Advanced Microeconomics

Price and quantity competition

Harald Wiese

University of Leipzig

Part C. Games and industrial organization

(1) Games in strategic form
(2) Price and quantity competition
(3) Games in extensive form
(9) Repeated games

Price and quantity competition

(1) Monopoly: Pricing policy
(2) Price competition
(3) Monopoly: Quantity policy
(1) Quantity competition

Definitions

- Monopoly: one firm sells
- Monopsony: one firm buys

first: pricing policy for a monopolist

The linear model

demand properties

Demand function

$$
X(p)=d-e p
$$

$$
d, e \geq 0, p \leq \frac{d}{e}
$$

Problem

Find

- the saturation quantity,
- the prohibitive price and
- the price elasticity of demand
of the above demand curve!

The linear model

demand properties

Solution

- saturation quantity $X(0)=d$
- prohibitive price $\frac{d}{e}$ (solve $X(p)=0$ for the price)
- price elasticity of demand

$$
\begin{aligned}
\varepsilon_{X, p} & =\frac{d X}{d p} \frac{p}{X} \\
& =(-e) \frac{p}{d-e p}
\end{aligned}
$$

The linear model

Definition

X is the demand function.

$$
\begin{aligned}
\underbrace{\Pi(p)}_{\text {profit }}: & =\underbrace{R(p)}_{\text {revenue }}-\underbrace{C(p)}_{\text {cost }} \\
& =p X(p)-C[X(p)]
\end{aligned}
$$

- monopoly's profit in terms of price p.

$$
\begin{aligned}
\Pi(p) & =p(d-e p)-c((d-e p)) \\
c, d, e & \geq 0, p \leq \frac{d}{e}
\end{aligned}
$$

- profit in linear model.

Note the dependencies: Price \mapsto Quantity \mapsto Cost

The linear model

decision situation

Definition

A tuple

$$
(X, C)
$$

is the monopolist's decision situation with price setting;

- X - demand curve
- C - function
- profit-maximizing price defined by

$$
p^{R}(X, C):=\arg \max _{p \in \mathbb{R}} \Pi(p)
$$

- $p^{M}:=p^{R}(X, C)$ - monopoly price.

The linear model

decision situation: graph I

Problem

Find the economic meaning of the question mark!

The linear model

decision situation: graph I

Solution

No meaning!

Units:

- Prices:
monetary units
quantity units
- Revenue $=$ price \times quantity:
monetary units
quantity units \cdot quantity units
$=$ monetary units

The linear model

decision situation: graph II

Problem

Find the economic meaning of the question marks!

The linear model

decision situation: graph II

Solution

Marginal revenue and elasticity

differentiating with respect to price

- Marginal revenue with respect to price:

$$
\frac{d R(p)}{d p}=\frac{d[p X(p)]}{d p}=X+p \frac{d X}{d p}
$$

- Amoroso-Robinson equation:

$$
\begin{gathered}
\frac{d R(p)}{d p}=-X(p)\left[\left|\varepsilon_{X, p}\right|-1\right] \\
-\ldots>0 \text { for }\left|\varepsilon_{X, p}\right|<1 \\
-\ldots=0 \text { for }\left|\varepsilon_{X, p}\right|=1
\end{gathered}
$$

Problem

Comment: A firm can increase profit if it produces at a point where demand is inelastic, i.e., where $0>\varepsilon_{X, p}>-1$ holds.

Maximizing revenue

Marginal cost

w.r.t. price and w.r.t. quantity
$\frac{d C}{d X}$: marginal cost (with respect to quantity)
$\frac{d C}{d p}$: marginal cost with respect to price

$$
\frac{d C}{d p}=\underbrace{\frac{d C}{d X}}_{>0} \underbrace{\frac{d X}{d p}}_{<0}<0
$$

Profit maximization

FOC:

$$
\frac{d R}{d p} \stackrel{!}{=} \frac{d C}{d p}
$$

equivalent to "price-cost margin" rule (shown later):

$$
\frac{p-\frac{d C}{d X}}{p} \stackrel{!}{=} \frac{1}{\left|\varepsilon_{X, p}\right|} .
$$

Problem

Confirm: For linear demand $p^{M}=\frac{d+c e}{2 e}$. What price maximizes revenue? How does p^{M} change if c changes?

Price differentiation

- First-degree price differentiation $->$ monopoly quantity policy
- Third-degree price differentiation

Problem

Two demand functions:

$$
\begin{aligned}
& X_{1}\left(p_{1}\right)=100-p_{1} \\
& X_{2}\left(p_{2}\right)=100-2 p_{2}
\end{aligned}
$$

$c=20$.
a) Price differentiation
b) No price differentiation

Hint 1: Find prohibitve prices in each submarket in order to sum demand
Hint 2: You arrive at two solutions. Compare profits.

Price differentiation

solution

Third degree: Solve two isolated profit-maximization problems; obtain

$$
\begin{aligned}
& p_{1}^{M}=60, \\
& p_{2}^{M}=35 .
\end{aligned}
$$

The prohibitive prices are 100 and 50 . The aggregate demand is

$$
X(p)= \begin{cases}0, & p>100 \\ 100-p, & 50<p \leq 100 \\ 200-3 p, & 0 \leq p \leq 50\end{cases}
$$

Two local solutions: $p=43 \frac{1}{3}$ and $p=60$. Comparison of profits: maximum at

$$
p^{M}=43 \frac{1}{3} .
$$

Price and quantity competition

(1) Monopoly: Pricing policy
(2) Price competition
(3) Monopoly: Quantity policy
(1) Quantity competition

Price versus quantity competition

Cournot 1838 :

Bertrand 1883 :

Bertrand criticizes Cournot, but Kreps/Scheinkman 1983:
simultaneous capacity competition

+ simultaneous price competition (Bertrand competition)
$=$ Cournot results

Simultaneous versus sequential competition

Cournot 1838 :

Stackelberg 1934:

first: simultaneous pricing game $=$ Bertrand model

The game

```
demand and costs
```

Assumptions:

- homogeneous product
- consumers buy best
- linear demand

Demand for firm 1:

$$
x_{1}\left(p_{1}, p_{2}\right)= \begin{cases}d-e p_{1}, & p_{1}<p_{2} \\ \frac{d-e p_{1}}{2}, & p_{1}=p_{2} \\ 0, & p_{1}>p_{2}\end{cases}
$$

Unit cost c_{1} :

$$
\Pi_{1}\left(p_{1}, p_{2}\right)=\left(p_{1}-c_{1}\right) x_{1}\left(p_{1}, p_{2}\right)
$$

The pricing game

Definition

$$
\Gamma=\left(N,\left(S_{i}\right)_{i \in N},\left(\Pi_{i}\right)_{i \in N}\right)
$$

- pricing game (Bertrand game)
with
- N - set of firms
- $S_{i}:=\left[0, \frac{d}{e}\right]$ - set of prices
- $\Pi_{i}: S \rightarrow \mathbb{R}$ - firm i's profit function

Equilibria: 'Bertrand equilibria' or 'Bertrand-Nash equilibria'

Accomodation and Bertrand paradox

How is the incumbent's position toward entry

Bain 1956:

- Accomodated entry
- Blockaded entry
- Deterred entry

Accomodation and Bertrand paradox

Bertrand paradox

- Assumption: $c:=c_{1}=c_{2}<\frac{d}{e}$
- Highly profitable undercutting
\Rightarrow Nash-equilibrium candidate: $\left(p_{1}^{B}, p_{2}^{B}\right)=(c, c)$

Lemma

Only one equilibrium $\left(p_{1}^{B}, p_{2}^{B}\right)=(c, c)$.

$$
\begin{aligned}
x_{1}^{B} & =x_{2}^{B}=\frac{1}{2} X(c)=\frac{d-e c}{2} \\
\Pi_{1}^{B} & =\Pi_{2}^{B}=0
\end{aligned}
$$

Problem

Assume two firms with identical unit costs of 10. The strategy sets are $S_{1}=S_{2}=\{1,2, \ldots$,$\} . Determine both Bertrand equilibria.$

Economic genius: Joseph Bertrand

- Joseph Louis François Bertrand (1822 - 1900) was a French mathematician and pedagogue.
- In 1883, he developed the price-competition model while criticising the Cournot model of quantity competition.

Accomodation and Bertrand paradox

Escaping the Bertrand paradox

- Theory of repeated games —> chapter after next
- Different average costs $->$ this chapter
- Price cartel —> agreement to charge monopoly prices
- Products not homogeneous, but differentiated $->$ next chapter

Blockaded entry and deterred entry

market entry blockaded for both firms (case 1)

- Now $c_{1}<c_{2}$
- $c_{1} \geq \frac{d}{e}, c_{2} \geq \frac{d}{e}$
- Market entry blockaded for both firms

Problem

Which price tuples $\left(p_{1}, p_{2}\right)$ are equilibria?

Blockaded entry and deterred entry

market entry of firm 2 blockaded (case 2)

- $c_{1}<\frac{d}{e}$ and $c_{2}>p_{1}^{M}$
- Market entry of firm 2 blockaded Take $p_{2}:=c_{2}$ in the figure

Blockaded entry and deterred entry

market entry of firm 2 blockaded (case 2)

Equilibrium:

$$
\begin{aligned}
&\left(p_{1}^{B}, p_{2}^{B}\right)=\left(p_{1}^{M}, c_{2}\right) \\
&=\left(\frac{d}{2 e}+\frac{c_{1}}{2}, c_{2}\right) \\
& x_{1}^{B}=\left(d-e c_{1}\right) / 2, \quad x_{2}^{B}=0 \\
& \Pi_{1}^{B}=\left(d-e c_{1}\right)^{2} /(4 e), \quad \Pi_{2}^{B}=0
\end{aligned}
$$

Problem

Can you find other equilibria?
All strategy combinations $\left(p_{1}^{M}, p_{2}\right)$ fulfilling $p_{2}>p_{1}^{M}$ are also equilibria.

Blockaded entry and deterred entry

market entry of firm 2 deterred (case 3)

- $c_{1}<\frac{d}{e}$ and $c_{2} \leq p_{1}^{M}$.
- Market entry of firm 2 deterred Take $p_{2}:=c_{2}$ in the figure
- firm 1 prevents entry by setting limit price

$$
p_{1}^{L}\left(c_{2}\right):=c_{2}-\varepsilon
$$

Blockaded entry and deterred entry

market entry of firm 2 deterred (case 3)

One Bertrand-Nash equilibrium is

$$
\begin{aligned}
& \left(p_{1}^{B}, p_{2}^{B}\right)=\left(p_{1}^{L}\left(c_{2}\right), c_{2}\right)=\left(c_{2}-\varepsilon, c_{2}\right) \quad \Pi_{1} \uparrow c_{1}<p_{2}<p_{1}^{M} \\
& x_{1}^{B} \approx d-e c_{2}, \quad x_{2}^{B}=0, \\
& \Pi_{1}^{B} \approx\left(c_{2}-c_{1}\right)\left(d-e c_{2}\right), \quad \Pi_{2}^{B}=0 .
\end{aligned}
$$

Blockaded entry and deterred entry

Blockaded entry and deterred entry

summary II

1. no supply,	$c_{1} \geq \frac{d}{e}$ and $c_{2} \geq \frac{d}{e}$			
2. Entry of firm 2 blockaded	$0 \leq c_{1}<\frac{d}{e} \quad$ and $p_{1}^{M}=\frac{d+e c_{1}}{2 e}<c_{2}$			
3. Entry of firm 2 deterred	$0 \leq c_{1}<\frac{d}{e}$ and $c_{1}<c_{2} \leq \frac{d+e c_{1}}{2 e}=p_{1}^{M}$			
4. Bertrand-Paradox	$c_{1}=c_{2}=: c$ and $0 \leq c<\frac{d}{e}$			
5. Entry of firm 1 deterred	$0 \leq c_{2}<\frac{d}{e}$ and $c_{2}<c_{1} \leq \frac{d+e c_{2}}{2 e}$$=p_{2}^{M}$	$	$	$0 \leq c_{2}<\frac{d}{e}$ and
:---				
$p_{2}^{M}=\frac{d+e c_{2}}{2 e}<c_{1}$				

Price and quantity competition

(1) Monopoly: Pricing policy
(2) Price competition
(3) Monopoly: Quantity policy
(1) Quantity competition

The linear model

preliminaries

Problem

Assume linear inverse demand $p(X)=a-b X, a, b>0$. Determine
(1) the slope of the inverse linear demand function,
(2) the slope of its marginal-revenue curve,
(3) saturation quantity and
(1) prohibitive price.

The linear model

preliminaries

Solution

(1) The slope of the inverse demand curve is $d p / d X=-b$
(2) Revenue: $R(X)$ $=p(X) X=a X-b X^{2}$ MR: $d R(X) / d X$
$=a-2 b X$.
Slope: $-2 b$

(3) Saturation quantity: a / b
(1) a is the prohibitive price.

The linear model

definition profit function

Definition

$X \geq 0 ; p$ inverse demand function.

$$
\underbrace{\Pi(X)}_{\text {profit }}:=\underbrace{R(X)}_{\text {revenue }}-\underbrace{C(X)}_{\text {cost }}=p(X) X-C(X)
$$

- monopoly's profit in terms of quantity

Linear model:

$$
\Pi(X)=(a-b X) X-c X, \quad X \leq \frac{a}{b}
$$

The linear model

definition decision situation

Definition

A tuple

$$
(p, C),
$$

- monopolist's decision situation with quantity setting where
- p - inverse demand function
- C - cost function

Quantity setting monopolist's problem: Find

$$
X^{R}(p, C):=\arg \max _{X \in \mathbb{R}} \Pi(X)
$$

- profit maximizing quantity

Notation:
$X^{M}:=X^{R}(p, C)$ - monopoly quantity

Marginal revenue

and elasticity ... and price

- Marginal revenue and elasticity

$$
\begin{aligned}
M R & =p+X \frac{d p}{d X} \\
& =p\left[1+\frac{1}{\varepsilon_{X, p}}\right]=p\left[1-\frac{1}{\left|\varepsilon_{X, p}\right|}\right]>0 \quad \text { for } \quad\left|\varepsilon_{X, p}\right|>1
\end{aligned}
$$

- Marginal revenue equals price: $M R=p+X \cdot \frac{d p}{d X}=p$
- $\frac{d p}{d X}=0$ horizontal (inverse) demand: $M R=p+X \cdot \frac{d p}{\frac{d x}{d X}}=p$
- first "small" unit, $X=0: M R=p+\underset{=0}{X} \cdot \frac{d p}{d X}=p=\frac{R(X)}{X}$
—> see chapter on production theory
- First-degree price differentiation $M R=p+\underset{=0}{X} \cdot \frac{d p}{d X}$
\rightarrow see below

Monopoly profit

average versus marginal definition

Profit at \bar{X} :

$$
\begin{aligned}
& \Pi(\bar{X}) \\
= & p(\bar{X}) \bar{X}-C(\bar{X}) \\
= & {[p(\bar{X})-A C(\bar{X})] \bar{X} } \\
= & \text { profit (average definition) } \\
= & \int_{0}^{\bar{X}}[M R(X)-M C(X)] d X \\
& -F \text { (perhaps) } \\
= & \text { profit (marginal definition) }
\end{aligned}
$$

Profit maximization

first order condition

FOC (w.r.t. X):

$$
M C \stackrel{!}{=} M R
$$

Problem

Find X^{M} for $p(X)=24-X$ and constant unit cost $c=2!$ (a haoon deag)

Problem

Find X^{M} for $p(X)=\frac{1}{X}$ and constant unit cost $c!$

Profit maximization

linear model

$$
X^{M}=X^{M}(c, a, b)= \begin{cases}\frac{1}{2} \frac{(a-c)}{b}, & c \leq a \\ 0, & c>a\end{cases}
$$

Profit maximization

comparative statics

$X^{M}(a, b, c)=\frac{1}{2} \frac{(a-c)}{b}$, where $\frac{\partial X^{M}}{\partial c}<0 ; \frac{\partial X^{M}}{\partial a}>0 ; \frac{\partial X^{M}}{\partial b}<0$,
$p^{M}(a, b, c)=\frac{1}{2}(a+c)$, where $\frac{\partial p^{M}}{\partial c}>0 ; \frac{\partial p^{M}}{\partial a}>0 ; \frac{\partial p^{M}}{\partial b}=0$,
$\Pi^{M}(a, b, c)=\frac{1}{4} \frac{(a-c)^{2}}{b}$, where $\frac{\partial \Pi^{M}}{\partial c}<0 ; \frac{\partial \Pi^{M}}{\partial a}>0 ; \frac{\partial \Pi^{M}}{\partial b}<0$.

Problem

Consider $\Pi^{M}(c)=\frac{1}{4} \frac{(a-c)^{2}}{b}$ and calculate $\frac{d \Pi^{M}}{d c}$! Hint: Use the chain rule!

Profit maximization

the effect of unit cost on profit I

Solution

$$
\begin{aligned}
\frac{d \Pi^{M}}{d c} & =\frac{d\left(\frac{1}{4} \frac{(a-c)^{2}}{b}\right)}{d c} \\
& =\frac{1}{4 b} 2(a-c)(-1) \\
& =-\frac{a-c}{2 b}
\end{aligned}
$$

Profit maximization

the effect of unit cost on profit III

- Reduced-form profit function $\Pi^{M}(c)=\Pi\left(c, X^{M}(c)\right)$.
- Forming the derivative with respect to c yields

direct effect

Profit maximization

price and quantity

Profit maximization

exercise

Consider a monopolist with

- the inverse demand function $p(X)=26-2 X$ and
- the cost function $C(X)=X^{3}-14 X^{2}+47 X+13$

Find the profit-maximizing price!

Alternative expressions for profit maximization

$$
\begin{gathered}
M C \stackrel{!}{=} M R=p\left[1-\frac{1}{\left|\varepsilon_{X, p}\right|}\right] \\
p \stackrel{!}{=} \frac{1}{1-\frac{1}{\left|\varepsilon_{X, p}\right|}} M C=\frac{\left|\varepsilon_{X, p}\right|}{\left|\varepsilon_{X, p}\right|-1} M C \\
\frac{p-M C}{p} \stackrel{!}{=} \frac{p-p\left[1-\frac{1}{\left|\varepsilon_{X, p}\right|}\right]}{p}=\frac{1}{\left|\varepsilon_{X, p}\right|}
\end{gathered}
$$

Alternative expressions for profit maximization

Lerner index

Definition

In a monopoly:

$$
\frac{p-M C}{p}
$$

is the Lerner index of market power

- perfect competititon: $p=M C$
- Note:

$$
\frac{p-M C}{p} \stackrel{!}{=} \frac{1}{\left|\varepsilon_{X, p}\right|}
$$

Alternative expressions for profit maximization

Lerner index: monopoly power versus monopoly profit

$$
p>M C \text { but } A C\left(X^{M}\right)=\frac{C\left(X^{M}\right)}{X^{M}}=p^{M}
$$

First-degree price differentiation

bachelor-level derivation

Every consumer pays his willingness to pay

$$
M R=p+\underset{=0}{X} \cdot \frac{d p}{d X}=p
$$

Price decrease following a quantity increase concerns

- the marginal consumer,
- not the inframarginal consumers.

First-degree price differentiation

 formal analysis- Objective function

$$
\begin{aligned}
& \text { Marshallian willingness to pay }- \text { cost } \\
= & \int_{0}^{X} p(q) d q-C(X)
\end{aligned}
$$

- Differentiating w.r.t. X :

$$
p(X) \stackrel{!}{=} \frac{d C}{d X}
$$

First-degree price differentiation

 graph

Profit for non-discriminating (Cournot) monopolist: ABME Profit for discriminating monopolist: AFD

Third-degree price differentiation (two markets, one factory)
optimality condition

- Profit

$$
\Pi\left(x_{1}, x_{2}\right)=p_{1}\left(x_{1}\right) x_{1}+p_{2}\left(x_{2}\right) x_{2}-C\left(x_{1}+x_{2}\right)
$$

- FOCs

$$
\begin{aligned}
& \frac{\partial \Pi\left(x_{1}, x_{2}\right)}{\partial x_{1}}=M R_{1}\left(x_{1}\right)-M C\left(x_{1}+x_{2}\right) \stackrel{!}{=} 0 \\
& \frac{\partial \Pi\left(x_{1}, x_{2}\right)}{\partial x_{2}}=M R_{2}\left(x_{2}\right)-M C\left(x_{1}+x_{2}\right) \stackrel{!}{=} 0
\end{aligned}
$$

- $M R_{1}\left(x_{1}\right) \stackrel{!}{=} M R_{2}\left(x_{2}\right)$
- Assume, to the contrary, $M R_{1}<M R_{2} \ldots$

Third-degree price differentiation (two markets, one factory)

graph

Third-degree price differentiation (two markets, one factory)
elasticities

- $M R_{1}\left(x_{1}^{*}\right)=M R_{2}\left(x_{2}^{*}\right):$

$$
\begin{gathered}
p_{1}^{M}\left[1-\frac{1}{\left|\varepsilon_{1}\right|}\right] \stackrel{!}{=} p_{2}^{M}\left[1-\frac{1}{\left|\varepsilon_{2}\right|}\right] \\
\left|\varepsilon_{1}\right|>\left|\varepsilon_{2}\right| \Rightarrow p_{1}^{M}<p_{2}^{M} .
\end{gathered}
$$

Third-degree price differentiation

exercise

Problem

A monopolist sells his product in two markets:
$p_{1}\left(x_{1}\right)=100-x_{1}, p_{2}\left(x_{2}\right)=80-x_{2}$.
(1) Assume price differentiation of the third degree and the cost function given by $C(X)=X^{2}$. Determine the profit-maximizing quantities and the profit.
(2) Repeat the first part of the exercise with the cost function $C(X)=10 X$.
(3) Assume, now, that price differentiation is not possible any more. Using the cost function $C(X)=10 X$, find the profit-maximizing output and price. Hint: You need to distinguish quantities below and above 20.

Third-degree price differentiation

exercise: solution

Solution

(1) The firm's profit function is

$$
\begin{aligned}
\Pi\left(x_{1}, x_{2}\right) & =p_{1}\left(x_{1}\right) x_{1}+p_{2}\left(x_{2}\right) x_{2}-C\left(x_{1}+x_{2}\right) \\
& =\left(100-x_{1}\right) x_{1}+\left(80-x_{2}\right) x_{2}-\left(x_{1}+x_{2}\right)^{2}
\end{aligned}
$$

Partial differentiations yield $x_{1}^{M}=20$ and $x_{2}^{M}=10$;
$\Pi^{M}(20,10)=1400$.
(2) We find: $x_{1}^{M}=45$ and $x_{2}^{M}=35 ; \Pi^{M}=3250$.
(3) Aggregate inverse demand

$$
p(X)= \begin{cases}100-X, & X<20 \\ 90-\frac{1}{2} X, & X \geq 20\end{cases}
$$

At $X^{M}=80$, the monopolist's profit is $3200<3250$.

One market, two factories

- Profit

$$
\Pi\left(x_{1}, x_{2}\right)=p\left(x_{1}+x_{2}\right)\left(x_{1}+x_{2}\right)-C_{1}\left(x_{1}\right)-C_{2}\left(x_{2}\right) .
$$

- FOCS

$$
\begin{aligned}
& \frac{\partial \Pi\left(x_{1}, x_{2}\right)}{\partial x_{1}}=M R\left(x_{1}+x_{2}\right)-M C_{1}\left(x_{1}\right) \stackrel{!}{=} 0 \\
& \frac{\partial \Pi\left(x_{1}, x_{2}\right)}{\partial x_{2}}=M R\left(x_{1}+x_{2}\right)-M C_{2}\left(x_{2}\right) \stackrel{!}{=} 0
\end{aligned}
$$

- $M C_{1} \stackrel{!}{=} M C_{2}$
- Assume $M C_{1}<M C_{2} \ldots$

One market, two factories

Welfare-theoretic analysis of monopoly

introduction

- Normative economics
- Concepts
- Marshallian consumers' rent
- Producers' rent
- Taxes
- Monetary evaluation
- The government is often assumed to maximize welfare
- benevolent dictatorship
- support maximization (chances of reelection) by benefitting
- consumers,
- producers,
- beneficiaries of publicly provided goods and
- tax payers.

Welfare-theoretic analysis of monopoly

perfect competition as benchmark

- Price taking \& profit-maximizing

$$
\Rightarrow p=M C
$$

- Marginal consumer's willingness to pay
=
marginal firm's loss
compensation
- Consumers'
$+$
producers' rents maximal

Welfare-theoretic analysis of monopoly

Cournot monopoly

Note:
$X^{M}<X^{P C}$

Problem

No price differentiation, marginal-cost curve $M C=2 X$ and inverse demand $p(X)=12-2 X$. Determine the welfare loss! Hint: Sketch and apply the triangle rule!

Welfare-theoretic analysis of monopoly

Cournot monopoly

Problem

No price differentiation, marginal-cost curve $M C=2 X$ and inverse demand $p(X)=12-2 X$. Determine the welfare loss!

Solution

The welfare loss is equal to

$$
\frac{(8-4)(3-2)}{2}=2
$$

Welfare-theoretic analysis of monopoly

Cournot monopoly

Loss due to

$$
\begin{aligned}
& C R(\bar{X})=\int_{0}^{\bar{X}} p(X) d X-p(\bar{X}) \bar{X} \\
\frac{d C R(\bar{X})}{d \bar{X}}= & \frac{d \int_{0}^{\bar{X}} p(X) d X}{d \bar{X}}-\frac{d[p(\bar{X}) \bar{X}]}{d \bar{X}} \\
= & p(\bar{X})-\left(p(\bar{X})+\frac{d p}{d \bar{X}} \bar{X}\right)=-\frac{d p}{d \bar{X}} \bar{X}>0 .
\end{aligned}
$$

Cournot monopoly

- Benevolent monopoly

$$
\max [p(\bar{X}) \bar{X}-C(\bar{X})]+C R(\bar{X})
$$

- FOC:

$$
\left[p(\bar{X})+\frac{d p}{d \bar{X}} \bar{X}-\frac{d C}{d \bar{X}}\right]-\frac{d p}{d \bar{X}} \bar{X} \stackrel{!}{=} 0
$$

or

$$
p(\bar{X}) \stackrel{!}{=} \frac{d C}{d \bar{X}}
$$

Price and quantity competition

(1) Monopoly: Pricing policy
(2) Price competition
(3) Monopoly: Quantity policy
(9) Quantity competition

Quantity competition

```
price versus quantity competition
```

- Cournot 1838, Bertrand 1883
- Quantity or price variation
- Capacity

> simultaneous capacity construction

+ Bertrand competition
$=$ Cournot results

Economic genius:

Antoine Augustin Cournot

- Antoine Augustin Cournot (1801-1877) was a French philosopher, mathematician, and economist.
- In 1838, Cournot presents monopoly theory and oligopoly theory for quantity setting in his famous "Recherches sur les principes mathématiques de la théorie des richesses".
- Defines the Nash equilibrium for the special case of quantity competition

Quantity competition

the Cournot game

Definition

Cournot game (simultaneous quantity competition)

$$
\Gamma=\left(N,\left(S_{i}\right)_{i \in N},\left(\Pi_{i}\right)_{i \in N}\right)
$$

- N - set of firms
- $S_{i}:=[0, \infty)$ - set of quantities
- $\Pi_{i}: S \rightarrow \mathbb{R}$ - i 's profit function $\left(X_{-i}:=\sum_{i \neq j=1}^{n} x_{j}\right)$

$$
\Pi_{i}\left(x_{i}, X_{-i}\right)=p\left(x_{i}+X_{-i}\right) x_{i}-C\left(x_{i}\right)
$$

Equilibria: 'Cournot equilibria' or 'Cournot-Nash equilibria' Recall: $\left(x_{1}^{C}, x_{2}^{C}\right)$ is defined by $x_{1}^{C}=x_{1}^{R}\left(x_{2}^{C}\right)$ and $x_{2}^{C}=x_{2}^{R}\left(x_{1}^{C}\right)$

Quantity competition

Equilibrium

- Linear case

$$
\frac{\partial \Pi_{1}\left(x_{1}, x_{2}\right)}{\partial x_{1}}=M R_{1}\left(x_{1}\right)-M C_{1}\left(x_{1}\right)=a-2 b x_{1}-b x_{2}-c_{1} \stackrel{!}{=} 0
$$

- Quantities are strategic substitutes:

$$
\begin{aligned}
x_{1}^{R}\left(x_{2}\right) & =\frac{a-c_{1}}{2 b}-\frac{1}{2} x_{2} \\
& =x_{1}^{M}-\frac{1}{2} x_{2} .
\end{aligned}
$$

- Solve the two reaction functions in the two unknowns x_{1} and x_{2}

Quantity competition

Equilibrium

$$
x_{1}^{C}=\frac{1}{3 b}\left(a-2 c_{1}+c_{2}\right), x_{2}^{C}=\frac{1}{3 b}\left(a-2 c_{2}+c_{1}\right)
$$

Quantity competition

Equilibrium

$$
\begin{gathered}
x^{C}=x_{1}^{C}+x_{2}^{C}=\frac{1}{3 b}\left(2 a-c_{1}-c_{2}\right) \\
p^{C}=\frac{1}{3}\left(a+c_{1}+c_{2}\right) \\
\Pi_{1}^{C}=\frac{1}{9 b}\left(a-2 c_{1}+c_{2}\right)^{2} \\
\Pi_{2}^{C}=\frac{1}{9 b}\left(a-2 c_{2}+c_{1}\right)^{2} \\
\Pi^{C}=\Pi_{1}^{C}+\Pi_{2}^{C}<\Pi^{M}
\end{gathered}
$$

Quantity competition

Iterative rationalizability

Reaction function:
$x_{2}^{R}\left(x_{1}\right)= \begin{cases}\frac{a-c_{2}}{2 b}-\frac{x_{1}}{2}, & x_{1}<\frac{a-c_{2}}{b} \\ 0, & \text { otherwise }\end{cases}$

Quantity competition

Iterative rationalizability

For firm 2, any quantity between 0 and x_{2}^{M} is rationalizable:

$$
I_{1}:=\left[x_{2}^{R}\left(x_{1}^{L}\right), x_{2}^{R}(0)\right]=\left[0, x_{2}^{M}\right]
$$

Quantity competition

Iterative rationalizability

Convergence towards the Cournot equilibrium

Cartel treaty between two duopolists

Cartel profit

$$
\begin{aligned}
\Pi_{1,2}\left(x_{1}, x_{2}\right) & =\Pi_{1}\left(x_{1}, x_{2}\right)+\Pi_{2}\left(x_{1}, x_{2}\right) \\
& =p\left(x_{1}+x_{2}\right) \cdot\left(x_{1}+x_{2}\right)-C_{1}\left(x_{1}\right)-C_{2}\left(x_{2}\right)
\end{aligned}
$$

with first-order conditions

$$
\begin{aligned}
& \frac{\partial \Pi_{1,2}}{\partial x_{1}}=p+\frac{d p}{d X}\left(x_{1}+x_{2}\right)-\frac{d C_{1}}{d x_{1}} \stackrel{!}{=} 0 \text { and } \\
& \frac{\partial \Pi_{1,2}}{\partial x_{2}}=p+\frac{d p}{d X}\left(x_{1}+x_{2}\right)-\frac{d C_{2}}{d x_{2}} \stackrel{!}{=} 0
\end{aligned}
$$

- Equal marginal cost (as in "one market, two factories")
- Negative externality $\frac{\partial \Pi_{2}}{\partial x_{1}}=\frac{d p}{d X} x_{2}<0$ in the Cournot model is taken care of in the cartel treaty

Quantity competition

Common interests with respect to

- demand (parameters a and b): common advertising campaign
- cost (parameter c): lobby for governmental subsidies or take a common stance against union demands

Problem

Two firms sell gasoline with unit costs $c_{1}=0.2$ and $c_{2}=0.5$, respectively. The inverse demand function is $p(X)=5-0.5 X$.
(1) Determine the Cournot equilibrium and the resulting market price.
(2) The government charges a quantity tax t on gasoline. How does the tax affect the price payable by consumers?

Quantity competition

Problem

Two firms sell gasoline with unit costs $c_{1}=0.2$ and $c_{2}=0.5$, respectively. The inverse demand function is $p(X)=5-0.5 X$.
(1) Determine the Cournot equilibrium and the resulting market price.
(2) The government charges a quantity tax t on gasoline. How does the tax affect the price payable by consumers?
(1) $x_{1}^{C}=3.4, x_{2}^{C}=2.8$ and $p^{C}=1.9$
(2) $p^{C}=1.9+\frac{2}{3} t$. Differentiationg w. r. t. $t: \frac{d p}{d t}=\frac{2}{3}$, i.e., a tax increase by one Euro leads to a price increase by $\frac{2}{3}$ Euros.

Quantity competition

Comparative statics and cost competition (envelope theorem)

Reducing own cost

- cost saving
- R\&D

$$
\begin{aligned}
& \Pi_{1}^{C}\left(c_{1}, c_{2}\right)=\Pi_{1}\left(c_{1}, c_{2}, x_{1}^{C}\left(c_{1}, c_{2}\right), x_{2}^{C}\left(c_{1}, c_{2}\right)\right) . \\
& \frac{\partial \Pi_{1}^{C}}{\partial c_{1}}=\underbrace{\frac{\partial \Pi_{1}}{\partial c_{1}}}_{\begin{array}{c}
<0 \\
\text { direct effect }
\end{array}}+\underbrace{\frac{\partial \Pi_{1}}{\partial x_{1}} \frac{\partial x_{1}^{C}}{\partial c_{1}}}_{=0}+\underbrace{\underbrace{\frac{\partial \Pi_{1}}{\partial x_{2}} \frac{\partial x_{2}^{C}}{\partial c_{1}}}_{<0}}_{<0}<0 . \\
& \text { strategic effect }
\end{aligned}
$$

Quantity competition

Comparative statics and cost competition (graphical analysis)

Quantity competition

Comparative statics and cost competition

Increasing rival's cost

- sabotage
- level playing field with respect to pay, environment, ...

$$
\begin{aligned}
& \Pi_{1}^{C}\left(c_{1}, c_{2}\right)=\Pi_{1}\left(c_{1}, c_{2}, x_{1}^{C}\left(c_{1}, c_{2}\right), x_{2}^{C}\left(c_{1}, c_{2}\right)\right) . \\
& \frac{\partial \Pi_{1}^{C}}{\partial c_{2}}=\underbrace{=0}_{\begin{array}{c}
\frac{\partial \Pi_{1}}{\partial c_{2}}
\end{array}+\underbrace{\frac{\partial \Pi_{1}}{\partial x_{1}}}_{=0} \frac{\partial x_{1}^{C}}{\partial c_{2}}} \underbrace{\frac{\partial \Pi_{1} \frac{\partial x_{2}^{C}}{\partial x_{2}} \frac{\partial c_{2}}{\partial c_{2}}}{<0}<0 .}_{\text {direct effect }}>\underbrace{<0}_{\text {strategic effect }}
\end{aligned}
$$

Quantity competition

Comparative statics and cost competition

Quantity competition

Replicating the Cournot model

m identical consumers, n identical firms

- demand: $1-p$ for $i=1, \ldots, m$

$$
\begin{aligned}
X & =m(1-p) \\
p(X) & =\frac{m-X}{m}=1-\frac{X}{m}
\end{aligned}
$$

- for $j=1, \ldots, n: C\left(x_{j}\right)=\frac{1}{2} x_{j}^{2}$
- j 's profit

$$
\begin{aligned}
\Pi_{j}(X) & =p(X) x_{j}-C\left(x_{j}\right) \\
& =\left(1-\frac{x_{j}+\sum_{i \neq j} x_{j}}{m}\right) x_{j}-\frac{1}{2} x_{j}^{2} \\
& =\left(1-\frac{x_{j}+X_{-j}}{m}\right) x_{j}-\frac{1}{2} x_{j}^{2}
\end{aligned}
$$

Quantity competition

Replicating the Cournot model

$$
\begin{aligned}
\Pi_{j}(X)=\left(1-\frac{x_{j}+X_{-j}}{m}\right) & x_{j}-\frac{1}{2} x_{j}^{2} \\
& x_{j}^{R}\left(X_{-j}\right)=\frac{m-X_{-j}}{m+2}
\end{aligned}
$$

with $X_{-j}=(n-1) x_{j}$:

$$
x_{j}=\frac{m-(n-1) x_{j}}{m+2}
$$

$$
x_{j}^{c}=\frac{m}{m+1+n}
$$

$$
X^{C}=n x_{j}^{C}=\frac{n m}{m+1+n} \text { and } p(X)=\frac{m-X}{m}:
$$

$$
p^{C}=1-\frac{n}{m+1+n} .
$$

Quantity competition

Replicating the Cournot model

Consider λn firms and λm consumers
Price - marginal cost (= equilibrium quantity) equals

$$
\begin{aligned}
p^{C}(\lambda)-M C_{j}(\lambda) & =\left(1-\frac{\lambda n}{\lambda m+1+\lambda n}\right)-\frac{\lambda m}{\lambda m+1+\lambda n} \\
& =\frac{1}{\lambda m+1+\lambda n} \\
& =\frac{1}{\lambda(m+n)+1} \xrightarrow[\lambda \rightarrow \infty]{\longrightarrow} 0
\end{aligned}
$$

so that we obtain the price-takership result known from perfect competition.

Quantity competition

Blockaded entry and deterred entry

- Assume $c_{1}<c_{2}$
- Market entry blockaded for both if

$$
c_{1} \geq a
$$

and

$$
c_{2} \geq a
$$

Quantity competition

Blockaded entry and deterred entry

- Assume $c_{1}<c_{2}$
- Market entry blockaded for firm 2 if

$$
c_{2} \geq p^{M}\left(c_{1}\right)=\frac{a+c_{1}}{2} .
$$

or

$$
x_{1}^{L} \leq x_{1}^{M}
$$

Quantity competition

Blockaded entry and deterred entry

Summary

Market entry blockaded for firm 2 if $c_{2} \geq p^{M}\left(c_{1}\right)=\frac{1}{2} a+\frac{1}{2} c_{1}$

Further exercises

Problem 1
Consider a monopolist with cost function $C(X)=c X, c>0$, and demand function $X(p)=a p^{\varepsilon}, \varepsilon<-1$.
(1) Find the price elasticity of demand and the marginal revenue with respect to price!
(2) Express the monopoly price p^{M} as a function of ε !
(3) Find and interpret $\frac{d p^{M}}{d|\varepsilon|}$!

Problem 2
Assume simultaneous price competition and two firms where firm 2 has capacity constraint cap 2 such that

$$
\frac{1}{2} X(c)<c a p_{2}<X(c)
$$

Is (c, c) an equilibrium?

Further exercises

Problem 3

Three firms operate on a market. The consumers are uniformly distributed on the unit interval, $[0,1]$. The firms $i=1,2,3$ simultaneously choose their respective location $I_{i} \in[0,1]$. Each consumer buys one unit from the firm which is closest to her position; if more than one firm is closest to her position, she splits her demand evenly among them. Each firm tries to maximize its demand. Determine the Nash equilibria in this game!

Problem 4

Assume a Cournot monopoly. Analyze the welfare effects of a unit tax and a profit tax.
Consider the welfare effects of a unit tax in the Cournot oligopoly with $n>1$ firms, linear demand, and constant average cost. Restrict attention to symmetric Nash equilibria! What happens for $n \rightarrow \infty$?

Problem 5
Assume a Cournot monopoly. Analyze the quantity effects of a price cap.

