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Part C. Games and industrial organization
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2 Price and quantity competition
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Price and quantity competition
overview

1 Monopoly: Pricing policy
2 Price competition
3 Monopoly: Quantity policy
4 Quantity competition
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De�nitions

Monopoly: one �rm sells

Monopsony: one �rm buys

X Π

p Π

�rst: pricing policy for a monopolist
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The linear model
demand properties

Demand function

X (p) = d � ep

d , e � 0, p � d
e

Problem
Find

the saturation quantity,

the prohibitive price and

the price elasticity of demand

of the above demand curve!
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The linear model
demand properties

Solution
saturation quantity
X (0) = d

prohibitive price d
e

(solve X (p) = 0 for
the price)

price elasticity of
demand

εX ,p =
dX
dp

p
X

= (�e) p
d � ep

X

p

d

e
d

( )pX

e
d
2

0, =pXε

1, =pXε

∞=pX ,ε
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The linear model
pro�t

De�nition
X is the demand function.

Π(p)| {z }
pro�t

: = R(p)| {z }
revenue

� C (p)| {z }
cost

= pX (p)� C [X (p)]

�monopoly�s pro�t in terms of price p.

Π(p) = p (d � ep)� c ((d � ep)) ,

c , d , e � 0, p � d
e

�pro�t in linear model.

Note the dependencies: Price 7! Quantity 7! Cost
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The linear model
decision situation

De�nition
A tuple

(X ,C )

is the monopolist�s decision situation with price setting;

X �demand curve

C �function

pro�t-maximizing price de�ned by

pR (X ,C ) := argmax
p2R

Π(p)

pM := pR (X ,C ) �monopoly price.
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The linear model
decision situation: graph I

RX ,

p

d

X

maxRp

R

?p e
d

Problem
Find the economic meaning of the question mark!
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The linear model
decision situation: graph I

Solution
No meaning!

RX ,

p

d

X

maxRp

R

?p e
d

Units:

Prices:
monetary units
quantity units

Revenue = price � quantity:
monetary units
quantity units

� quantity units

= monetary units
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The linear model
decision situation: graph II

cd

C

?p

R

?p ?p ?p

RC,

p

Problem
Find the economic meaning of the question marks!
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The linear model
decision situation: graph II

Solution

C

0=Πp

R

maxRp maxΠp 0=Π=== RCXp

cd

p

RC,
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Marginal revenue and elasticity
di¤erentiating with respect to price

Marginal revenue with respect to price:

dR(p)
dp

=
d [pX (p)]

dp
= X + p

dX
dp

Amoroso-Robinson equation:

dR(p)
dp

= �X (p) [jεX ,p j � 1]

... > 0 for
��εX ,p �� < 1

... = 0 for
��εX ,p �� = 1

Problem
Comment: A �rm can increase pro�t if it produces at a point where
demand is inelastic, i.e., where 0 > εX ,p > �1 holds.
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Maximizing revenue

RX ,

p

d

X

1, −=pXε R

=maxRp
e

d
2 e

d

R (p) = p (d � ep) = pd � ep2

pRmax =
d
2e
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Marginal cost
w.r.t. price and w.r.t. quantity

dC
dX : marginal cost (with respect to quantity)
dC
dp : marginal cost with respect to price

dC
dp

=
dC
dX|{z}
>0

dX
dp|{z}
<0

< 0.
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Pro�t maximization

FOC:
dR
dp

!
=
dC
dp

equivalent to �price-cost margin� rule (shown later):

p � dC
dX

p
!
=

1
jεX ,p j

.

Problem

Con�rm: For linear demand pM = d+ce
2e . What price maximizes revenue?

How does pM change if c changes?
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Price di¤erentiation

First-degree price di¤erentiation � > monopoly quantity policy

Third-degree price di¤erentiation

Problem
Two demand functions:

X1 (p1) = 100� p1
X2 (p2) = 100� 2p2

c = 20.

a) Price di¤erentiation

b) No price di¤erentiation
Hint 1: Find prohibitve prices in each submarket in order to
sum demand
Hint 2: You arrive at two solutions. Compare pro�ts.
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Price di¤erentiation
solution

Third degree: Solve two isolated pro�t-maximization problems; obtain

pM1 = 60,

pM2 = 35.

The prohibitive prices are 100 and 50. The aggregate demand is

X (p) =

8<:
0, p > 100
100� p, 50 < p � 100
200� 3p, 0 � p � 50.

Two local solutions: p =4313 and p =60. Comparison of pro�ts:
maximum at

pM = 43
1
3
.
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Price and quantity competition
overview

1 Monopoly: Pricing policy
2 Price competition
3 Monopoly: Quantity policy
4 Quantity competition
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Price versus quantity competition

Cournot 1838 :

Bertrand 1883 :

2

1

x
x

2

1

Π

Π

2

1

Π

Π

2

1

p
p

Bertrand criticizes Cournot, but Kreps/Scheinkman 1983:

simultaneous capacity competition
+ simultaneous price competition (Bertrand competition)
= Cournot results
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Simultaneous versus sequential competition

Cournot 1838 :

Stackelberg 1934:

2

1

x
x

2

1

Π

Π

1x 2x
2

1

Π

Π

�rst: simultaneous pricing game = Bertrand model
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The game
demand and costs

Assumptions:
homogeneous product

consumers buy best

linear demand

Demand for �rm 1:

x1(p1, p2) =

8<:
d � ep1, p1 < p2
d�ep1
2 , p1 = p2

0, p1 > p2
2p 1p

( )22
1 pX

( )1pX

1x

Unit cost c1:
Π1(p1, p2) = (p1 � c1)x1(p1, p2)
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The pricing game

De�nition

Γ =
�
N, (Si )i2N , (Πi )i2N

�
,

�pricing game (Bertrand game)
with

N �set of �rms

Si :=
�
0, de

�
�set of prices

Πi : S ! R ��rm i�s pro�t function

Equilibria: �Bertrand equilibria�or �Bertrand-Nash equilibria�
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Accomodation and Bertrand paradox
How is the incumbent�s position toward entry

Bain 1956:

Accomodated entry

Blockaded entry

Deterred entry
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Accomodation and Bertrand paradox
Bertrand paradox

Assumption: c := c1 = c2 < d
e

Highly pro�table undercutting
) Nash-equilibrium candidate:

�
pB1 , p

B
2

�
= (c , c)

Lemma

Only one equilibrium
�
pB1 , p

B
2

�
= (c , c) .

xB1 = xB2 =
1
2
X (c) =

d � ec
2

ΠB
1 = ΠB

2 = 0

Problem
Assume two �rms with identical unit costs of 10. The strategy sets are
S1 = S2 = f1, 2, ..., g . Determine both Bertrand equilibria.
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Economic genius: Joseph Bertrand

Joseph Louis François Bertrand (1822
�1900) was a French mathematician
and pedagogue.

In 1883, he developed the
price-competition model while
criticising the Cournot model of
quantity competition.
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Accomodation and Bertrand paradox
Escaping the Bertrand paradox

Theory of repeated games � > chapter after next

Di¤erent average costs � > this chapter

Price cartel � > agreement to charge monopoly prices

Products not homogeneous, but di¤erentiated � > next chapter
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Blockaded entry and deterred entry
market entry blockaded for both �rms (case 1)

Now c1 < c2
c1 � d

e , c2 �
d
e

Market entry blockaded for both �rms

Problem
Which price tuples (p1, p2) are equilibria?
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Blockaded entry and deterred entry
market entry of �rm 2 blockaded (case 2)

c1 < d
e and c2 > p

M
1

Market entry of �rm 2 blockaded
Take p2 := c2 in the �gure

1Π 21 pp M ≤

Mp11c 2p 1p
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Blockaded entry and deterred entry
market entry of �rm 2 blockaded (case 2)

Equilibrium:�
pB1 , p

B
2

�
=

�
pM1 , c2

�
=

�
d
2e
+
c1
2
, c2

�

xB1 = (d � ec1) /2, xB2 = 0

ΠB
1 = (d � ec1)2 /(4e), ΠB

2 = 0

1Π 21 pp M ≤

Mp11c 2p 1p

Problem
Can you �nd other equilibria?

All strategy combinations
�
pM1 , p2

�
ful�lling p2 > pM1 are also equilibria.
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Blockaded entry and deterred entry
market entry of �rm 2 deterred (case 3)

c1 < d
e and c2 � pM1 .

Market entry of �rm 2 deterred
Take p2 := c2 in the �gure
�rm 1 prevents entry by setting limit price

pL1 (c2) := c2 � ε.

1Π
Mppc 121 <<

Mp11c 2p 1p
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Blockaded entry and deterred entry
market entry of �rm 2 deterred (case 3)

One Bertrand-Nash equilibrium is�
pB1 , p

B
2

�
=
�
pL1 (c2), c2

�
= (c2 � ε, c2)

xB1 � d � ec2, xB2 = 0,

ΠB
1 � (c2 � c1) (d � ec2) , ΠB

2 = 0.

1Π
Mppc 121 <<

Mp11c 2p 1p

Harald Wiese (University of Leipzig) Advanced Microeconomics 32 / 92



Blockaded entry and deterred entry
summary I

duopoly,
Bertrand­Paradox
(case 4)

deterrence
(case 3)

deterrence
(case 5)

monopoly 1

no supply
(case 1)

blockade (case 6)

blockade (case 2)

monopoly 2

1c

2c

e
d

e
d
2

e
d
2

e
d
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Blockaded entry and deterred entry
summary II

1. no supply,
c1 � d

e and
c2 � d

e

2. Entry of �rm 2 blockaded
0 � c1 < d

e and
pM1 =

d+ec1
2e < c2

3. Entry of �rm 2 deterred
0 � c1 < d

e and
c1 < c2 � d+ec1

2e = pM1

4. Bertrand-Paradox
c1 = c2 =: c and
0 � c < d

e

5. Entry of �rm 1 deterred
0 � c2 < d

e and
c2 < c1 � d+ec2

2e = pM2

6. Entry of �rm 1 blockaded
0 � c2 < d

e and
pM2 =

d+ec2
2e < c1
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Price and quantity competition
overview

1 Monopoly: Pricing policy
2 Price competition
3 Monopoly: Quantity policy
4 Quantity competition
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The linear model
preliminaries

Problem
Assume linear inverse demand p (X ) = a� bX , a, b > 0. Determine

1 the slope of the inverse linear demand function,
2 the slope of its marginal-revenue curve,
3 saturation quantity and
4 prohibitive price.
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The linear model
preliminaries

Solution
1 The slope of the inverse
demand curve is
dp/dX = �b

2 Revenue: R (X )
= p (X )X = aX � bX 2
MR: dR (X ) /dX
= a� 2bX .
Slope: �2b

3 Saturation quantity: a/b
4 a is the prohibitive price.

X

p

a

b
a

( )Xp

1
b

MR1

b2

b
a
2
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The linear model
de�nition pro�t function

De�nition
X � 0; p inverse demand function.

Π(X )| {z }
pro�t

:= R(X )| {z }
revenue

� C (X )| {z }
cost

= p (X )X � C (X )

�monopoly�s pro�t in terms of quantity

Linear model:
Π(X ) = (a� bX )X � cX , X � a

b
,

Harald Wiese (University of Leipzig) Advanced Microeconomics 38 / 92



The linear model
de�nition decision situation

De�nition
A tuple

(p,C ) ,

�monopolist�s decision situation with quantity setting where

p � inverse demand function

C �cost function

Quantity setting monopolist�s problem: Find

XR (p,C ) := argmax
X2R

Π(X )

�pro�t maximizing quantity

Notation:
XM := XR (p,C ) �monopoly quantity
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Marginal revenue
... and elasticity ... and price

Marginal revenue and elasticity

MR = p + X
dp
dX

= p
�
1+

1
εX ,p

�
= p

�
1� 1

jεX ,p j

�
> 0 for jεX ,p j > 1.

Marginal revenue equals price: MR = p + X � dpdX = p
dp
dX = 0 horizontal (inverse) demand: MR = p + X �

dp
dX
=0
= p

�rst �small� unit, X = 0: MR = p + X
=0
� dpdX = p =

R (X )
X

� > see chapter on production theory
First-degree price di¤erentiation MR = p + X

=0
� dpdX

� > see below
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Monopoly pro�t
average versus marginal de�nition

Pro�t at X̄ :

Π (X̄ )
= p(X̄ )X̄ � C (X̄ )
= [p(X̄ )� AC (X̄ )] X̄
= pro�t (average de�nition)

=

X̄Z
0

[MR (X )�MC (X )] dX

�F (perhaps)
= pro�t (marginal de�nition)

C

D

E

A

X

p

c

a

( )XpMR

B

X

( )Xp

MC
AC

F

G

H
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Pro�t maximization
�rst order condition

FOC (w.r.t. X ):

MC
!
= MR.

Problem

Find XM for p (X ) = 24� X and constant unit cost c = 2! (a haon déag)

Problem

Find XM for p (X ) = 1
X and constant unit cost c!

Harald Wiese (University of Leipzig) Advanced Microeconomics 42 / 92



Pro�t maximization
linear model

M

B

D

E

FA

PCX X

Mp

p

c

a

( )XpMR

∞=pX ,ε

1, =pXε

0, =pXε

MX X

( )Xp

p

c
a

ACMC =

MR

XM = XM (c , a, b) =

(
1
2
(a�c )
b , c � a

0, c > a
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Pro�t maximization
comparative statics

XM (a, b, c) = 1
2
(a�c )
b , where ∂XM

∂c < 0; ∂XM
∂a > 0; ∂XM

∂b < 0,

pM (a, b, c) = 1
2 (a+ c), where ∂pM

∂c > 0; ∂pM

∂a > 0;
∂pM

∂b = 0,

ΠM (a, b, c) = 1
4
(a�c )2
b , where ∂ΠM

∂c < 0; ∂ΠM

∂a > 0; ∂ΠM

∂b < 0.

Problem

Consider ΠM (c) = 1
4
(a�c )2
b and calculate dΠM

dc ! Hint: Use the chain rule!
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Pro�t maximization
the e¤ect of unit cost on pro�t I

Solution

dΠM

dc
=

d
�
1
4
(a�c )2
b

�
dc

=
1
4b
2(a� c) (�1)

= �a� c
2b
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Pro�t maximization
the e¤ect of unit cost on pro�t III

Reduced-form pro�t function ΠM (c) = Π
�
c ,XM (c)

�
.

Forming the derivative with respect to c yields

dΠM (c)
dc

=

∂Π
∂c|{z}
< 0

direct e¤ect

+
∂Π
∂X

����
X=XM| {z }
= 0

FOC for pro�t maximization

dXM

dc
.| {z }

< 0
higher marginal cost,

lower output| {z }
= 0

indirect e¤ect

Envelope theorem � > manuscript chapter �Comparative statics and
duality theory�
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Pro�t maximization
price and quantity

III

III IV

Π

Π

p

M

X

MCAC =

b
ca −

b
ca

2
−=MX( )

b
ca

4

2−

( )
b
ca

4

2−

MR
2

ca +=Mp

c

a

( )Xp
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Pro�t maximization
exercise

Consider a monopolist with

the inverse demand function p (X ) = 26� 2X and

the cost function C (X ) = X 3 � 14X 2 + 47X + 13
Find the pro�t-maximizing price!
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Alternative expressions for pro�t maximization

MC
!
= MR = p

�
1� 1

jεX ,p j

�

p
!
=

1
1� 1

jεX ,p j
MC =

jεX ,p j
jεX ,p j � 1

MC

p �MC
p

!
=
p � p

h
1� 1

jεX ,p j

i
p

=
1

jεX ,p j
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Alternative expressions for pro�t maximization
Lerner index

De�nition
In a monopoly:

p �MC
p

is the Lerner index of market power

perfect competititon: p = MC

Note:
p �MC
p

!
=

1
jεX ,p j
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Alternative expressions for pro�t maximization
Lerner index: monopoly power versus monopoly pro�t

Cournot point

AC

MR

MC

( )Xp

XMX

p

Mp

p > MC but AC
�
XM

�
=
C
�
XM

�
XM

= pM
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First-degree price di¤erentiation
bachelor-level derivation

Every consumer pays his willingness to pay

MR = p + X
=0
� dp
dX

= p

Price decrease following a quantity increase concerns

the marginal consumer,

not the inframarginal consumers.
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First-degree price di¤erentiation
formal analysis

Objective function

Marshallian willingness to pay � cost

=
Z X

0
p (q) dq � C (X )

Di¤erentiating w.r.t. X :

p (X )
!
=
dC
dX
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First-degree price di¤erentiation
graph

M

B

D

E

FA

PCX X

Mp

p

c

a

( )XpMR

∞=pX ,ε

1, =pXε

0, =pXε

MX

Pro�t for non-discriminating (Cournot) monopolist: ABME
Pro�t for discriminating monopolist: AFD
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Third-degree price di¤erentiation (two markets, one
factory)
optimality condition

Pro�t

Π (x1, x2) = p1 (x1) x1 + p2 (x2) x2 � C (x1 + x2) ,

FOCs

∂Π (x1, x2)
∂x1

= MR1 (x1)�MC (x1 + x2) !
= 0,

∂Π (x1, x2)
∂x2

= MR2 (x2)�MC (x1 + x2) !
= 0.

MR1 (x1)
!
= MR2 (x2)

Assume, to the contrary, MR1 < MR2 ...
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Third-degree price di¤erentiation (two markets, one
factory)
graph

1x2x

1p

1MR2MR
*
1x*

2x

2p

*
1p

*
2p

market 1market 2

p

total output

MC (x�1 + x
�
2 ) < MR1 (x

�
1 ) = MR2 (x

�
2 ) ...
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Third-degree price di¤erentiation (two markets, one
factory)
elasticities

MR1 (x�1 ) = MR2 (x
�
2 ) :

pM1

�
1� 1

jε1j

�
!
= pM2

�
1� 1

jε2j

�

jε1j > jε2j ) pM1 < p
M
2 .
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Third-degree price di¤erentiation
exercise

Problem
A monopolist sells his product in two markets:
p1 (x1) = 100� x1, p2 (x2) = 80� x2.

1 Assume price di¤erentiation of the third degree and the cost function
given by C (X ) = X 2. Determine the pro�t-maximizing quantities
and the pro�t.

2 Repeat the �rst part of the exercise with the cost function
C (X ) = 10X .

3 Assume, now, that price di¤erentiation is not possible any more.
Using the cost function C (X ) = 10X, �nd the pro�t-maximizing
output and price. Hint: You need to distinguish quantities below and
above 20.
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Third-degree price di¤erentiation
exercise: solution

Solution
1 The �rm�s pro�t function is

Π (x1, x2) = p1 (x1) x1 + p2 (x2) x2 � C (x1 + x2)
= (100� x1) x1 + (80� x2) x2 � (x1 + x2)2 .

Partial di¤erentiations yield xM1 = 20 and xM2 = 10;
ΠM (20, 10) = 1400.

2 We �nd: xM1 = 45 and xM2 = 35; ΠM = 3250.
3 Aggregate inverse demand

p (X ) =
�
100� X , X < 20
90� 1

2X , X � 20.

At XM = 80, the monopolist�s pro�t is 3200 < 3250.
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One market, two factories
optimality condition

Pro�t

Π (x1, x2) = p (x1 + x2) (x1 + x2)� C1 (x1)� C2 (x2) .

FOCS

∂Π (x1, x2)
∂x1

= MR (x1 + x2)�MC1 (x1) !
= 0,

∂Π (x1, x2)
∂x2

= MR (x1 + x2)�MC2 (x2) !
= 0.

MC1
!
= MC2

Assume MC1 < MC2 ...
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One market, two factories
graph

1x

p

2x

1MC

*
1x*

2x

2MC

factory 1factory 2

total output
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Welfare-theoretic analysis of monopoly
introduction

Normative economics

Concepts

Marshallian consumers�rent
Producers�rent
Taxes

Monetary evaluation

The government is often assumed to maximize welfare

benevolent dictatorship
support maximization (chances of reelection) by bene�tting

consumers,
producers,
bene�ciaries of publicly provided goods and
tax payers.
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Welfare-theoretic analysis of monopoly
perfect competition as benchmark

Price taking & pro�t-maximizing
) p = MC

Marginal consumer�s willingness
to pay
=
marginal �rm�s loss
compensation

Consumers�
+
producers�rents maximal

supply

demand

X

PR

CR

p

R
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Welfare-theoretic analysis of monopoly
Cournot monopoly

Note:
XM < XPC

PCXMX

p

Mp

MR

MC

( )Xp

MCp =

MCMR =

X

PCp

Problem
No price di¤erentiation, marginal-cost curve MC = 2X and inverse
demand p (X ) = 12� 2X. Determine the welfare loss! Hint: Sketch and
apply the triangle rule!
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Welfare-theoretic analysis of monopoly
Cournot monopoly

Problem
No price di¤erentiation, marginal-cost curve MC = 2X and inverse
demand p (X ) = 12� 2X. Determine the welfare loss!

Solution
The welfare loss is equal
to

(8� 4) (3� 2)
2

= 2.

p

X32

4

8

12

6

MR

MC

( )Xp
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Welfare-theoretic analysis of monopoly
Cournot monopoly

Loss due to

CR (X̄ ) =
Z X̄

0
p (X ) dX � p (X̄ ) X̄

dCR (X̄ )
dX̄

=
d
R X̄
0 p (X ) dX

dX̄
� d [p (X̄ ) X̄ ]

dX̄

= p (X̄ )�
�
p (X̄ ) +

dp
dX̄

X̄
�
= � dp

dX̄
X̄ > 0.
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Cournot monopoly

Benevolent monopoly

max [p(X̄ )X̄ � C (X̄ )] + CR (X̄ )

FOC: �
p (X̄ ) +

dp
dX̄

X̄ � dC
dX̄

�
� dp
dX̄

X̄
!
= 0

or

p (X̄ )
!
=
dC
dX̄
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Price and quantity competition
overview

1 Monopoly: Pricing policy
2 Price competition
3 Monopoly: Quantity policy
4 Quantity competition

Harald Wiese (University of Leipzig) Advanced Microeconomics 68 / 92



Quantity competition
price versus quantity competition

Cournot 1838, Bertrand 1883

Quantity or price variation

Capacity
simultaneous capacity construction

+ Bertrand competition
= Cournot results

2

1

x
x

2

1

Π

Π
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Economic genius:
Antoine Augustin Cournot

Antoine Augustin Cournot
(1801-1877) was a French philosopher,
mathematician, and economist.

In 1838, Cournot presents monopoly
theory and oligopoly theory for
quantity setting in his famous
�Recherches sur les principes
mathématiques de la théorie des
richesses�.

De�nes the Nash equilibrium for the
special case of quantity competition
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Quantity competition
the Cournot game

De�nition
Cournot game (simultaneous quantity competition)

Γ =
�
N, (Si )i2N , (Πi )i2N

�
N �set of �rms

Si := [0,∞) �set of quantities

Πi : S ! R � i�s pro�t function
�
X�i := ∑n

i 6=j=1 xj
�

Πi (xi ,X�i ) = p (xi + X�i ) xi � C (xi )

Equilibria: �Cournot equilibria�or �Cournot-Nash equilibria�
Recall:

�
xC1 , x

C
2

�
is de�ned by xC1 = x

R
1

�
xC2
�
and xC2 = x

R
2

�
xC1
�
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Quantity competition
Equilibrium

Linear case

∂Π1(x1,x2)
∂x1

= MR1(x1)�MC1(x1) = a� 2bx1 � bx2 � c1 !
= 0

Quantities are strategic substitutes:

xR1 (x2) =
a� c1
2b

� 1
2
x2

= xM1 �
1
2
x2.

Solve the two reaction functions in the two unknowns x1 and x2
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Quantity competition
Equilibrium

xC1 =
1
3b (a� 2c1 + c2) , xC2 =

1
3b (a� 2c2 + c1)

Cournot­Nash
equilibrium

1xCx1

Mx2

Cx2

2x

( )21 xx R

( )12 xx R

C

Mx1
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Quantity competition
Equilibrium

XC = xC1 + x
C
2 =

1
3b
(2a� c1 � c2)

pC =
1
3
(a+ c1 + c2)

ΠC
1 =

1
9b
(a� 2c1 + c2)2

ΠC
2 =

1
9b
(a� 2c2 + c1)2

ΠC = ΠC
1 +ΠC

2 < ΠM
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Quantity competition
Iterative rationalizability

Reaction function:

xR2 (x1) =
� a�c2

2b � x1
2 , x1 < a�c2

b
0, otherwise

Lx1

Mx2 ( )12 xx R

2x

1x

xL1 :=
a� c2
b
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Quantity competition
Iterative rationalizability

Lx1

Mx2 ( )12 xx R

2x

1x

For �rm 2, any quantity between 0 and xM2 is rationalizable:

I1 :=
h
xR2
�
xL1
�
, xR2 (0)

i
=
h
0, xM2

i
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Quantity competition
Iterative rationalizability

1x

2x

( )12 xxR

( )21 xxR

2I

1I

3I

I1 : =
h
0, xM2

i
,

I2 : =

�
1
4
a� c1
b

, xM1

�
I3 : =

�
1
4
a� c2
b

,
3
8
a� c2
b

�

Convergence towards the Cournot equilibrium
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Cartel treaty between two duopolists

Cartel pro�t

Π1,2 (x1, x2) = Π1 (x1, x2) +Π2 (x1, x2)

= p (x1 + x2) � (x1 + x2)� C1 (x1)� C2 (x2) .

with �rst-order conditions

∂Π1,2

∂x1
= p +

dp
dX

(x1 + x2)�
dC1
dx1

!
= 0 and

∂Π1,2

∂x2
= p +

dp
dX

(x1 + x2)�
dC2
dx2

!
= 0

Equal marginal cost (as in �one market, two factories�)

Negative externality ∂Π2
∂x1

= dp
dX x2 < 0 in the Cournot model is taken

care of in the cartel treaty
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Quantity competition
Comparative statics and cost competition

Common interests with respect to

demand (parameters a and b): common advertising campaign

cost (parameter c): lobby for governmental subsidies or take a
common stance against union demands

Problem
Two �rms sell gasoline with unit costs c1 = 0.2 and c2 = 0.5, respectively.
The inverse demand function is p (X ) = 5� 0.5X .

1 Determine the Cournot equilibrium and the resulting market price.
2 The government charges a quantity tax t on gasoline. How does the
tax a¤ect the price payable by consumers?
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Quantity competition
Comparative statics and cost competition

Problem
Two �rms sell gasoline with unit costs c1 = 0.2 and c2 = 0.5, respectively.
The inverse demand function is p (X ) = 5� 0.5X .

1 Determine the Cournot equilibrium and the resulting market price.
2 The government charges a quantity tax t on gasoline. How does the
tax a¤ect the price payable by consumers?

1 xC1 = 3.4, x
C
2 = 2.8 and p

C = 1.9
2 pC = 1.9+ 2

3 t. Di¤erentiationg w. r. t. t : dpdt =
2
3 , i.e., a tax

increase by one Euro leads to a price increase by 2
3 Euros.
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Quantity competition
Comparative statics and cost competition (envelope theorem)

Reducing own cost

cost saving

R&D

ΠC
1 (c1, c2) = Π1

�
c1, c2, xC1 (c1, c2) , x

C
2 (c1, c2)

�
.

∂ΠC
1

∂c1
=

∂Π1

∂c1|{z}
< 0

direct e¤ect

+
∂Π1

∂x1|{z}
= 0

∂xC1
∂c1

+
∂Π1

∂x2|{z}
<0

∂xC2
∂c1|{z}
>0| {z }

< 0
strategic e¤ect

< 0.
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Quantity competition
Comparative statics and cost competition (graphical analysis)

Cournot­Nash
equilibrium

1x

2x

reducedis1c

( )21 xx R

( )12 xx R
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Quantity competition
Comparative statics and cost competition

Increasing rival�s cost

sabotage

level playing �eld with respect to pay, environment, ...

ΠC
1 (c1, c2) = Π1

�
c1, c2, xC1 (c1, c2) , x

C
2 (c1, c2)

�
.

∂ΠC
1

∂c2
=

∂Π1

∂c2|{z}
= 0

direct e¤ect

+
∂Π1

∂x1|{z}
= 0

∂xC1
∂c2

+
∂Π1

∂x2|{z}
<0

∂xC2
∂c2|{z}
<0| {z }

> 0
strategic e¤ect

> 0.
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Quantity competition
Comparative statics and cost competition

Cournot­Nash
equilibrium

1x

2x

increases2c

( )21 xx R

( )12 xxR
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Quantity competition
Replicating the Cournot model

m identical consumers, n identical �rms

demand: 1� p for i = 1, ...,m

X = m (1� p)

p (X ) =
m� X
m

= 1� X
m

for j = 1, ..., n : C (xj ) = 1
2x
2
j

j�s pro�t

Πj (X ) = p (X ) xj � C (xj )

=

�
1�

xj +∑i 6=j xj
m

�
xj �

1
2
x2j

=

�
1� xj + X�j

m

�
xj �

1
2
x2j
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Quantity competition
Replicating the Cournot model

Πj (X ) =
�
1� xj+X�j

m

�
xj � 1

2x
2
j

xRj (X�j ) =
m� X�j
m+ 2

with X�j = (n� 1) xj :

xj =
m� (n� 1) xj

m+ 2

xCj =
m

m+ 1+ n

XC = nxCj =
nm

m+1+n and p (X ) =
m�X
m :

pC = 1� n
m+ 1+ n

.
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Quantity competition
Replicating the Cournot model

Consider λn �rms and λm consumers
Price - marginal cost (= equilibrium quantity) equals

pC (λ)�MCj (λ) =

�
1� λn

λm+ 1+ λn

�
� λm

λm+ 1+ λn

=
1

λm+ 1+ λn

=
1

λ (m+ n) + 1
�!
λ!∞

0

so that we obtain the price-takership result known from perfect
competition.
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Quantity competition
Blockaded entry and deterred entry

Assume c1 < c2
Market entry blockaded for both if

c1 � a

and

c2 � a
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Quantity competition
Blockaded entry and deterred entry

Assume c1 < c2
Market entry
blockaded for �rm 2
if

c2 � pM (c1) =
a+ c1
2

.

or

xL1 � xM1

monopoly
firm 1

2x

1xLx1
Mx1

Mx2

( )21 xx R

( )12 xx R

C

M
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Quantity competition
Blockaded entry and deterred entry

Summary

duopoly

no supply

monopoly 1

monopoly 2

1ca

2c

a

2
a

2
a

Market entry blockaded for �rm 2 if c2 � pM (c1) = 1
2a+

1
2c1
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Further exercises

Problem 1
Consider a monopolist with cost function C (X ) = cX , c > 0, and
demand function X (p) = apε, ε < �1.

1 Find the price elasticity of demand and the marginal revenue with
respect to price!

2 Express the monopoly price pM as a function of ε!

3 Find and interpret dp
M

d jεj !

Problem 2
Assume simultaneous price competition and two �rms where �rm 2 has
capacity constraint cap2 such that

1
2X (c) < cap2 < X (c) .

Is (c , c) an equilibrium?
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Further exercises

Problem 3
Three �rms operate on a market. The consumers are uniformly distributed
on the unit interval, [0, 1]. The �rms i = 1, 2, 3 simultaneously choose
their respective location li 2 [0, 1]. Each consumer buys one unit from the
�rm which is closest to her position; if more than one �rm is closest to her
position, she splits her demand evenly among them. Each �rm tries to
maximize its demand. Determine the Nash equilibria in this game!

Problem 4
Assume a Cournot monopoly. Analyze the welfare e¤ects of a unit tax and
a pro�t tax.
Consider the welfare e¤ects of a unit tax in the Cournot oligopoly with
n > 1 �rms, linear demand, and constant average cost. Restrict attention
to symmetric Nash equilibria! What happens for n! ∞?

Problem 5
Assume a Cournot monopoly. Analyze the quantity e¤ects of a price cap.
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