#### Microeconomics Market demand and revenue

#### Harald Wiese

Leipzig University

## Structure

Introduction

- Household theory
  - Budget
  - Preferences, indifference curves, and utility functions
  - Household optimum
  - Comparative statics
  - Decisions on labor supply and saving
  - Uncertainty
  - Market demand and revenue
- Theory of the firm
- Perfect competition and welfare theory
- Types of markets
- External effects and public goods

Pareto-optimal review

### Overview

- Aggregation of individual demand curves
- Demand curves
  - Linear demand curves
  - Price elasticity of demand
  - Revenue and marginal revenue with respect to price
- Inverse demand function
  - From demand curve to inverse demand curve
  - Linear inverse demand curve
  - Again: price elasticity of demand
  - Marginal revenue
- Average and marginal values (excursus)
- Demand for murder, fast driving, theft (excursus)

## Prohibitive price and satiation quantity

#### Definition (prohibitive price)

Price for which demand is just zero

#### Definition (satiation quantity)

Quantity demanded at price zero

## Aggregation of individual demand curves



- Note prohibitive prices!
- Horizontal aggregation!

## The linear model

Demand curve

demand function

$$X\left(p
ight)=d-ep$$

d,  $e \geq 0$ ,  $p \leq rac{d}{e}$ 

#### Problem

Determine

- satiation quantity (demand at price zero) and
- prohibitive price (price that yields zero demand)

## Demand function and price elasticity I



## Demand function and price elasticity II



By how many percent does demand change if the price increases by 1 percent?

Inelastic demand

$$|\varepsilon_{X,p}| < 1$$

Elastic demand

 $|\varepsilon_{X,p}| > 1$ 

## Demand function and price elasticity III

$$X(p) = d - ep$$

$$\varepsilon_{X,p} = \frac{dX}{dp} \frac{p}{X}$$

$$= (-e) \frac{p}{d - ep}$$

$$\bullet |\varepsilon_{X,p}| = 0 \text{ for } p = 0$$

$$\bullet |\varepsilon_{X,p}| = \infty \text{ for } d - ep = 0, \text{ hence, for } p = \frac{d}{e}$$

$$\bullet |\varepsilon_{X,p}| = 1 \text{ yields}$$

$$e \frac{p}{d - ep} = 1, \text{ ep = } d - ep \text{ and therefore } p = \frac{d}{2e}$$

## Expenditures and revenue

Price times quantity

- from the household's perspective: expenditures
- from the firm's perspective: revenue
- Revenue for demand function X(p):

$$R(p) = pX(p)$$

- Revenue equals 0
  - at the prohibitive price (why?) and
  - at the satiation quantity (why?).

#### Revenue curve and a question I



#### Problem

What is the economic interpretation of the price  $p^{?}$ ?

Harald Wiese (Leipzig University)

Market demand and revenue

#### Revenue curve and a question II



### Marginal revenue with respect to price

• Revenue for demand function X(p):

$$R(p) = pX(p)$$

• Marginal revenue ( = MR, here  $MR_p$ ):

$$MR_p = \frac{dR}{dp} = X + p \frac{dX}{dp}$$
 (product rule)

- revenue increases by X (for every unit sold the firms obtain one Euro)
- revenue decreases by  $p\frac{dX}{dp}$  (the increase in price decreases demand that is valued with the price)

## Marginal revenue and price elasticity

#### Problem

Confirm the Amoroso-Robinson relation

$$\frac{dR}{dp} = X \left( 1 + \varepsilon_{X,p} \right) = -X \left( |\varepsilon_{X,p}| - 1 \right)!$$

#### Problem

What is the price elasticity of demand if revenue reaches its maximum?

## Inverse demand function

From demand function to inverse demand function



- demand function X (p) : Quantity depends on price.
- Inverse demand function p (X):
   p (X) is the price where quantity X can be sold.

#### Inverse demand function

#### Problem

Determine the inverse demand function for X(p) = 100 - 2p.

#### Problem

Confirm that average revenue is equal to the price (revenue equals R(X) = p(X)X).

#### Problem

Do you recognize p(0) and X(0)?

## Linear inverse demand function

A problem

#### Problem

Assume the linear inverse demand function p(X) = a - bX,

- a, b > 0, and determine
  - the slope of the inverse demand function
  - ② the slope of marginal revenue dR(X) / dX
  - the satiation quantity and
  - the prohibitive price

## The linear model

The solution

$$1 \quad dp/dX = -b$$

Revenue: 
$$R(X)$$

$$= p(X) X = aX - bX^{2}$$
marginal revenue:
$$dR(X) / dX$$

$$= a - 2bX.$$
slope:  $-2b$ 

- Satiation quantity: *a*/*b*
- a is the prohibitive price



#### Again: price elasticity of demand



## Again: price elasticity of demand

#### Problem

Calculate price elasticity of demand for the linear demand function p(X) = a - bX! Which price and which quantity yields an elasticity of -1? Which price yields an elasticity of zero?

Inelastic demand

$$|\varepsilon_{X,p}| < 1$$

Elastic demand

 $|\varepsilon_{X,p}| > 1$ 

#### Again: price elasticity of demand



## Demand function and revenue

Amoroso-Robinson relation

for an inverse demand function:

$$MR = p\left(1 + rac{1}{arepsilon_{X,p}}
ight) = p\left(1 - rac{1}{ert arepsilon_{X,p} ert}
ight).$$

#### Problem

Derive the Amoroso-Robinson relation above, this time by factoring out p!

## Demand function and Revenue



If the absolute value of the elasticity equals 1, then an increase of the quantity by one percent yields a reduction of the achievable price by one percent. Revenue does not change in this case.

Harald Wiese (Leipzig University)

Market demand and revenue

## Marginal revenue I

#### $MR := \frac{dR}{dX}$ consists of two parts

- At the one hand, if the quantity increases by one unit, revenue increases by the price of this unit (p > 0).
- At the other hand, revenue decreases because consumers are not willing to buy the increased demand at the old price (for a negatively sloped market demand).
   Loss in revenue = product of
  - price discount due to the increase of quantity  $\frac{dp}{dX}$  and
  - number of units X sold so far

Hence: Marginal revenue equals

$$MR = p + X \frac{dp}{dX}.$$

## Marginal revenue II

• Marginal revenue and elasticity (Amoroso-Robinson relation)

$$\begin{split} MR &= \frac{dR}{dX} = p + X \frac{dp}{dX} \text{ (product rule)} \\ &= p \left[ 1 + \frac{1}{\varepsilon_{X,p}} \right] = p \left[ 1 - \frac{1}{|\varepsilon_{X,p}|} \right] > 0 \text{ for } |\varepsilon_{X,p}| > 1 \end{split}$$

• Marginal revenue equals price  $MR = p + X \cdot \frac{dp}{dX} = p$  for

- $\frac{dp}{dX} = 0$  horizontal (inverse) demand:  $MR = p + X \cdot \frac{dp}{dX} = p$
- first "small" unit, X = 0:  $MR = p + \underset{=0}{X} \cdot \frac{dp}{dX} = p = \frac{R(X)}{X}$
- first-degree price discrimination:  $MR = p + \underset{=0}{X} \cdot \frac{dp}{dX}$

 $\rightarrow$  see chapter "Monopoly and monopsony"

## Average and marginal values (excursus)

Reminder: For the first "small" unit:

$$X = 0: MR = p + X_{=0} \cdot \frac{dp}{dX} = p = \frac{R(X)}{X} = AR$$

• We look for condition such that the following holds:

$$\frac{df}{dx} = \frac{f(x)}{x}$$

The conditions are

1. condition: 
$$x > 0$$
 and  $\frac{d\frac{f(x)}{x}}{dx} = 0$ ,  
2. condition:  $x = 0$  and  $f(0) = 0$ .

## Average and marginal values (excursus)

The proof of the first condition follows from

$$\frac{d\frac{f(x)}{x}}{dx} = \frac{\frac{df}{dx}x - 1 \cdot f(x)}{x^2}$$
$$= \frac{1}{x} \left(\frac{\frac{df}{dx}x}{x} - \frac{f(x)}{x}\right)$$
$$= \frac{1}{x} \left(\frac{df}{dx} - \frac{f(x)}{x}\right).$$

By  $\frac{d\frac{f(x)}{x}}{dx} = 0$  and  $x \neq 0$  we get the equality of the first derivative (e.g., marginal revenue) and the average (e.e., average revenue).

## Average and marginal values (excursus)

For the proof of the second condition we can use de l'Hospital's rule

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{\frac{df}{dx}}{\frac{dg}{dx}}.$$

#### Problem

Calculate 
$$\lim_{x\to 0} \frac{f(x)}{g(x)}$$
 for  $f(x) = e^x - 1$  and  $g(x) = \sqrt{x}$ !

In our case we have g(x) = x and hence obtain

$$\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{\frac{df}{dx}}{1} = \left. \frac{df}{dx} \right|_{x=0}$$

 $\implies$  The average at zero is equal to the derivative at zero.

## Demand for murder, fast driving, theft

#### Fine as price for

- parking in no-parking zones
- overrunning of velocity

# **Prison (in years) and death penalty (probability of sentence)** for murder

Empirical analysis: Demand for murder is negatively sloped according to Isaac Ehrlich:

• USA 1935-1969: an additional execution would have prevented 8 deaths

#### Probability of severe injury due to fast driving

is reduced by an airbag; increase in the demand for fast driving Empirical analysis: total effect (number of traffic fatalities) is close to zero.

Harald Wiese (Leipzig University)

## Central tutorial I

#### Problem H.7.1. Demand function q(p) = a - bpShow $\varepsilon_{q,p} = -\frac{p}{\text{prohibitive price} - p}$ .

#### Problem H.7.2.

Inverse demand function p(q) = 30 - 3q

- Marginal revenue?
- Draw demand function and marginal revenue!

## Central tutorial II

#### Problem H.7.3.

Inverse demand function p(q) = 200 - 8qNumber of consumers doubles; For every consumer a "twin" appears

- New demand function?
- Price elasticity at p = 3?
- Marginal revenue according to the Amoroso-Robinson relation?

#### Problem H.7.4.

Inverse demand functions

$$p\left(x^{A}
ight)=5-rac{1}{2}x^{A} ext{ und } p\left(x^{B}
ight)=3-rac{1}{3}x^{B}$$

Draw and aggregate (graphically)!

Then aggregate the demand functions analytically (not the inverse demand functions)!

#### Problem H.7.5.

Price elasticity of demand for

a) 
$$q(p) = 40p^{-2}$$
  
b)  $q(p) = (p+3)^{-2}$