) = x_1^a x_2^{1-a}$$
 (0 < a < 1)

 $\mathit{CV}\left(p_{1}^{h}
ightarrow p_{1}^{n}
ight)$ is defined implicitly by

$$\underbrace{\left(a\frac{m}{p_{1}^{h}}\right)^{a}\left(\left(1-a\right)\frac{m}{p_{2}}\right)^{1-a}}_{\text{utility for the old, high price}} = \underbrace{\left(a\frac{m-CV\left(p_{1}^{h}\rightarrow p_{1}^{n}\right)}{p_{1}^{n}}\right)^{a}\left(\left(1-a\right)\frac{m-CV\left(p_{1}^{h}\rightarrow p_{1}^{n}\right)}{p_{2}}\right)^{1-a}}_{\text{utility for the new, low price}}_{\text{and compensating variation}}.$$

$$\Rightarrow CV\left(p_1^h \to p_1^n\right) = m\left(1 - \left(\frac{p_1^n}{p_1^h}\right)^a\right)$$

Equivalent variation Example: price increase of good 1

- initial situation point *O*
- Price increase good 1
- Parallel shift of the old budget line to the new indifference curve
- EV real versus
- EV nominal

Equivalent variation for a price decrease of good 1

Cobb-Douglas utility function:

$$U(x_1, x_2) = x_1^a x_2^{1-a}$$
 (0 < a < 1)

 $EV\left(
ho_{1}^{h}
ightarrow
ho_{1}^{n}
ight)$ is defined implicitly by

$$\underbrace{\left(a\frac{m}{p_{1}^{n}}\right)^{a}\left(\left(1-a\right)\frac{m}{p_{2}}\right)^{1-a}}_{\text{utility for new, low price}} = \underbrace{\left(a\frac{m+EV\left(p_{1}^{h}\rightarrow p_{1}^{n}\right)}{p_{1}^{h}}\right)^{a}\left(\left(1-a\right)\frac{m+EV\left(p_{1}^{h}\rightarrow p_{1}^{n}\right)}{p_{2}}\right)^{1-a}}_{p_{2}}$$

utility for old, high price and equivalent variation

$$\Rightarrow EV\left(\rho_1^h \to \rho_1^n\right) = m\left(\left(\frac{\rho_1^h}{\rho_1^n}\right)^a - 1\right)$$

Compensating and equivalent variation Example: price change

Problem

Compensating and equivalent variation for $U(x_1, x_2) = \ln x_1 + x_2, x_1 > 0$ in case of $\frac{m}{p_2} > 1$?

• For Cobb-Douglas preferences:

```
compensation claim > willingness to pay
```

It can be shown:

For normal goods the willingness to pay for a price decrease is never larger than the compensation claim.

• However, there are special cases where both are equal.

Consumer and producer surplus

Compensating or equivalent variation

- On markets: "quid pro quo" or "nothing is for free"
 - \implies compensating variation
 - for consumers: willingness to pay
 - for firms: compensation claim
- Equivalent variation
 - for consumers: Which amount should a consumer receive who waives a good?
 - for firms: Which amount makes the firm as worse off as the delivery of a good?

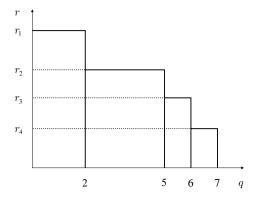
Consumer surplus

Demand curve \Rightarrow marginal willingness to pay

Assumptions:

- x₂ : "all other goods" (money)
- $p_2 = 1$.

 \Rightarrow


• MWP for one additional unit of good 1:

$$MRS = \frac{p_1}{p_2} = p_1$$

• Hence, the inverse demand function measures the marginal willingness to pay for 1 additional unit of the good.

Consumer surplus

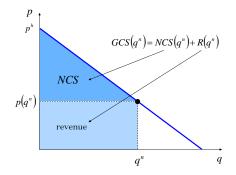
Demand curve \Rightarrow marginal willingness to pay

Arrange willingness to pay according to size \Rightarrow demand curve p(q) willingness to pay for the *q*th unit

Consumer surplus from the perspective of inverse demand

	individual	aggregated
willingness to pay	r	GCS(q)
consumer surplus	r – p	NCS(q) = CS(q)

Consumer surplus from the perspective of inverse demand

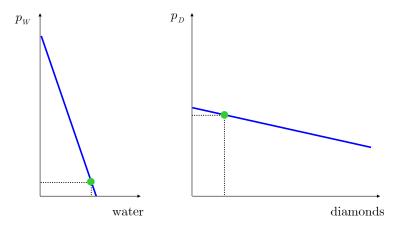

• Gross consumer surplus for continuous demand function p(q)

$$GCS\left(q^{n}\right)=\int_{0}^{q^{n}}p\left(q\right)dq$$

• Net consumer surplus

$$CS(q^{n}) = \int_{0}^{q^{n}} (p(q) - p^{n}) dq$$
$$= \int_{0}^{q^{n}} p(q) dq - p^{n}q^{n}$$
$$= GCS(q^{n}) - R(q^{n})$$

Consumer surplus from the perspective of inverse demand

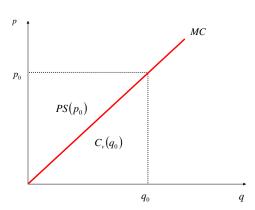


Problem

p(q) = 20 - 4q, p = 4Gross consumer surplus? Net consumer surplus?

The diamond-water paradox

Why are diamonds more expensive than water, while water is "more valuable"?


- Willingness to pay for consumption
 - \Rightarrow consumer surplus
- Compensation claim for production
 - $\Rightarrow \mathsf{producer} \ \mathsf{surplus}$

Marginal cost: minimal compensation claim for production of one additional unit of a good

	for one unit	for all considered units
compensation claim	МС	C _v
producer surplus	р — MC	NPS = PS

- *PS* (*p*): measure for producer's willingness to pay for selling at the market at price *p*
- For one unit

 For a price of p₀ the producer surplus for all considered units is the sum or integral of these differences up to the quantity q₀ = q (p₀).

PS(p) = willingness to pay for selling at the market at price p

$$C_s(q) = q^2 + 2q + 2,$$

$$p = 10$$

• profit?

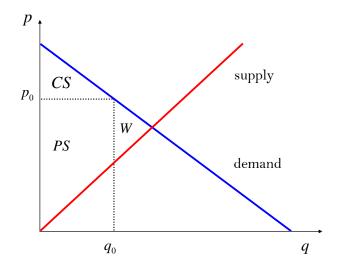
• producer surplus?

- In the short run fixed cost may occur
- Producer surplus

$$PS(p_{0}) = \underbrace{p_{0}q_{0}}_{\text{revenue}} - \underbrace{C_{v}(q_{0})}_{\text{variable cost}} \\ = \underbrace{(p_{0}q_{0} - C_{v}(q_{0}) - F)}_{\text{profit}} + \underbrace{F}_{\text{fixed cost}}$$

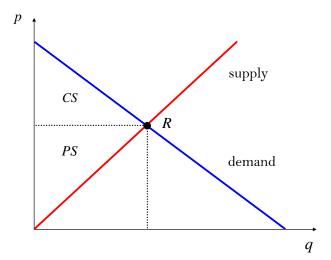
Welfare theory based on consumer and producer surplus

Assessment of economic policy measures

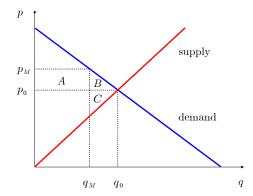

Maximize the sum of

consumer surplus producer surplus and tax revenue

if taxes are taken into account, otherwise the sum of CS and PS.


• Distributional aspects are not considered.

Assessment of economic policy measures Non-optimal price-quantity combination



Assessment of economic policy measures Reference point

Assessment of economic policy measures Minimum prices

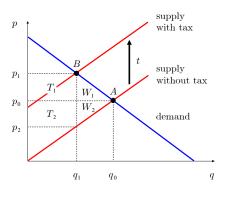
Problem

Change in consumer surplus? Producer surplus? Sum?

Harald Wiese (Leipzig University) Monetary assessment of environmental impac

Welfare theory based on consumer and producer surplus

Quantity tax


- A quantity tax of t increases marginal cost from MC to MC + t.
- Graphically the supply curve is shifted upwards in a parallel fashion.

Problem

The supply function of a firm is given by $S(p) = \frac{1}{2}p - 2$ and the inverse demand curve by p(q) = 24 - 3q. How does a quantity tax of t = 5 change the equilibrium price?

Welfare theory based on consumer and producer surplus

Quantity tax

• $0 \leq q \leq q_1$: redistribution

- Consumers loose $(p_1 - p_0) q_1 = T_1$
- Producers loose

$$(p_0 - p_2) q_1 = T_2$$

• State gains taxes $T_1 + T_2$

•
$$q_1 < q \leq q_0$$
 : welfare loss

• Consumers loose

 $\frac{1}{2}(p_1-p_0)(q_0-q_1)=W_1$

• Producers loose

$$\frac{1}{2}(p_0 - p_2)(q_0 - q_1) = W_2$$

Why not "laissez faire"?

Only trade that benefits both is done voluntarily \Rightarrow Pareto improvement

But voluntariness does not exist between

- hotels (shady pool) or
- the thief and myself.

 \Rightarrow learn more in the chapter "External effects"

Central tutorial I

Problem N.5.1. $U(x_1, x_2) = (x_1 x_2)^{\frac{1}{2}}$ $p_1 = 1 \Rightarrow p_1 = 2, p_2 = 1$ m = 100

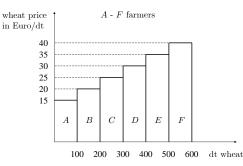
Compensating and equivalent variation?

Problem N.5.2. $U(x, y) = \min(x, y)$ $p_x = 2$ (or $p_x = 3$), $p_y = 1$ m = 12

- a) Optimal consumption bundle for $p_x = 2$ or $p_x = 3$?
- b) Compensating variation for price increase?
- c) Equivalent variation for price increase?

Central tutorial II

Problem N.5.3. $C(y) = y^2 + 1$ p = 20Producer surplus?


Problem N.5.4. p(q) = 30 - 3q

Output q = 5Consumer surplus?

Problem N.5.5. $q(p) = 5 - \frac{1}{2}p$ $p = 6 \Rightarrow p = 4$ Change in consumer surplus?

Central tutorial III

Problem N.5.6.

Producer surplus for a market price of $25 \frac{Euro}{dt}$?

Problem N.5.7. $C(y) = 10 + 5y + y^2$ a) Profit and producer surplus for p = 15? b) Connection between revenue, producer surplus, profit and cost?