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Preface

What is this book about?

This book is on the theory and on the applications of cooperative games.
We deal with agents exchanging objects, profit centers within firms, political
parties groping for power and many other sorts of “players”.

Cooperative game theory focuses on the question of “who gets how
much”. This question is determined by the two pillars of cooperative game
theory. The first pillar is the coalition function (also called characteristic
function) that describes the economic (sociologic, political) opportunities
open to all possible subgroups of the player set (coalitions). A coalition
function may represent a bargaining situation, a market, an election, a cost-
division problem and many others.

The second pillar is the solution concept applied to coalition functions.
Solutions consist of payoffs attributed to the players. Typically, solutions
can be described in one of two ways. Either we provide a formula or an
algorithm that tells us how to transfer a coalition function into payoff vectors
(formula definition). Or we put down axioms that describe in general terms
how much players should get (axiom definition) — axioms in cooperative
game theory are general rules of division. For example, Pareto efficiency
demands that the worth of the grand coalition (all players taken together)
is to be distributed among the players. According to the axiom of symmetry,
symmetric (not distinguishable but by name) players should obtain the same
payoff.

Ideally, the formula and the axiom definitions coincide. This means that
a solution concept can be expressed by a formula or by a set of axiom and
that both ways are equivalent — they lead to the very same payoff vectors.

As in any book on cooperative game theory, we, too, talk about matching
formulas and axiom definitions. However, we stress applications over theory.
This means that we deal with theoretical concepts only if they are helpful
for the applications that we have in mind. The knowledgeable reader will
excuse us for omitting the von Neumann-Morgenstern sets or the nucleolus.
Instead, the Shapley value and derivatives of the Shapley value take center
stage.

Which applications do we cover?

XIII
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We deal with many different institutions that range from markets and elec-
tions to coalition governments and hierarchies. In particular, we consider
the following applications.

• How does the price obtained on markets depend on the relative
scarcity of the traded objects?

• How can we model power and power-over?
• Can we expect unions to be detrimental to employment?
• Will unemployment benefits increase unemployment?
• How can overhead costs be shared?
• How does the number of ministries a party within a government
coalition obtains depend on hte number of seats in parliament?

• Which is the optimal percentage of a house price a real estate agent
asks for himself?

• How many civil servants an economy can be expected to hold?

Sometimes, cooperative game theory and its axioms are exclusively inter-
preted in a normative way. While cooperative game theory has a lot to
offer for normative analyses, most examples covered in this book are best
interpreted in a positive manner.

What about mathematics ... ?

Cooperative game theory need not be too demanding in terms of mathe-
matical sophistication. We explain the mathematical concepts when and
where they are needed. Also, since we have an applied focus, we are more
interested in interpretation and application than in proofs of axiomatization.

Exercises and solutions

The main text is interspersed with questions and problems wherever they
arise. Solutions or hints are given at the end of each chapter. On top, we
add a few exercises without solutions.

Thank you!!

I am happy to thank many people who helped me with this book. Several
generations of students were treated to (i.e., suffered through) continuously
improved versions of this book. Frank Hüttner and Andreas Tutic ... I
also thank my coauthors Andre Casajus, Tobias Hiller and ... for the good
cooperation with high payoffs to everyone. Some generations of Bachelor
and Master students also provided feedback that helped to improve the
manuscript.

Leipzig, September 2013
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CHAPTER I

Overview

1. Introduction

In this first chapter, we plan to give the reader a good idea of what to ex-
pect in this book. In sections 2 through 4, we briefly introduce the reader to
coalition functions and to solution concepts for coalition functions. Section
7 offers some comments on cooperative game theory versus noncooperative
game theory. Finally, in section 8, we present the subject matters part by
part and chapter by chapter.

2. The players, the coalitions, and the coalition functions

Throughout the book, we deal with a player set N = {1, ..., n} and
the subsets of N which are also called coalitions. Thus, the coalitions of
N := {1, 2, 3} include {1, 2} , {2} , ∅ (the empty set — no players at all) and
N (all players taken together — the grand coalition).

The general idea of cooperative game theory is that

• coalition functions describe the economic, social or political situa-
tion of the agents while

• solution concepts determine the payoffs for all the players from N

taking a coalition function as input.

Thus,

coalition functions

+ solution concepts

yield payoffs.

In the literature, there are two different sorts of coalition functions, with
transferable utility and without transferable utility. We focus on the simpler
case of transferable utility in all parts of the book except the last one. In
the framework of transferable utility, a coalition function v attributes a real
number v (K) to every coalition K ⊆ N. Consider, for example, the gloves
game v for N = {1, 2, 3} where the two players 1 and 2 hold a left glove and
player 3 holds a right glove. The idea behind this game is complementarity
— pairs of gloves have a worth of 1. Thus, the coalition function for our

5



6 I. OVERVIEW

gloves game is given by

v (∅) = 0,

v ({1}) = v ({2}) = v ({3}) = 0,

v ({1, 2}) = 0,

v ({1, 3}) = v ({2, 3}) = 1,

v ({1, 2, 3}) = 1.

Left-glove holders and right-glove holders can stand for the two sides of a
market — demand and supply. For example, the left-glove holders buy right
gloves in order to form pairs.

3. The Shapley value

In our mind, the Shapley value is the most useful solution concept in
cooperative game theory. First of all, it can be applied directly to problems
ranging from bargaining over cost division to power. Applying the Shapley
value to the above gloves game yields the payoffs

Sh1 (v) =
1

6
, Sh2 (v) =

1

6
, Sh3 (v) =

2

3
.

We see that the Shapley value

• distributes the worth of the grand coalition v (N) = 1 among the
three players (Sh1 (v) + Sh2 (v) + Sh3 (v) = 1),

• allots the same payoff to players 1 and 2 because they are “sym-
metric” (Sh1 (v) = Sh2 (v)), and

• awards the lion’s share to player 3 who possesses the scarce resource
of a right glove (Sh3 (v) = 2

3 >
1
6 = Sh2 (v)).

Thus, the Shapley value tells us how market power is reflected by payoffs.
This and many other applications are dealt with in the first part of our book
which concentrates on the Shapley value (and some related concepts such
as the Banzhaf value).

There are several alternative ways to calculate the Shapley value. Let us
denote the payoff to player i by xi. Assume the players 1, 2 and 3 bargain
on how to divide the worth of the grand coalition, v (N) = 1, between them,
i.e., we have

x1 + x2 + x3 = 1. (I.1)

Furthermore, let every player use a “where would you be without me” ar-
gument. In particular, player 3 could issue the following threat to player 1
(and similarly to player 2): “Without me, there would be only two left gloves
and your payoff would be zero rather than x1, i.e., you, player 1, would lose

x1 − 0

without me.”
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Player 1’s counter-threat against player 3 runs as follows: “Without me,
you, player 3 would find yourself in an essentially symmetrical situation
with player 2 (one right-hand glove versus one left-hand glove) and obtain
the payoff 1

2 , i.e., you would lose

x3 −
1

2

without me.”
The Shapley value rests on the premise of equal bargaining power — both

arguments carry the same weight. Thus, the two differences are the same:

x1 − 0︸ ︷︷ ︸
loss to player 1

if player 3 withdraws

= x3 −
1

2︸ ︷︷ ︸
loss to player 3

if player 1 withdraws

. (I.2)

Since we have an analogous threat and an analogous counter-threat between
players 2 (rather than player 1) and 3, we find

1 = x1 + x2 + x3 (eq. I.1)

=

(
x3 −

1

2

)
+

(
x3 −

1

2

)
+ x3 (eq. I.2)

and hence

(x1, x2, x3) =

(
1

6
,
1

6
,
2

3

)
. (I.3)

The Shapley value is easy to handle. This simplicity gives room for addi-
tional structure that may be needed in applications. Thus,

• different players may belong to different groups that work together,
bargain as a group etc.

• any two players may or may not be linked together where the links
stand for communication or cooperation.

We will briefly introduce

Shapley + structure

in this introductory chapter and treat them in some detail in later chapters.

4. The outside option value

Taking up the gloves game again, assume that the glove traders 1 (left
glove) and 3 (right glove) agree to cooperate to form a pair of gloves. We
can express this fact by the partition of N

{{1, 3} , {2}}
where we address {1, 3} and {2} as that partition’s components.

What are the player’s payoffs in such a situation? The first idea might
be to apply the Shapley value to the individual components. In fact, the
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resulting value is known as the AD value (where A stands for Aumann and
D for Dreze) and given by

AD1 (v) = AD3 (v) =
1

2
, AD2 (v) = 0.

More recent developments in cooperative game theory point to the fact that
player 3 should obtain more than 1

2 because he can threaten to join forces
with player 2 rather than player 1. Thus, player 2 is an “outside option” for
player 3.

How can we find the players’ payoffs in that case? First of all, players 1
and 3 will share the value of a glove, i.e., we have

x1 + x3 = 1 (I.4)

and x2 = 0. When 1 and 3 bargain on how to share the payoff of 1, both
players may point out that each of them is necessary to form the component
{1, 3}. Therefore, the gain from leaving player 2 out should be divided
equally where the Shapley value (for the trivial partition {{1, 2, 3}} serves
as a reference point:

x1 − Sh1 (v)︸ ︷︷ ︸
gain for player 1

from forming component {1, 3}

= x3 − Sh3 (v)︸ ︷︷ ︸
gain for player 3

from forming component {1, 3}

.

(I.5)
By

1 = x1 + x3 (eq. I.4)

= [x3 − Sh3 (v) + Sh1 (v)] + x3 (eq. I.5)

= 2x3 −
2

3
+

1

6
(eq. I.3)

we obtain the outside-option value payoffs due to Casajus (2009)

(x1, x2, x3) =

(
3

4
, 0,

1

4

)
.

5. The network value

Instead of considering partitions, we may assume a network of links
between players. A link between two players means that these two players
can communicate or cooperate. The corresponding generalization of the
Shapley value is known as the Myerson value.

Departing fromt the gloves game, we assume that players 1 and 3 are the
productive or powerful players. This is reflected by the coalition function v

given by

v (K) =

{
1, K ⊇ {1, 3}
0, otherwise
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1 2 3

1 2 3

F����� 1. A simple network

Coalitions different from {1, 3} and {1, 2, 3} have the value zero. Without
the network, we should expect the Shapley payoffs

(
1
2 , 0,

1
2

)
:

• Player 2 is unimportant (a null player, as we will say later) and
obtains nothing.

• The two players 1 and 3 are symmetric and share the worth of 1.

However, we assume restrictions in cooperation or communication. In par-
ticular, players 1 and 3 are not directly linked (see the upper part of fig. 1).
Player 2’s role is to link up the productive players 1 and 3. How should he
be rewarded for his linking service?

It is plausible that the payoffs are zero for all players in case of the
network linking only players 1 and 2 (lower part of the figure). After all,
the two productive players cannot cooperate.

Starting with the upper network and assuming that the link between
players 2 and 3 can be formed (or dissolved) by mutual consent only, the
removal of this link should harm both players equally:

x2 − 0︸ ︷︷ ︸
loss to player 2
if link is removed

= x3 − 0︸ ︷︷ ︸
loss to player 3
if link is removed

. (I.6)

Recognizing the symmetry between players 1 and 3 in the upper network
(both are productive and both need player 2 to realize their productive
potential), we obain

1 = x1 + x2 + x3

= x3 + x2 + x3 (symmetry)

= x3 + x3 + x3 (eq. I.6)

and hence

(x1, x2, x3) =

(
1

3
,
1

3
,
1

3

)
.



10 I. OVERVIEW

6. The permission value

We now turn to directed networks that stand for permission structures.
Consider, for example, the left-hand graph in fig. 2. Player 1 is the superior
of both player 2 and 3 who have player 4 as their subordinate. We assume
that player 4 is the only player with productive capacity, i.e., we work with
the coalition function v given by

v (K) =

{
1, 4 ∈ K

0, otherwise

The Shapley value of that game would give all the payoff to the productive
player 4.

However, the permission structure changes the payoffs. A coalition can
produce a worth only with its largest autonomous subset. A set K is au-
tonomous if all of K’s players’ superiors are contained in K — otherwise the
permission of somebody outside K is needed. For example, {2, 4} is not an
autonomous set because 2’s superior, player 1, is not included.

We want to find the permission payoffs for the left-hand permission
structure. However, we look at the right-hand permission structure first.
Player 3 is a null player and has no subordinates — he should obtain zero
payoff.

The only autonomous subset that contains the productive player 4 and
excludes player 3 is the set {1, 2, 4}. Therefore, these three players obtain the
same payoff which should be 1

3 be efficiency. Thus, the right-hand graph’s
permission payoffs can be summarized in the vector

(
1
3 ,
1
30,

1
3

)
.

What effect does the deletion of the direct link between players 3 and 4

(3 is not a superior of 4 anymore) have on the players’ payoffs? We should
expect that player 4 benefits because he does not need player 3’s permission
anymore. Player 2 should also benefit because he is now the only superior
of the productive player 4. The big boss, player 1, may also benefit from
giving permission to the permission giver of the productive player.

Indeed, the permission value rests on the premise that players 1, 2 and
4 benefit equally:

x1 −
1

3︸ ︷︷ ︸
gain to player 1
if link is removed

= x2 −
1

3︸ ︷︷ ︸
gain to player 2
if link is removed

= x4 −
1

3︸ ︷︷ ︸
gain to player 4
if link is removed

. (I.7)

Therefore, we obtain

1 = x1 + x2 + x3 + x4

= x1 + x2 + x2 + x4 (symmetry between players 2 and 3)

= x2 + x2 + x2 + x2 (eq. I.7)
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1

2 3

4

1

2 3

4

F����� 2. A simple hierarchy

and hence

(x1, x2, x3, x4) =

(
1

4
,
1

4
,
1

4
,
1

4

)
.

7. Cooperative and noncooperative game theories

It is sometimes suggested that non-cooperative game theory is more
fundamental than cooperative game theory. Indeed, from an economic or
sociological point of view, cooperative game theory seems odd in that it does
not model people who ”act”, ”know about things”, or ”have preferences”.
In cooperative game theory, people just get payoffs. Cooperative game the-
ory is payoff-centered game theory. Noncooperative game theory (which
turns around strategies and equilibria) could be termed action-centered or
strategy-centered. Of course, non-cooperative game theory’s strength does
not come without a cost. The modeller is forced to specify in detail (se-
quences of) actions, knowledge and preferences. More often than not, these
details cannot be obtained by the modeller. Cooperative game theory is
better at providing a bird’s eye view.

On the other hand, cooperative game theory is more demanding in terms
of interpretation. It is the modeler’s task to imagine a story behind a coali-
tion function or to translate a story into a coalition function. Also, while
cooperative game theory yields payoffs, these payoffs often suggest actions.

While the two theories rely on very different methods, they get close for
two different reasons. Imagine a cooperative solution concept that produces
certain payoffs for the players. One can ask the question whether a nonco-
operative model exists that leads to the same payoffs. This is the so-called
Nash program. Of course, the inverse is also possible. Take a noncooperative
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model that leads to certain payoffs in equilibrium. Is there a cooperative
model that also produces these payoffs?

Second, for some applications, mixtures of noncooperative and coopera-
tive models prove quite useful. The first part of the model is noncooperative
and the last cooperative. In this book, we will employ mixed models several
times.

8. This book

8.1. Overview. I finally decided on the following order of parts and
chapters:

• The present part consists of this introductory chapter and a chapter
on Pareto efficiency. In that chapter, we present a wide range
of microeconomic models through the lens of the Pareto principle
which is one the most welknown cooperative solution concepts.

• Part B is a careful and slow introduction into cooperative game
theory. In particular, chapter III uses the gloves game as the leading
example to explain the workings of the Shapley value and the core,
arguably the two main cooperative concepts. Many other games
are presented in chapter IV which also defines general properties of
coalition functions. Chapter V is more technical and considers the
vector space of coalition functions. The results obtained are used
in chapter VI where three different axiomatizations of the Shapley
value are presented and discussed. Also, the Banzhaf value gets a
short treatment.

• Parts C and D introduce additional structure on the player set.
Part C deals with partitional values based on the Shapley value such
as the AD value, the union value and the outside-option values.
— Chapter VII deals with partitions where the players within a
component share the component’s worth while outside options
are taken into account. For example, we consider the power
of parties within government coalitions. Here some political
parties work together to create power. The outside options
concern other parties with which alternative government coali-
tions could have been formed.

— Working together to create worth is the reason for forming
components in chapter VII. In contrast, forming bargaining
groups is the topic treated in chapter VIII. Unions are a prime
example.

— In chapter IX, we present an application that rests on dealing
with worth-creating components (firms) and bargaining com-
ponents (unions) at the same time. We consider the question
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of how unions and unemployment benefits influence emoploy-
ment.

• Part D concentrates on networks and the Myerson value (chapter
X). A first applications concerns the Granovetter thesis (that weak
links are more important than strong links) in chapter ??. We
then go on to consider subordination structures in chapter XI which
come as permission and use structures. Chapter XII concentrates
on hierarchies and on their payoff consequences.

• Part E deviates from the previous parts in two respects.
— First, players work part-time in a firm (chapter XIII) or as
a lazy civil servant (chapter XIV). We need to extend the
concept of a coalition function in order to deal with this gen-
eralization.

— Second some players’ payoffs are given from the outset. Chap-
ter XIV analyzes the size and setup of the public sector in an
economy while chapter XV deals with a real-estate agent who
decides on his fees.

• Players in parts B to ?? are atomic (indivisible). Part F is con-
cerned with two models where non-atomic agents or players form
continua. In order to keep the book self-contained, we present the
Solow growth model (chapter XVI) before introducing the continu-
ous Shapley value into a Solow-type growth model (chapter XVII).
Finally, we show that an evolutionary cooperative game theory can
be developed and produces interesting results (chapter XVIII).

• Finally, part G turns to non-transferable utility. We examine the
allocation of goods within the Edgeworth box (chapter XIX) and
also present the Nash bargaining solution (chapter XX).

8.2. Alternative paths through the book. The careful reader goes
through the book in the above order. However, different "pick and choose"
options present themselves.

• The classical path: parts B and G
Arguably, every economist worth his salt should know the Shap-

ley value, the core, the Banzhaf solution, the core for an exchange
economy and the Nash bargaining solution. If that is all you want,
stick to the classical path.

• The structured path: parts B, C and D
If you are interested in applications involving partitions and

networks, you may choose to restrict attention to chapters III and
VI within part B before turning to Shapley values where players
are structured in some way or other. Chapters VII, VIII, and X
present the basic theory with some applications while chapters IX,
??, and XII put additional flesh on these models.
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• The innovative path: parts E and F
Knowledgeable readers may well get bored with most chapters

in this book. May-be, some chapters in the innovative path will
grab their attention?



CHAPTER II

Pareto optimality in microeconomics

Although the Pareto principle belongs to cooperative game theory, it
sheds an interesting light on many different models in microeconomics. We
consider bargaining between consumers, producers, countries in interna-
tional trade, and bargaining in the context of public goods and externalities.
We can also subsume profit maximization and household theory under this
heading. It turns out that it suffices to consider three different cases with
many subcases:

• equality of marginal rates of substitution
• equality of marginal rates of transformation and
• equality of marginal rate of substitution and marginal rate of trans-
formation

Thus, we consider a wide range of microeconomic topics through the lens of
Pareto optimality.

1. Introduction: Pareto improvements

Economists are somewhat restricted when it comes to judgements on
the relative advantages of economic situations. The reason is that ordinal
utility does not allow for comparison of the utilities of different people.

However, situations can be ranked with the concepts provided by Vil-
fredo Pareto (Italian sociologue, 1848-1923). Situation 1 is called a Pareto
superior to situation 2 if no individual is worse off in the first than in the
second while at least one individual is strictly better off. Then, the move
from situation 2 to 1 is called a Pareto improvement. Situations are called
Pareto efficient, Pareto optimal or just efficient if Pareto improvements are
not possible.

E������� II.1. a) Is the redistribution of wealth a Pareto improvement
if it reduces social inequality?

b) Can a situation be efficient if one individual possesses everything?

This chapter rests on the premise that bargaining leads to an efficient
outcome under ideal conditions. As long as Pareto improvements are avail-
able, there is no reason (so one could argue) not to “cash in” on them.

15
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2. Identical marginal rates of substitution

2.1. Exchange Edgeworth box and marginal rate of substitu-
tion. We consider agents or households that consume bundles of goods. A
distribution of such bundles among all households is called an allocation.
In a two-agent two-good environment, allocations can be visualized via the
Edgeworth box. Exchange Edgeworth boxes also allow to depict preferences
by the use of indifference curves.

The analysis of bargaining between consumers in an exchange Edgeworth
box is due to Francis Ysidro Edgeworth (1845-1926). Edgeworth’s (1881)
book bears the beautiful title “Mathematical Psychics”. Fig. 1 represents
the exchange Edgeworth box for goods 1 and 2 and individuals A and B.
The exchange Edgeworth box exhibits two points of origin, one for individual
A (bottom-left corner) and another one for individual B (top right).

Every point in the box denotes an allocation: how much of each good
belongs to which individual. One possible allocation is the (initial) endow-
ment ω =

(
ωA, ωB

)
. Individual A possesses an endowment ωA =

(
ωA1 , ω

A
2

)
,

i.e., ωA1 units of good 1 and ωA2 units of good 2. Similarly, individual B has
an endowment ωB =

(
ωB1 , ω

B
2

)
.

All allocations
(
xA, xB

)
with

• xA =
(
xA1 , x

A
2

)
for individual A and

• xB =
(
xB1 , x

B
2

)
for individual B

that can be represented in an Edgeworth box with initial endowment ω fulfill

xA1 + xB1 = ωA1 + ωB1 and

xA2 + xB2 = ωA2 + ωB2 .

E������� II.2. Do the two individuals in fig. 1 possess the same quan-
tities of good 1, i.e., do we have ωA1 = ωB1 ?

E������� II.3. Interpret the length and the breadth of the Edgeworth
box!

Seen from the respective points of origin, the Edgeworth box depicts the
two individuals’ preferences via indifference curves. Refer to fig. 1 when you
work on the following exercise.

E������� II.4. Which bundles of goods does individual A prefer to his
endowment? Which allocations do both individuals prefer to their endow-

ments?

The two indifference curves in fig. 1, crossing at the endowment point,
form the so-called exchange lens which represents those allocations that are
Pareto improvements to the endowment point. A Pareto efficient allocation
is achieved if no further improvement is possible. Then, no individual can be



2. IDENTICAL MARGINAL RATES OF SUBSTITUTION 17

A

B

Ax1

Ax2

Bx2

indifference
curveB

indifference
curveA

Bx1

exchangelens

A
1ω

B
1ω

B
2ωA

2ω

F����� 1. The exchange Edgeworth box

made better off without making the other worse off. Oftentimes, we imagine
that individuals achieve a Pareto efficient point by a series of exchanges. As
long as a Pareto optimum has not been reached, they will try to improve
their lots.

Finally, we turn to the equality of the marginal rates of substitution.

Graphically, the marginal rate of substitution MRS =
∣∣∣dx2dx1

∣∣∣ is the absolute
value of an indifference’s slope. If one additional unit of good 1 is consumed
while good 2’s consumption reduces by MRS units, the consumer stays
indifferent. We could also say: MRS measures the willingness to pay for
one additional unit of good 1 in terms of good 2.

2.2. Equality of the marginal rates of substitution. Consider,
now, an exchange economy with two individuals A and B where the marginal
rate of substitution of individual A is smaller than that of individual B:

(3 =)

∣∣∣∣
dxA2
dxA1

∣∣∣∣ =MRSA < MRSB =

∣∣∣∣
dxB2
dxB1

∣∣∣∣ (= 5)

We can show that this situation allows Pareto improvements. Individual A is
prepared to give up a small amount of good 1 in exchange for at leastMRSA

units (3, for example) of good 2. If individual B obtains a small amount of
good 1, he is prepared to give up MRSB (5, for example) or less units of
good 2. Thus, if A gives one unit of good 1 to B, by MRSA < MRSB

individual B can offer more of good 2 in exchange than individual A would
require for compensation. The two agents might agree on 4 units so that
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F����� 2. The contract curve

both of them would be better off. Thus, the above inequality signals the
possibility of mutually beneficial trade.

Differently put, Pareto optimality requires the equality of the marginal
rates of substitution for any two agents A and B and any pair of goods 1

and 2. The locus of all Pareto optima in the Edgeworth box is called the
contract curve or exchange curve (see fig. 2).

E������� II.5. Two consumers meet on an exchange market with two
goods. Both have the utility function U (x1, x2) = x1x2. Consumer A’s

endowment is (10, 90), consumer B’s is (90, 10).

a) Depict the endowments in the Edgeworth box!

b) Find the contract curve and draw it!

c) Find the best bundle that consumer B can achieve through exchange!

d) Draw the Pareto improvement (exchange lens) and the Pareto-efficient

Pareto improvements!

e) Sketch the utility frontier!

2.3. Production Edgeworth box. The exchange Edgeworth box looks
at two consumers that consume two goods and have preferences indicated by
their indifference curves. Similarly, the production Edgeworth box is con-
cerned with two producers that employ two factors of production where the
production technology is reflected in isoquants. Consider the example of fig.
3. You see two families of isoquants, one for output A and one for output B
(turn the book by 180 degrees). The breadth indicates the amount of factor
1 and the height the amount of factor 2. Every point inside that box shows
how the inputs 1 and 2 are allocated to produce the outputs A and B.



2. IDENTICAL MARGINAL RATES OF SUBSTITUTION 19

A

B

Ax1

Ax2

A

B

xx
x

22

2

−=

4

7

5

3

A

B

xx
x

11

1

−=

E
F

G

isoquants
for outputB

isoquants
for outputA

F����� 3. A production Edgeworth box

The quantities produced are indicated by the isoquants and the numbers
associated with them. Consider, for example, points E and F. They both
use the same input tuple (x1, x2) (the overall use of both factors), but the
output is different, (7, 5) in case of point E and (7, 3) in case of point F .

The marginal rate of technical substitutionMRTS =
∣∣dC
dL

∣∣ is the slope of
an isoquant and gives an answer to this question: If we increase the input of
labor L by one unit, by how many units can the use of capital C be reduced
so that we still produce the same output. The MRTS can be interpreted as
the marginal willingness to pay for an additional unit of labor in terms of
capital. If two producers 1 and 2 produce goods 1 and 2, respectively, with
inputs labor and capital, both can increase their production as long as the
marginal rates of technical substitution differ. For example, point E is not
efficient.

Thus, Pareto efficiency means
∣∣∣∣
dC1
dL1

∣∣∣∣ =MRTS1
!
=MRTS2 =

∣∣∣∣
dC2
dL2

∣∣∣∣

so that the marginal willingness to pay for input factors are the same.

2.4. Two markets — one factory. The third subcase under the head-
ing “equality of the marginal willingness to pay” concerns a firm that pro-
duces in one factory but supplies two markets 1 and 2. The idea is to consider
the marginal revenue MR = dR

dxi
as the monetary marginal willingness to

pay for selling one extra unit of good i. How much can a firm pay for the
sale of one additional unit?
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Thus, the marginal revenue is a marginal rate of substitution
∣∣∣ dRdxi

∣∣∣. The
role of the denominator good is taken over by good 1 or 2, respectively, while
the nominator good is “money” (revenue). Now, profit maximization by a
firm selling on two markets 1 and 2 implies

∣∣∣∣
dR

dx1

∣∣∣∣ =MR1
!
=MR2 =

∣∣∣∣
dR

dx2

∣∣∣∣

which we can show by contradiction. AssumeMR1 < MR2. The monopolist
can transfer one unit from market 1 to market 2. Revenue and profit (we
have not changed total output x1 + x2) increases by MR2 −MR1.

2.5. Two firms (cartel). The monetary marginal willingness to pay
for producing and selling one extra unit of good y is a marginal rate of
substitution where the denominator good is good 1 or 2 while the nominator
good represents “money” (profit). Two cartelists 1 and 2 producing the
quantities x1 and x2, respectively, maximize their joint profit

Π1,2 (x1, x2) = Π1 (x1, x2) + Π2 (x1, x2)

by obeying the first-order conditions

∂Π1,2
∂x1

!
= 0

!
=

∂Π1,2
∂x2

so that their marginal rates of substitution are the same when profit is
understood as joint profit. If ∂Π1,2

∂x2
were higher than ∂Π1,2

∂x1
the cartel could

increase profits by shifting the production of one unit from firm 1 to firm 2.

3. Identical marginal rates of transformation

3.1. Marginal rate of transformation. The marginal rate of substi-
tution tells us how much of good 2 an agent is willing to give up if given an
extra unit of good 1. In contrast, the marginal rate of transformation MRT

informs about the harsh realities of life: how many units of good 2 have to
be given up if one extra unit of good 1 is to be consumed or used. Differ-
ently put, the marginal rate of substitution is a willingness to pay while the
marginal rate of transformation can be seen as a marginal opportunity cost.

The production Edgeworth box introduced above can be used to derive
the marginal rate of transformation. If the marginal rates of technical sub-
stitutions are equal, we have found an efficient point. The locus of all these
points is called the production curve and shown in fig. 4.

A production function associates one specific output with a tuple of
inputs. The Edgeworth box shows how to associate a set of two outputs
with a tuple of inputs. This set can be read from the isoquants. Referring
again to fig. 4, the points (9, 5) and (11, 3) belong to this set. In that manner,
a transformation curve (also known as production-possibility frontier) can
be derived from a production curve. For an illustration, consider fig. 5.
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Now, the marginal marginal rate of transformation can be defined as the
absolute value of the slope of a transformation curve. With respect to the

transformation curve depicted abovewe writeMRT =
∣∣∣dyBdyA

∣∣∣
transformation curve

.

3.2. Two factories — one market. While the marginal revenue can
be understood as the monetary marginal willingness to pay for selling, the
marginal cost MC = dC

dy can be seen as the monetary marginal opportunity
cost of production. How much money (the second good) must the producer
forgo in order to produce an extra unit of y (the first good)? Thus, the
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margincal cost can be seen as a special case of the marginal rate of trans-
formation.

Similar to section 2.4, we argue that MC1 < MC2 leaves room for an
improvement: A transfer of one unit of production from the (marginally!)
more expensive factory 2 to the cheaper factory 1, decreases cost, and in-
creases profit, by MC2 −MC1. Therefore, a firm supplying a market from
two factories (or a cartel in case of homogeneous goods), obeys the equality

MC1
!
=MC2.

The cartel also makes clear that Pareto improvements and Pareto optimality
have to be defined relative to a specific group of agents. While the cartel
solution (maximizing the sum of profits) can be optimal for the producers,
it is not for the economy as a whole because the sum of producers’ and
consumers’ (!) rent may well be below the welfare optimum.

3.3. Bargaining between countries (international trade). David
Ricardo (1772—1823) has shown that international trade is profitable as long
as the rates of transformation between any two countries are different. Let
us consider the classic example of England and Portugal producing wine (W )
and cloth (Cl). Suppose that the marginal rates of transformation differ:

4 =MRTP =

∣∣∣∣
dW

dCl

∣∣∣∣
P

>

∣∣∣∣
dW

dCl

∣∣∣∣
E

=MRTE = 2.

In that case, international trade is Pareto-improving. Indeed, let England
produce another unit of cloth Cl that it exports to Portugal. England’s
production of wine reduces by MRTE = 2 gallons. Portugal, that imports
one unit of cloth, reduces the cloth production and can produce additional
MRTP = 4 units of wine. Therefore, if England obtains 3 gallons of wine
in exchange for the one unit of cloth it gives to Portugal, both countries are
better off.

Ricardo’s theorem is known under the heading of “comparative cost
advantage”. It seems that “differing marginal rates of transformation” might
be a better name. However, you take my word that the marginal rate of
transformation equals the ratio of the marginal costs (when factor prices are
given),

MRT =

∣∣∣∣
dW

dCl

∣∣∣∣ =
MCCl
MCW

,

so that we have Ricardo’s result in the form it is usually presented: As long
as the comparative costs (more precise: the ratio of marginal costs) between
two goods differ, international trade is worthwhile for both countries.

Thus, Pareto optimality requires the equality of the marginal oppor-
tunity costs between any two goods produced in any two countries. The
economists before Ricardo clearly saw that absolute cost advantages make
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international trade profitable. If England can produce cloth cheaper than
Portugal while Portugal can produce wine cheaper than England, we have

MCE
Cl < MCP

Cl and

MCE
W > MCP

W

so that England should produce more cloth and Portugal should produce
more wine. Ricardo observed that for the implied division of labor to be
profitable, it is sufficient that the ratio of the marginal costs differ:

MCE
Cl

MCE
W

<
MCP

Cl

MCP
W

.

Do you see that this inequality follows from the two inequalities above, but
not vice versa?

4. Equality between marginal rate of substitution and marginal
rate of transformation

4.1. Base case. Imagine two goods consumed at a marginal rate of
substitutionMRS and produced at a marginal rate of transformationMRT .
We now show that optimality also implies MRS = MRT. Assume, to the
contrary, that the marginal rate of substitution (for a consumer) is lower
than the marginal rate of transformation (for a producer):

MRS =

∣∣∣∣
dx2
dx1

∣∣∣∣
indifference curve

<

∣∣∣∣
dx2
dx1

∣∣∣∣
transformation curve

=MRT.

If the producer reduces the production of good 1 by one unit, he can increase
the production of good 2 byMRT units. The consumer has to renounce the
one unit of good 1, and he needs at leastMRS units of good 2 to make up for
this. By MRT > MRS the additional production of good 2 (come about
by producing one unit less of good 1) more than suffices to compensate
the consumer. Thus, the inequality of marginal rate of substitution and
marginal rate of transformation points to a Pareto-inefficient situation.

4.2. Perfect competition. We want to apply the formula

MRS
!
=MRT

to the case of perfect competition. For the output space, we have the profit-
maximizing condition

p
!
=MC.

We have derived “price equals marginal cost” by forming the derivative of
profit π (y) = py − c (y) with respect to y and setting this derivative equal
to zero.

We can link the two formulae by letting good 2 be money with price 1.
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• Then, the marginal rate of substitution tells us the consumer’s mon-
etary marginal willingness to pay for one additional unit of good 1.
Cum grano salis, the price can be taken to measure this willingness
to pay for the marginal consumer (the last consumer prepared to
buy the good).

• The marginal rate of transformation is the amount of money one
has to forgo for producing one additional unit of good 1, i.e., the
marginal cost.

Therefore, we obtain

price = marginal willingness to pay
!
= marginal cost.

In a similar fashion, we can argue for inputs. Let x be the amount of an
input and y = f (x) the amount of an output. The marginal value product
MVP = pdydx is the product of output price p and marginal product dy

dx .
It can be understood as the monetary marginal willingness to pay for the
factor use. The factor price w can be perceived as the monetary marginal
opportunity cost of employing the factor. Thus, we obtain

marginal value product
!
= factor price

which is the optimization condition for a price taker on both the input and
the output market. Just consider the profit function π (x) = pf (x) − wx,

form the derivative ... .

4.3. Cournot monopoly. A trivial violation of Pareto optimality en-
sues if a single agent acts in a non-optimal fashion. Just consider con-
sumer and producer as a single person. For the Cournot monopolist, the

MRS
!
=MRT formula can be rephrased as the equality between

• the monetary marginal willingness to pay for selling — this is the
marginal revenue MR = dR

dy (see above p. 19) — and
• the monetary marginal opportunity cost of production, the mar-
ginal cost MC = dC

dy (p. 21).

4.4. Household optimum. A second violation of efficiency concerns
the consuming household. It “produces” goods by using his income to buy
them, m = p1x1 + p2x2 in case of two goods.

E������� II.6. The prices of two goods 1 and 2 are p1 = 6 and p2 = 2,

respectively. If the household consumes one additional unit of good 1, how

many units of good 2 does he have to renounce?

The exercise helps us understand that the marginal rate of transforma-
tion is the price ratio,

MRT =
p1
p2
,
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that we also know under the heading of “marginal opportunity cost”. (Al-
ternatively, consider the transformation function x2 = f (x1) =

m
p2
− p1

p2
x1.).

Seen this way, MRS
!
=MRT is nothing but the famous condition for house-

hold optimality.

4.5. External effects and the Coase theorem.
4.5.1. External effects and bargaining. The famous Coase theorem can

also be interpreted as an instance ofMRS
!
=MRT.We present this example

in some detail.
External effects are said to be present if consumption or production

activities are influenced positively or negatively while no compensation is
paid for this influence. Environmental issues are often discussed in terms
of negative externalities. Also, the increase of production exerts a negative
influence on other firms that try to sell subsitutes. Reciprocal effects exist
between beekeepers and apple planters.

Consider a situation where A pollutes the environment doing harm to B.
In a very famous and influential paper, Coase (1960) argues that economists
have seen environmental and similar problems in a misguided way.

First of all, externalities are a “reciprocal problem”. By this Coase
means that restraining A from polluting harms A (and benefits B). Accord-
ing to Coase, the question to be decided is whether the harm done to B

(suffering the polluting) is greater or smaller than the harm done to A (by
stopping A’s polluting activities).

Second, many problems resulting from externalities stem from missing
property rights. Agent A may not be in a position to sell or buy the right
to pollute from B simply because property exists for cars and real estate
but not for air, water or quietness. Coase suggests that the agents A and B

bargaing about the externality. If, for example, A has the right to pollute
(i.e., is not liable for the damage cause by him), B can give him some money
so that A reduce his harmful (to B) activity. If B has the right not to suffer
any pollution (i.e., A is liable), A could approach B and offer some money in
order to pursue some of the activity benefitting him. Coase assumes (as we
have done in this chapter) that the two parties bargain about the externality
so as to obtain a Pareto-efficient outcome.

The Nobel prize winner (of 1991) presents a startling thesis: the ex-
ternality (the pollution etc.) is independent on the initial distribution of
property rights. This thesis is also known as the invariance hypothesis.

4.5.2. Straying cattle. Coase (1960) discusses the example of a cattle
raiser and a crop farmer who possess adjoining land. The cattle regularly
destroys part of the farmer’s crop. In particular, consider the following table:



26 II. PARETO OPTIMALITY IN MICROECONOMICS

number of steers marginal profit marginal crop loss

1 4 1
2 3 2
3 2 3
4 1 4

The cattle raiser’s marginal profit from steers is a decreasing function
of the number of steers while the marginal crop loss increases. Let us begin
with the case where the cattle raiser is liable. He can pay the farmer up to
4 (thousand Euros) for allowing him to have one cattle destroy crop. Since
the farmer’s compensating variation is 1, the two can easily agree on a price
of 2 or 3.

The farmer and cattle raiser will also agree to have a second steer roam
the fields, for a price of 212 . However, there are no gains from trade to be had
for the third steer. The willingness to pay of 2 is below the compensation
money of 3.

If the cattle raiser is not liable, the farmer has to pay for reducing the
number of steers from 4 to 3. A Pareto improvement can be have for any
price between 1 and 4. Also, the farmer will convince the cattle raiser to
take the third steer, but not the second one, off the field.

Thus, Coase seems to have a good point — irrespective of the property
rights (the liability question), the number of steers and the amount of crop
damaged is the same.

The reason for the validity (so far) of the Coase theorem is the fact
that forgone profits are losses and forgone losses are profits. Therefore, the
numbers used in the comparisons are the same.

It is about time to tell the reader why we talk about the Coase theorem

in the MRS
!
= MRT section. From the cartel example, we are familiar

with the idea of finding a Pareto optimum by looking at joint profits. We
interpret the cattle raiser’s marginal profit as the (hypothetical) joint firm’s
willingness to pay for another steer and the marginal crop loss incurred by
the farmer as the joint firm’s marginal opportunity cost for that extra steer.

We close this section by throwing in two caveats:

• If consumers are involved, the distribution of property rights has
income effects. Then, Coase’s theorem does not hold any more (see
Varian 2010, chapter 31).

• More important is the objection raised by Wegehenkel (1980). The
distribution of property rights determine who pays whom. Thus,
if the property rights were to change from non-liability to liability,
cattle raising becomes a less profitable business while growing crops
is more worthwhile as before. In the medium run, agents will move
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to the profitable occupations with effects on the crop losses (the
sign is not clear a priori).

4.6. Public goods. Public goods are defined by non-rivalry in con-
sumption. While an apple can be eaten only once, the consumption of a
public good by one individual does not reduce the consumption possibilities
by others. Often-cited examples include street lamps or national defence.

Consider two individualsA andB who consume a private good x (quanti-
ties xA and xB, respectively) and a public good G. The optimality condition
is

MRSA +MRSB

=

∣∣∣∣
dxA

dG

∣∣∣∣
indifference curve

+

∣∣∣∣
dxB

dG

∣∣∣∣
indifference curve

!
=

∣∣∣∣∣
d
(
xA + xB

)

dG

∣∣∣∣∣

transformation curve

=MRT.

Assume that this condition is not fulfilled. For example, let the marginal
rate of transformation be smaller than the sum of the marginal rates of
substitution. Then, it is a good idea to produce one additional unit of the
public good. The two consumers need to forgo MRT units of the private
good. However, they are prepared to give up MRSA +MRSB units of the
private good in exchange for one additional unit of the public good. Thus,
they can give up more than they need to. Assuming monotonicity, the two
consumers are better off than before and the starting point (inequality) does
not characterize a Pareto optimum.

Once more, we can assume that good x is the numéraire good (money
with price 1). Then, the optimality condition simplifies and Pareto efficiency
requires that the sum of the marginal willingness’ to pay equals the marginal
cost of the public good.

E������� II.7. In a small town, there live 200 people i = 1, ..., 200 with

identical preferences. Person i’s utility function is Ui (xi,G) = xi +
√
G,

where xi is the quantity of the private good and G the quantity of the public

good. The prices are px = 1 and pG = 10, respectively. Find the Pareto-

optimal quantity of the public good.

Thus, by the non-rivalry inconsumption, we do not quite get a subrule

of MRS
!
=MRT but something similar.

5. Topics and literature

The main topics in this chapter are

• Pareto efficiency
• Pareto improvement
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• exchange Edgeworth box
• contract curve
• exchange lense
• core
• international trade
• external effects
• quantity cartel
• public goods
• first-degree price discrimination

We recommend the textbook by

6. Solutions

Exercise II.1
a) A redistribution that reduces inequality will harm the rich. Therefore,

such a redistribution is not a Pareto improvement.
b) Yes. It is not possible to improve the lot of the have-nots without harming
the individual who possesses everything.
Exercise II.2

No, obviously ωA1 is much larger than ωB1 .

Exercise II.3
The length of the exchange Edgeworth box represents the units of good 1

to be divided between the two individuals, i.e., the sum of their endowment
of good 1. Similarly, the breadth of the Edgeworth box is ωA2+ ωB2 .
Exercise II.4

Individual A prefers all those bundels xA that lie to the right and above
the indifference curve that crosses his endowment point. The allocations
preferred by both individuals are those in the hatched part of fig. 1.
Exercise II.5

a) See fig. 6,
b) xA1 = xA2 ,

c) (70, 70) .
d) The exchange lens is dotted in fig. 6. The Pareto efficient Pareto im-
provements are represented by the contract curve within this lens.
e) The utility frontier is downward sloping and given by UB (UA) =

(
100−√

UA
)2
.

Exercise II.6
If the household consumers one additional unit of good 1, he has to pay

Euro 6. Therefore, he has to renounce 3 units of good 2 that also cost Euro
6 = Euro 2 times 3.
Exercise II.7
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F����� 6. The answer to parts a) and d)

The marginal rate of transformation

∣∣∣∣
d(
∑200

i=1 xi)
dG

∣∣∣∣ equals
pG
px

= 10
1 = 10.

The marginal rate of substitution for inhabitant i is
∣∣∣∣
dxi

dG

∣∣∣∣
indifference curve

=
MUG
MUxi

=

1
2
√
G

1
=

1

2
√
G
.

Applying the optimality condition yields

200 · 1

2
√
G

!
= 10

and hence G = 100.
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7. Further exercises without solutions

AgentA has preferences on (x1, x2), that can be represented by uA(xA1 , x
A
2 ) =

xA1 . Agent B has preferences, which are represented by the utility function
uB(xB1 , x

B
2 ) = xB2 . Agent A starts with ωA1 = ωA2 = 5, and B has the initial

endowment ωB1 = 4, ωB2 = 6.

(a) Draw the Edgeworth box, including
— ω,
— an indifference curve for each agent through ω!

(b) Is (xA1 , x
A
2 , x

B
1 , x

B
2 ) = (6, 0, 3, 11) a Pareto-improvement compared

to the initial allocation?
(c) Find the contract curve!

The Shapley value and the core



Part B

The Shapley value and the core



The second part of our course explains some important basic concepts.
Chapter III introduces Pareto efficiency, the Shapley value and the core for
a simple game, the gloves game. We present many examples of cooperative
games in chapter IV. Games can be understood as vectors — this is the point
of view we mention in the following chapter and discuss in detail in chapter
V. We then deal with the axiomatization of the Shapley value in chapter VI.
In that chapter, the Banzhaft index also gets a brief treatment. Partitions
and networks have no role to play in this part of the book.



CHAPTER III

The gloves game

1. Introduction

This chapter lies the groundwork in cooperative game theory. First of
all, section 2 familiarizes the reader with the player set N (the set of all
players), subsets of N (that we also call coalitions) and the set of coalitions
for a player set N .

We then use the specific example of gloves games to introduce the con-
cept of a coalition function in section 3. As in most part of the book, we
focus on transferable utility where v attaches a real number to every coali-
tion. Thus, v (K) is the worth or the “utility sum” created by the members
from K. The basic idea is to distribute v (K) or v (N) among the members
from K or N , respectively. Thus, the utility is “transferable”.

Transferability is a serious assumption and does not work well in every
model. Transferable utility is justfied if utility can be measured in terms
of money and if the agents are risk neutral. We will need non-transferable
utility for the analysis of exchange within an Edgeworth box (part G, chapter
XIX).

Section 4 is devoted to a technical point. We define zero payoff vec-
tors (everybody gets nothing) and zero coalition functions (every coalition
creates nothing). We then turn to the main topic of cooperative game the-
ory: solution concepts. We present a general definition in section 5 before
presenting four specific examples:

(1) Most solution concepts presented in this book obey Pareto effi-
ciency — we introduce this central concept in section 6. An efficient
payoff vector is feasible (the players can afford it) and cannot be
blocked by the player set N (it is not possible to improve upon that
vector).

(2) A well-known subset of efficient payoff vectors is called the core
(presented in section 7). A payoff vector from the core cannot be
blocked by the player set N nor by any subset of N. The core for
coalition functions has first been defined by Gillies (1959). Shubik
(1981, S. 299) mentions that Lloyd Shapley proposes this concept
as early as 1953 in unpublished lecture notes. In contrast to Pareto
efficiency and the core, the rank-order values and the Shapley value

33
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are point-valued solution concepts — for every coalition function,
they spit out exactly one payoff vector.

(3) In order to prepare the reader for the Shapley value, we introduce
the ρ-value in section 8. Its idea is to order the players (for example,
player 2 first, then player 3 and player 1 last) and attribute to each
player his marginal contribution — by how much does the worth of
the coalition increase because this particular player joined.

(4) Shapley’s (1953a) article is famous for pioneering the twofold ap-
proach of algorithm and axioms. The algorithmic definition of the
Shapley value (which is a mean of the ρ-values for all different or-
ders ρ) can be found in section 9 while section 10 introduces the
axiomatic definition. The equivalence of these two approaches will
be shown much later, in chapter VI.

2. Coalitions

All players together are assembled in the player set N . More often than
not, we have N = {1, ..., n} with n ∈ N. Any subset K of N , K ⊆ N , is
called a coalition. Two coalitions stand out:

• N itself is called the grand coalition.
• The empty set, denoted by ∅, is a subset of every player set N — it
stands for no players at all.

Sometimes, we want to address the number of players in a coalition. There
is a special symbol for that operation, ||. Thus |K| denotes the number of
players in K which is also called K’s cardinality.

E������� III.1. Determine |∅| and |N |.

Consider the player set N = {1, 2, 3}. How many coalitions can we find?
Here they are:

∅,
{1} , {2} , {3} ,
{1, 2} , {1, 3} , {2, 3} ,
N

A three-player set has eight subsets. The set of {1, 2, 3}’s subsets is denoted
by 2{1,2,3}. Thus, we find

∣∣2{1,2,3}
∣∣ = 2|{1,2,3}|. (Look at it again and express

this formula in words!) In fact, this is a general rule:
∣∣2N

∣∣ = 2|N |

where 2N denotes the set of subsets of N . The above formula is a good
reason for denoting the set of N ’s subsets by 2N . There is another, very
good reason. Consider a subset K of N . Every player i from N belongs to
K (i ∈ K) or not (i ∈ K). Therefore, a coalition is characterized by giving
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one of two states (“in” or “out”) for every player from N. Differently put, a
coalition is a function

N → {in, out} .
The set of these functions are also written as {in, out}N or simpler as 2N .
The set of all subsets of N (or any other set) is sometimes called N ’s power
set.

E������� III.2. Which of the following propositions make sense? Any
coalition K and any grand coalition N fulfill

• K ∈ N and K ∈ 2N ,

• K ⊆ N and K ⊆ 2N ,

• K ∈ N and K ⊆ 2N and/or

• K ⊆ N and K ∈ 2N?

We often need the set-theoretic concept of a complement:

D�������
� III.1 (complement). The set N\K := {i ∈ N : i /∈ K} is
called K’s complement (with respect to N).

”:=” indicates thatN\K (on the :-side) is defined to be equal to {i ∈ N : i /∈ K}
(on the =-side).

E������� III.3. Consider K = {1, 3} . Determine K’s complement with
respect to N = {1, 2, 3} and with respect to N = {1, 2, 3, 4}!

3. The coalition function

In this chapter, we concentrate on a particular game, the gloves game.
Some players have a left glove and others a right glove. Single gloves have a
worth of zero while pairs have a worth of 1 (Euro). The coalition function
for the gloves game is given by

vL,R : 2N → R

K �→ vL,R (K) = min (|K ∩ L| , |K ∩R|) ,
where

• L the set of players holding a left glove and R the set of right-glove
owners together with L ∩R = ∅ and L ∪R = N ,

• vL,R denotes the coalition function for the gloves game,
• 2N is N ’s power set (the domain of vL,R),
• R is the set of real numbers (the range of vL,R),
• |K ∩L| stands for the number of left gloves the players in coalition
K possess, and

• min (x, y) is the smallest of the two numbers x and y.

Thus, the coalition function vL,R attributes the number of pairs in possession
of some coalition K to that coalition.
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D�������
� III.2 (player sets and coalition functions). Player sets and
coalition functions are specified by the following definitions:

• v : 2N → R is called a coalition function if v fulfills v (∅) = 0. v (K)

is called coalition K’s worth.

• For any given coalition function v, its player set can be addressed

by N (v) or, more simply, N .

• We denote the set of all games on N by VN and the set of all games
(for any player set N) by V.

E������� III.4. Assume N = {1, 2, 3, 4, 5}, L = {1, 2} and R = {3, 4, 5}.
Find the worths of the coalitions K = {1} , K = ∅, K = N andK = {2, 3, 4}.

The above exercise makes clear that vL,R is, indeed, a coalition function.
The requirement of v (∅) = 0 makes perfect sense: a group of zero agents
cannot achieve anything.

We can interpret the gloves game as a market game where the left-glove
owners form one market side and the right-glove owners the other. We need
to distinguish the worth (of a coalition) from the payoff acrruing to players.

4. Summing and zeros

Payoffs for players are summarized in payoff vectors:

D�������
� III.3. For any finite and nonempty player set N = {1, ..., n} ,
a payoff vector

x = (x1, ..., xn) ∈ Rn

specifies payoffs for all players i = 1, ..., n.

It is possible to sum coalition functions and it is possible to sum payoff
vectors. Summation of vectors is easy — just sum each component individu-
ally:

E������� III.5. Determine the sum of the vectors



1

3

6


+




2

5

1


!

Note the difference between payoff-vector summation

x+ y =




x1
x2

xn


+




y1
y2

yn


 =




x1 + y1
x2 + y2

xn + yn




and payoff summation
n∑

i=1

xi.
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Vector summation is possible for coalition functions, too. For example,
we obtain the sum v{1},{2,3}+v{1,2},{3} by summing the worths v{1},{2,3} (K)+

v{1,2},{3} (K) for every coalition K, from the empty set ∅ down to the grand
coalition {1, 2, 3} :




∅ : 0
{1} : 0
{2} : 0
{3} : 0
{1, 2} : 1
{1, 3} : 1
{2, 3} : 0
{1, 2, 3} : 1




+




∅ : 0
{1} : 0
{2} : 0
{3} : 0
{1, 2} : 0
{1, 3} : 1
{2, 3} : 1
{1, 2, 3} : 1




=




∅ : 0
{1} : 0
{2} : 0
{3} : 0
{1, 2} : 1
{1, 3} : 2
{2, 3} : 1
{1, 2, 3} : 2




Of course, we need to agree upon a specific order of coalitions.
Mathematically speaking, Rn and VN can be considered as vector spaces.

Vector spaces have a zero. The zero from Rn is

0
∈Rn

=

(
0
∈R
, ..., 0

∈R

)

where the zero on the left-hand side is the zero vector while the zeros on the
right-hand side are just the zero payoffs for all the individual players. In the
vector space of coalition functions, 0 ∈ VN is the function that attributes
the worth zero to every coalition, i.e.,

0
∈VN

(K) = 0
∈R

for all K ⊆ N

We will opresent some vector-space theory in chapter V.

5. Solution concepts

For the time being, cooperative game theory consists of coalition func-
tions and solution concepts. The task of solution concepts is to define and
defend payoffs as a function of coalition functions. That is, we take a coali-
tion function, apply a solution concept and obtain payoffs for all the players.

Solution concepts may be point-valued (solution function) or set-valued
(solution correspondence). In each case, the domain is the set of all games
V for any finite player sets N . A solution function associates each game
with exactly one payoff vector while a correspondence allows for several or
no payoff vectors.

D�������
� III.4 (solution function, solution correspondence). A func-
tion σ that attributes, for each coalition function v from V, a payoff to each
of v’s players,

σ (v) ∈ R|N(v)|,
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is called a solution function (on V)1. Player i’s payoff is denoted by σi (v) .
In case of N (v) = {1, ..., n} , we also write (σ1 (v) , ..., σn (v)) for σ (v) or

(σi (v))i∈N(v) .
A correspondence that attributes a set of payoff vectors to every coalition

function v,

σ (v) ⊆ R|N(v)|

is called a solution correspondence (on V).
Solution functions and solution correspondences are also called solution

concepts (on V).

Ideally, solution concepts are described both algorithmically and ax-
iomatically. An algorithm is some kind of mathematical procedure (a more
less simple function) that tells how to derive payoffs from the coalition func-
tions. Consider, for example, these four solutions concepts in algorithmic
form:

• player 1 obtains v (N) and the other players zero,
• every player gets 100,
• every player gets v (N) /n,
• every player i’s payoff set is given by [v ({i}) , v (N)] (which may
be the empty set).

Alternatively, solution concepts can be defined by axioms. For example,
axioms might demand that

• all the players obtain the same payoff,
• no more than v (N) is to be distributed among the players,
• player 1 is to get twice the payoff obtained by player 2,
• the names of players have no role to play,
• every player gets v (N)− v (N\ {i}) .

Axioms pin down the players’ payoffs, more or less. Axioms may also make
contradictory demands. We present the most familiar axioms in the follow-
ing sections.

6. Pareto efficiency

Arguably, Pareto efficiency is the single most often applied solution con-
cept in economics — rivaled only by Nash equilibrium from noncooperative
game theory. For the gloves game, Pareto efficiency is defined by

∑

i∈N
xi = vL,R (N) .

1More formallay, a solution function on G is given by

σ : G→ ∪k∈NR
k
, σ (v) ∈ R|N(v)|.
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Thus, the sum of all payoffs is equal to the number of glove pairs. It is
instructive to write this equality as two inequalities:

∑

i∈N
xi ≤ vL,R (N) (feasibility) and

∑

i∈N
xi ≥ vL,R (N) (the grand coalition cannot block x).

According to the first inequality, the players cannot distribute more than
they (all together) can “produce”. This is the requirement of feasibility.

Imagine that the second inequality were violated. Then, we have
∑n

i=1 xi
< vL,R (N) and the players would leave “money on the table”. All players
together could block (or contradict) the payoff vector x. This means they
can propose another payoff vector that is both feasible and better for them.
Indeed, the payoff vector y = (y1, ..., yn) defined by

yi = xi +
1

n

(
vL,R (N)−

n∑

i=1

xi

)
, i ∈ N,

does the trick. y improves upon x.

E������� III.6. Show that the payoff vector y is feasible.

Normally, Pareto efficiency is defined by “it is impossible to improve the
lot of one player without making other players worse off”. If a sum of money
is distributed among the player, we can also define Pareto efficiency by “it is
impossible to improve the lot of all players”. The additional sum of money
that makes one player better off (first definition) can be spread among all
the players (second definition).

D�������
� III.5 (feasibility and efficiency). Let v ∈ VN be a coalition
function and let x ∈ Rn be a payoff vector. x is called

• blockable by N in case of

n∑

i=1

xi < v (N) ,

• feasible in case of
∑

i∈N
xi ≤ v (N)

• and efficient or Pareto efficient in case of
∑

i∈N
xi = v (N) .

Thus, an efficient payoff vector is feasible and cannot be blocked by the
grand coalition N . Obviously, Pareto efficiency is a solution correspondence,
not a solution function.
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E������� III.7. Find the Pareto-efficient payoff vectors for the gloves
game v{1},{2}!

For the gloves game, the solution concept “Pareto efficiency” has two
important drawbacks:

• We have very many solutions and the predictive power is weak. In
particular, a left-hand glove can have any price, positive or negative.

• The payoffs for a left-glove owner does not depend on the number
of left and right gloves in our simple economy. Thus, the relative
scarcity of gloves is not reflected by this solution concept.

We now turn to a solution concept that generalizes the idea of blocking from
the grand coalition to all coalitions.

7. The core

Pareto efficiency demands that the grand coalition should not be in a
position to make all players better off. Extending this idea to all coalitions,
the core consists of those feasible (!) payoff vectors that cannot be improved
upon by any coalition with its own means. Formally, we have

D�������
� III.6 (blockability and core). Let v ∈ VN be a coalition
function. A payoff vector x ∈ Rn is called blockable by a coalition K ⊆ N if

∑

i∈K
xi < v (K)

holds. The core is the set of all those payoff vectors x fulfilling
∑

i∈N
xi ≤ v (N) (feasibility) and

∑

i∈K
xi ≥ v (K) for all K ⊆ N (no blockade by any coalition).

Do you see that every payoff vector from the core is also Pareto efficient?
Just take K := N .

The core is a stricter concept than Pareto efficiency. It demands that no
coalition (not just the grand coalition) can block any of its payoff vectors.
Let us consider the gloves game for L = {1} and R = {2} . By Pareto
efficiency, we can restrict attention to those payoff vectors x = (x1, x2) that
fulfill x1+x2 = 1. Furthermore, xmay not be blocked by one-man coalitions:

x1 ≥ vL,R ({1}) = 0 and

x2 ≥ vL,R ({2}) = 0.

Hence, the core is the set of payoff vectors x = (x1, x2) obeying

x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0.



8. THE RANK-ORDER VALUE 41

Are we not forgetting about K = ∅? Let us check
∑

i∈∅
xi ≥ vL,R (∅) .

Since there is not i from ∅ (otherwise ∅ would not be the empty set), the sum∑
i∈∅ xi has no summands and is equal to zero. Since all coalition functions

have worth zero for the empty set, we find
∑

i∈∅ xi = 0 = vL,R (∅) for the
gloves game and also for any coalition function.

E������� III.8. Determine the core for the gloves game vL,R with L =

{1, 2} and R = {3} .

In case of |L| = 2 > 1 = |R| right gloves are scarcer than left gloves.
In such a situation, the owner of a right glove should be better off than the
owner of a left glove. The core reflects the relative scarcity in a drastic way.
Consider the Pareto-efficient payoff vector

y =

(
1

10
,
1

10
,
8

10

)
.

It can be blocked by coalition {1, 3} . Its worth is v ({1, 3}) = 1 which can be
distributed among its members in a manner that both are better off. Thus,
y does not lie in the core.

Note that the core is a set-valued solution concept. It can contain one
payoff vector (see the above exercise) or very many payoff vectors (in case
of L = {1} and R = {2}). Later on, we will see coalition functions with an
empty core: every feasible payoff vector is blockable by at least one coalition.

8. The rank-order value

8.1. Rank orders. The rank-order value (this section) and the Shapley
value (the two following sections) are point-valued solution concepts. We
begin with the rank-order values because the Shapley value builds on these
values.

Consider the player setN = {1, 2, 3} and assume that these three players
stand outside our lecture hall and enter, one after the other. Player 1 may
be first, player 3 second and player 2 last — this is the rank order (1, 3, 2).
All in all, we find these rank orders:

(1, 2, 3) , (1, 3, 2) ,

(2, 1, 3) , (2, 3, 1) ,

(3, 1, 2) , (3, 2, 1) .

It is not difficult to see, why, for three players, there are 6 different rank
orders. For a single player 1, we have just one rank order (1) . The second
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player 2 can be placed before or after player 1 so that we obtain the 1 · 2
rank orders

(1, 2) ,

(2, 1) .

For each of these two, the third player 3 can be placed before the two players,
in between or after them:

(3, 1, 2) , (1, 3, 2) , (1, 2, 3) ,

(3, 2, 1) , (2, 3, 1) , (2, 1, 3) .

Therefore, we have 1 · 2 · 3 = 6 rank orders. Generalizing, , for n players, we
have 1 · 2 · ... · n rank orders. We can also use the abbreviation

n! := 1 · 2 · ... · n
which is to be read “n factorial”.

E������� III.9. Determine the number of rank oders for 5 and for 6

players!

D�������
� III.7 (rank order). Let N = {1, ..., n} be a player set. Bi-
jective function ρ : N → N are called rank orders or permutations on N .

The set of all permutations on N is denoted by RON . The set of all players

“up to and including player i under rank order ρ” is denoted by Ki (ρ) and

given by

ρ (j) = i and Ki (ρ) = {ρ (1) , .., ρ (j)} .

Thus, Ki (ρ) is the set of players who enter our lecture hall in the rank
order ρ just after player i has entered.

E������� III.10. Determine K2 (ρ) for

• ρ = (2, 1, 3) and

• ρ = (3, 1, 2)!

8.2. Marginal contributions with respect to rank orders. The
rank-order values give every players his marginal contribution. The marginal
contribution of player i with respect to coalition K is

“the value with him” minus “the value without him”.

Thus, the marginal contributions reflect a player’s productivity:

D�������
� III.8 (marginal contribution with respect to coalitions). Let
i ∈ N be a player from N and let v ∈ VN be a coalition function on N .

Player i’s marginal contribution with respect to a coalition K is denoted by

MCK
i (v) and given by

MCK
i (v) := v (K∪{i})− v (K\ {i}) .



9. THE SHAPLEY VALUE: THE FORMULA 43

The marginal contribution of a player depends on the coalition function
and the coalition. It does not matter whether i is a member of K or not,
i.e., we have MC

K∪{i}
i (v) =MC

K\{i}
i (v).

E������� III.11. Determine the marginal contributions for v{1,2,3},{4,5}
and

• i = 1,K = {1, 3, 4} ,
• i = 1,K = {3, 4} ,
• i = 4,K = {1, 3, 4} ,
• i = 4,K = {1, 3} .

We now shift from the marginal contribution with respect to some coali-
tion K to the marginal contribution with respect to some rank order ρ. For
rank order (3, 1, 2), one finds the marginal contributions

v ({3})− v (∅) (player 3 enters first),

v ({1, 3})− v ({3}) (player 1 joins player 3), and

v ({1, 2, 3})− v ({1, 3}) (player 2 enters last).

D�������
� III.9 (marginal contribution with respect to rank orders).
Player i’s marginal contribution with respect to rank order ρ is denoted by

MCρ
i (v) and given by

MCρ
i (v) :=MC

Ki(ρ)
i (v) = v (Ki (ρ))− v (Ki (ρ) \ {i}) .

E������� III.12. Find player 2’s rank-order values for the rank orders
(1, 3, 2) and (3, 1, 2)!

Do you see that the players’ marginal contributions add up to v ({1, 2, 3})−
v (∅) = v (N)? When you sum the three marginal contributions, the worths
v ({3}) and v ({1, 3}) cancel! In fact, this holds in general:

L���� III.1 (Adding-up lemma for rank-order values). For any player
set N , any rank order ρ on N and any player i ∈ N , we have

∑

j∈Ki(ρ)

MCρ
i (v) = v (Ki (ρ))

9. The Shapley value: the formula

The Shapley formula rests on a simple idea. Every player obtains

• an average of
• his rank-order values,
• where each rank order is equally likely.

E������� III.13. Consider N = {1, 2, 3} , L = {1, 2} and R = {3} and
determine player 1’s marginal contribution for each rank order.

We employ the following algorithm:
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• We first determine all the possible rank orders.
• We then find the marginal contributions for every rank order (the
rank-order values).

• For every player, we add his marginal contributions.
• Finally, we divide the sum by the number of rank orders.

D�������
� III.10 (Shapley value). The Shapley value is the solution
function Sh given by

Shi (v) =
1

n!

∑

ρ∈RON

MCρ
i (v)

According to the previous exercise, we have

Sh1
(
v{1,2},{3}

)
=

1

6
.

The Shapley values of the other two players can be obtained by the same pro-
cedure. However, there is a more elegant possibility. The Shapley values of
players 1 and 2 are identical because they hold a left glove each and are sym-
metric (in a sense to be defined shortly). Thus, we have Sh2

(
v{1,2},{3}

)
= 1

6 .
Also, the Shapley value satisfies Pareto efficiency which means that the sum
of the payoffs equals the worth of the grand coalition:

3∑

i=1

Shi
(
v{1,2},{3}

)
= v ({1, 2, 3}) = 1

Thus, we find

Sh
(
v{1,2},{3}

)
=

(
1

6
,
1

6
,
2

3

)
.

10. The Shapley value: the axioms

The Shapley value fulfills four axioms:

• the efficiency axiom: the worth of the grand coalition is to be dis-
tributed among all the players,

• the symmetry axiom: players in similar situations obtain the same
payoff,

• the null-player axiom: a player with zero marginal contribution to
every coalition obtains zero payoff, and

• additivity axiom: if players are subject to two coalition functions,
it does not matter whether we apply the Shapley value to the sum
of these two coalition functions or apply the Shapley value to each
coalition function separately and sum the payoffs.

A solution function σ may or may not obey the four axioms mentioned
above.
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D�������
� III.11 (efficiency axiom). A solution function σ is said to

obey the efficiency axiom or the Pareto axiom if
∑

i∈N
σi (v) = v (N)

holds for all coalition functions v ∈ V.
In the gloves game, two left-glove owners are called symmetric.

D�������
� III.12 (symmetry). Two players i and j are called symmet-
ric (with respect to v ∈ V) if we have

v (K ∪ {i}) = v (K ∪ {j})
for every coalition K that does not contain i or j.

E������� III.14. Show that any two left-glove holders are symmetric in
a gloves game vL,R.

E������� III.15. Show MCK
i =MCK

j for two symmetric players i and

j fulfilling i /∈ K and j /∈ K.

It may seem obvious that symmetric players obtain the same payoff:

D�������
� III.13 (symmetry axiom). A solution function σ is said to
obey the symmetry axiom if we have

σi (v) = σj (v)

for any game v ∈ V and any two symmetric players i and j.
In any gloves game obeying L �= ∅ �= R, every player has a non-zero

marginal contribution sometimes.

D�������
� III.14 (null player). A player i ∈ N is called a null player

(with respect to v) if

v (K ∪ {i}) = v (K)

holds for every coalition K.

Shouldn’t a null player obtain nothing?

D�������
� III.15 (null-player axiom). A solution function σ is said to
obey the null-player axiom if we have

σi (v) = 0

for any game v ∈ V and for any null player i ∈ N.

E������� III.16. Under which condition is a player from L a null player

in a gloves game vL,R?

The last axiom that we consider at present is the additivity axiom. It
rests on the possibility to add both payoff vectors and coalition functions
(see section 4).
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D�������
� III.16 (additivity axiom). A solution function σ is said to
obey the additivity axiom if we have

σ (v +w) = σ (v) + σ (w)

for any two coalition functions v,w ∈ V with N (v) = N (w).

Do you see the difference? On the left-hand side, we add the coalition
functions first and then apply the solution function. On the right-hand side
we apply the solution function to the coalition functions individually and
then add the payoff vectors.

E������� III.17. Can you deduce σ (0) = 0 from the additivity axiom?

Hint: use v = w := 0.

Now we note a stunning result:

T �
��� III.1 (Shapley axiomatization). The Shapley formula is the
unique solution function that fulfills the symmetry axiom, the efficiency ax-

iom, the null-player axiom and the additivity axiom.

The theorem means that the Shapley formula fulfills the four axioms.
Consider now a solution function that fulfills the four axioms. According to
the theorem, the Shapley formula is the only solution function to do so.

Differently put, the Shapley formula and the four axioms are equivalent
— they specify the same payoffs. Cooperative game theorists say that she
Shapley formula is “axiomatized” by the set of the four axioms. The chapter
after next will show you how to prove this wonderful result.

E������� III.18. Determine the Shapley value for the gloves game for
L = {1} and R = {2, 3, 4}! Hint: You do not need to write down all 4! rank
orders. Try to find the probability that player 1 does not complete a pair.
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11. Topics and literature

The main topics in this chapter are

• coalition
• coalition function
• gloves game
• core
• efficiency
• feasibility
• marginal contribution
• axioms
• symmetry
• null player
• Shapley value

We introduce the following mathematical concepts and theorems:

• t

•
We recommend

12. Solutions

Exercise III.1
We have |∅| = 0 and |N | = n.

Exercise III.2
The first three propositions are nonsensical, the last one is correct.

Exercise III.3
We have {1, 2, 3} \K = {2} and {1, 2, 3, 4} \K = {2, 4} .

Exercise III.4
The values are

vL,R ({1}) = min (1, 0) = 0,

vL,R (∅) = min (0, 0) = 0,

vL,R (N) = min (2, 3) = 2 and

vL,R ({2, 3, 4}) = min (2, 1) = 1.

Exercise III.5
We obtain the sum of vectors




1

3

6


+




2

5

1


 =




1 + 2

3 + 5

6 + 1


 =




3

8

7



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Exercise III.6
Feasibility follows from

n∑

i=1

yi =
n∑

i=1

xi +
n∑

i=1

1

n


vL,R (N)−

n∑

j=1

xj




=
n∑

i=1

xi +
1

n




n∑

i=1

vL,R (N)−
n∑

i=1

n∑

j=1

xj




=
n∑

i=1

xi +
1

n


nvL,R (N)− n

n∑

j=1

xj




= vL,R (N) .

Exercise III.7
The set of Pareto-efficient payoff vectors (x1, x2) are described by x1 +

x2 = 1. In particular, we may well have x1 < 0.

Exercise III.8
The core obeys the conditions

x1 + x2 + x3 = vL,R (N) = 1,

xi ≥ 0, i = 1, 2, 3,

x1 + x2 ≥ 0,

x1 + x3 ≥ 1 and

x2 + x3 ≥ 1.

Substituting x1 + x3 ≥ 1 into the efficiency condition yields

x2 = 1− (x1 + x3) ≤ 1− 1 = 0.

Hence (because of x2 ≥ 0), we have x2 = 0. For reasons of symmetry, we also
have x1 = 0. Applying efficiency once again, we obtain x3 = 1−(x1 + x2) =

1. Thus, the only candidate for the core is x = (0, 0, 1) . Indeed, this payoff
vector fulfills all the conditions noted above. Therefore,

(0, 0, 1)

is the only element in the core.
Exercise III.11
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The marginal contributions are

MC
{1,3,4}
1

(
v{1,2,3},{4,5}

)
= v ({1, 3, 4} ∪ {1})− v ({1, 3, 4} \ {1})
= v ({1, 3, 4})− v ({3, 4})
= 1− 1 = 0,

MC
{3,4}
1

(
v{1,2,3},{4,5}

)
= v ({3, 4} ∪ {1})− v ({3, 4} \ {1})
= v ({1, 3, 4})− v ({3, 4})
= 1− 1 = 0,

MC
{1,3,4}
4

(
v{1,2,3},{4,5}

)
= v ({1, 3, 4} ∪ {4})− v ({1, 3, 4} \ {4})
= v ({1, 3, 4})− v ({1, 3})
= 1− 0 = 1,

MC
{1,3}
4

(
v{1,2,3},{4,5}

)
= v ({1, 3} ∪ {4})− v ({1, 3} \ {4})
= v ({1, 3, 4})− v ({1, 3})
= 1− 0 = 1.

Exercise III.12
The marginal contributions and hence the rank-order values are the

same: v ({1, 2, 3})− v ({1, 3}) .
Exercise III.9

We find 5! = 1 ·2 · 3 ·4 · 5 = 120 rank orders of 5 players and 6! = 5! ·6 =

120 · 6 = 720 rank orders for 6 players.
Exercise III.10

We find K2 ((2, 1, 3)) = {2} and K2 ((3, 1, 2)) = {1, 2, 3} .
Exercise III.13

We find the marginal contributions

v ({1})− v (∅) = 0− 0 = 0, rank order (1, 2, 3)

v ({1})− v (∅) = 0− 0 = 0, rank order (1, 3, 2)

v ({1, 2})− v ({2}) = 0− 0 = 0, rank order (2, 1, 3)

v ({1, 2, 3})− v ({2, 3}) = 1− 1 = 0, rank order (2, 3, 1)

v ({1, 3})− v ({3}) = 1− 0 = 1, rank order (3, 1, 2)

v ({1, 2, 3})− v ({2, 3}) = 1− 1 = 0, rank order (3, 2, 1) .

Exercise III.14
Let i and j be players from L and let K be a coalition that contains

neither i nor j. Then K ∪ {i} contains the same number of left and the
same number of right gloves as K ∪ {j}. Therefore,

vL,R (K ∪ {i}) = min (|(K ∪ {i}) ∩L| , |(K ∪ {i}) ∩R|)
= min (|(K ∪ {j}) ∩ L| , |(K ∪ {j}) ∩R|)
= vL,R (K ∪ {j}) .
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Exercise III.15
The equality follows from

MCK
i = v (K ∪ {i})− v (K\ {i})

= v (K ∪ {i})− v (K)

= v (K ∪ {j})− v (K)

= v (K ∪ {j})− v (K\ {j})
= MCK

j .

Exercise III.16
A player i from L is a null player iff R = ∅ holds. R = ∅ implies

vL,∅ (K) = min (|K ∩ L| , |K ∩ ∅|)
= min (|K ∩ L| , 0)
= 0

for every coalition K. R �= ∅ means that i has a marginal contribution of 1
when he comes second after a right-glove holder.
Exercise III.18

The left-glove holder 1 completes a pair (the only one) whenever he does
not come first. The probability for coming first is 1

4 for player 1 (and any
other player). Thus, player 1 obtains

(
1− 1

4

)
· 1. The other players share

the rest. Therefore, symmetry and efficiency lead to

ϕ1
(
v{1},{2,3,4}

)
=

3

4
,

ϕ2
(
v{1},{2,3,4}

)
= ϕ3

(
v{1},{2,3,4}

)
= ϕ4

(
v{1},{2,3,4}

)
=

1

12
.

13. Further exercises without solutions



CHAPTER IV

Many games

0.1. Introduction. In the previous chapter, we focus on a specific class
of games, the gloves games. In this chapter, we aim to familiarize the reader
with many other interesting games.

Simple games are simple — all the coalitions have worth 0 or 1. We
address worth-0 coalitions as loosing coalitions and worth-1 coalitions as
winning coalitions. Simple games can be used to model these interesting
situations:

• Political parties form a winning coalition if they command more
than fifty percent of a parliament’s seats. In Germany, one par-
ticular winning coalition of political parties forms the government
coalition in order to elect the chancellor.

• The United Nation’s Security Council has peculiar voting rules ac-
cording to which each permanent member (China, France, ...) has
veto power.

• Some players may be powerful or productive if they combine while
all the other players are “useless”. For example, each productive
player possesses part of a treasure map. The treasure can be found
only if all the different parts of the map are put together. This
type of game is called a unanimity game.

We also introduce non-simple games:

• For example, a car is sold by one player to one of two prospective
buyers. The willingness’ to pay by both buyers should influence
the seller’s payoff.

• Many organizations have the problem of dividing overhead cost to
several units. Examples are doctors with a common secretary or
commonly used facilities, firms organized as a collection of profit-
centers, universities with computing facilities used by several de-
partments or faculties. We show that the core and also the Shapley
value can provide solutions to this problem. This sections rests on
Young (1994a) and chapter 5 from Young (1994b).

• We consider endowment games which are generalizations of gloves
games. Players may possess any number of gloves are any other
goods.

51
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Finally, this chapter presents general properties of coalition functions such
as monotonicity or superadditivity.

1. Simple games

1.1. Definition. We first define monotonic games and then simple games.

D�������
� IV.1 (monotonic game). A coalition function v ∈ VN is
called monotonic if ∅ ⊆ S ⊆ S′ implies v (S) ≤ v (S′) .

Thus, monotonicity means that the worth of a coalition cannot decrease
if other players join. Differently put, if S′ is a superset of S (or S a subset
of S′), we cannot have v (S) = 1 and v (S′) = 0.

Simple games are a special subclass of monotonic games:

D�������
� IV.2 (simple game). A coalition function v ∈ VN is called
simple if

• we have v (K) = 0 or v (K) = 1 for every coalition K ⊆ N ,

• the grand coalition’s worth is 1 and.
• v is monotonic.

Coalitions with v (K) = 1 are called winning coalitions and coalitions with

v (K) = 0 are called loosing coalitions. A winning coalition K is a minimal

winning coalition if every strict subset of K is not a winning coalition.

Simple games can be characterized by the pivotal coalitions of all the
players:

D�������
� IV.3 (pivotal coalition). For a simple game v, K ⊆ N is a

pivotal coalition for i ∈ N if v (K) = 0 and v (K ∪ {i}) = 1. The number of

i’s pivotal coalitions is denoted by ηi (v) ,

ηi (v) := |{K ⊆ N : v (K) = 0 and v (K ∪ {i}) = 1}| .
We have η (v) := (η1 (v) , ..., ηn (v)) and η̄ (v) :=

∑
i∈N ηi (v) .We sometimes

omit v and write ηi (η, η̄) rather than ηi (v) (η (v) , η̄ (v)).

By
∣∣2N\{i}

∣∣ = 2n−1, no player can have more pivotal coalitions than
2n−1.

E������� IV.1. How do you call a player i ∈ N who has no pivotal

coalitions?

1.2. Veto players and dictators. According to the previous exercise,
all interesting simple games have v (N) = 1. Sometimes, some players are
of central importance:

D�������
� IV.4 (veto player, dictator). Let v be a simple game. A
player ∈ N is called a veto player if

v (N\ {i}) = 0



1. SIMPLE GAMES 53

holds. i is called a dictator if

v (S) =

{
1, i ∈ S

0, sonst

holds for all S ⊆ N .

Thus, without a veto player, the worth of a coalition is 0 while a dictator
can produce the worth 1 just by himself.

E������� IV.2. Can there be a coalition K such that v (K\ {i}) = 1 for

a veto player i or a dictator i?

E������� IV.3. Is every veto player a dictator or every dictator a veto
player?

E������� IV.4. How do you call a player i ∈ N with ηi = 2n−1?

1.3. Simple games and voting mechanisms. Oftentimes, simple
games can be used to model voting mechanisms. As a matter of consistency,
complements of winning coalitions have to be loosing coalitions. Otherwise,
a coalition K could vote for something and N\K would vote against it, both
of them successfully.

D�������
� IV.5 (contradictory, decidable). A simple game v ∈ VN is
called non-contradictory if v (K) = 1 implies v (N\K) = 0.

A simple game v ∈ VN is called decidable if v (K) = 0 implies v (N\K) =

1.

Thus, a contradictory voting game can lead to opposing decisions — for
example, some candidate A is voted president (with the support of some
coalition K) and then some other candidate B (with the support of N\K)
is also voted president. A non-decidable voting game can prevent any deci-
sion. Neither A nor B can gain enough support because coalition K blocks
candidate B while N\K blocks candidate A.

E������� IV.5. Show that a simple game with a veto player cannot be
contradictory. A simple game with two veto players cannot be decidable.

1.4. Unanimity games. Unanimity games are famous games in coop-
erative game theory. We will use them to prove the Shapley theorem.

D�������
� IV.6 (unanimity game). For any T �= ∅,

uT (K) =

{
1, K ⊇ T

0, otherwise

defines a unanimity game.

The T -players exert a kind of common dictatorship.
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E������� IV.6. Find the null players in the unanimity game uT .

E������� IV.7. Find the core and the Shapley value for N = {1, 2, 3, 4}
and u{1,2}.

1.5. Apex-Spiel. The apex game has one important player i ∈ N who
is nearly a veto player and nearly a dictator.

D�������
� IV.7 (apex game). For i ∈ N with n ≥ 2, the apex game hi
is defined by

hi (K) =





1, i ∈ K and K\ {i} �= ∅
1, K = N\ {i}
0, otherwise

Player i is called the main, or apex, player of that game.

Thus, there are two types of winning coalitions in the apex game:

• i together with at least one other player or
• all the other players taken together.

Generally, we work with apex games for n ≥ 4.

E������� IV.8. Consider h1 for n = 2 and n = 3. How do these games

look like?

E������� IV.9. Is the apex player a veto player or a dictator?

E������� IV.10. Show that the apex game is decidable and not contra-
dictory.

Let us now think find the Shapley value for the apex game. Consider all
the rank orders. The apex player i ∈ N obtains the marginal contribution
1 unless

• he is the first player in a rank order (then his marginal contribution
is v ({i})− v (∅) = 0− 0 = 0) or

• he is the last player (with marginal contribution v (N)−v (N\ {i}) =
1− 1 = 0).

Since every position of the apex player in a rank order has the same proba-
bility, the following exercise is easy:

E������� IV.11. Find the Shapley value for the apex game h1!

1.6. Weighted voting games.
1.6.1. Definition. Weighted voting games form an important subclass of

the simple games. We specify weights for every player and a quota. If the
sum of weights for a coalition is equal to or above the quota, that coalition
is a winning one.
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D�������
� IV.8 (weighted voting game). A voting game v is specified
by a quota q and voting weights gi, i ∈ N, and defined by

v (K) =

{
1,

∑
i∈K gi ≥ q

0,
∑

i∈K gi < q

In that case, the voting game is also denoted by [q; g1, ..., gn] .

For example, [
1

2
;
1

n
, ...,

1

n

]

is the majority rule, according to which fifty percent of the votes are nec-
essary for a winning coalition. Do you see that n = 4 implies that the
coalition {1, 2} is a winning coalition and also the coalition of the other
players, {3, 4}? Thus, this voting game is contradictory.

The apex game h1 for n players can be considered a weighted voting
game given by [

n− 1;n− 3

2
, 1, ..., 1

]
.

E������� IV.12. Consider the unanimity game uT given by t < n and

T = {1, ..., t} . Can you express it as a weighted voting game?

1.6.2. UN Security Council. Let us consider the United Nations’ Secu-
rity Council. According to http://www.un.org/sc/members.asp:, it has 5

permanent members and 10 non-permanent ones. The permanent mem-
bers are China, France, Russian Federation, the United Kingdom and the
United States. In 2009, the non-permanent members were Austria, Burkina
Faso, Costa Rica, Croatia, Japan, Libyan Arab Jamahiriya, Mexico, Turkey,
Uganda and Viet Nam.

We read:

Each Council member has one vote. ... Decisions on sub-
stantive matters require nine votes, including the concurring
votes of all five permanent members. This is the rule of "great
Power unanimity", often referred to as the "veto" power.

Under the Charter, all Members of the United Nations
agree to accept and carry out the decisions of the Security
Council. While other organs of the United Nations make
recommendations to Governments, the Council alone has the
power to take decisions which Member States are obligated
under the Charter to carry out.

Obviously, the UN Security Council has a lot of power and so its voting
mechanism deserves analysis. The above rule for "substantive matters" can
be translated into the weighted voting game

[39; 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
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where the weights 7 accrue to the five permanent and the weights 1 to the
non-permanent members.

E������� IV.13. Using the above voting game, show that every perma-
nent member is a veto player. Show also that the five permanent members

need the additional support of four non-permanent ones.

E������� IV.14. Is the Security Council’s voting rule non-contradictory
and decidable?

It is not easy to calculate the Shapley value for the Security Council.
After all, we have

15! = 1.307.674.368.000

rank orders for the 15 players. Anyway, the Shapley values are

0, 19627 for each permanent member

0, 00186 für each non-permanent member.

2. Three non-simple games

2.1. Buying a car. Following Morris (1994, S. 162), we consider three
agents envolved in a car deal. Andreas (A) has a used car he wants to sell,
Frank (F) and Tobias (T) are potential buyers with willingness to buy of
700 and 500, respectively. This leads to the coalition function v given by

v (A) = v (F ) = v (T ) = 0,

v (A,F ) = 700,

v (A, T ) = 500,

v (F, T ) = 0 and

v (A,F, T ) = 700.

One-man coalitions have the worth zero. For Andreas, the car is useless (he
believes in cycling rather than driving). Frank and Tobias cannot obtain
the car unless Andreas cooperates. In case of a deal, the worth is equal to
the (maximal) willingness to pay.

We use the core to find predictions for the car price. The core is the set
of those payoff vectors (xA, xF , xT ) that fulfill

xA + xF + xT = 700

and

xA ≥ 0, xF ≥ 0, xT ≥ 0,

xA + xF ≥ 700,

xA + xT ≥ 500 and

xF + xT ≥ 0.
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Tobias obtains

xT = 700− (xA + xF ) (efficiency)

≤ 700− 700 (by xA + xF ≥ 700)

= 0

and hence zero, xT = 0. By xA + xT ≥ 500, the seller Andreas can obtain
at least 500.

Summarizing (and checking all the conditions above), we see that the
core is the set of vectors (xA, xF , xT ) obeying

500 ≤ xA ≤ 700,

xF = 700− xA and

xT = 0.

Therefore, the car sells for a price between 500 and 700.

2.2. The Maschler game. Aumann & Myerson (1988) present the
Maschler game which is the three-player game given by

v (K) =





0, |K| = 1

60, |K| = 2

72, |K| = 3

Obviously, the three players are symmetric. It is easy to see that all players
of symmetric games are symmetric.

D�������
� IV.9 (symmetric game). A coalition function v is called

symmetric if there is a function f : N → R such that

v (K) = f (|K|) , K ⊆ N.

E������� IV.15. Find the Shapley value for the Maschler game!

According to the Shapley value, the players 1 and 2 obtain less than
their common worth. Therefore, they can block the payoff vector suggested
by the Shapley value. Indeed, for any efficient payoff vector, we can find a
two-man coalition that can be made better off. Differently put: the core is
empty.

This can be seen easily. We are looking for vectors (x1, x2, x3) that fulfill
both

x1 + x2 + x3 = 72

and

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,

x1 + x2 ≥ 60,

x1 + x3 ≥ 60 and

x2 + x3 ≥ 60.
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Summing the last three inequalities yields

2x1 + 2x2 + 2x3 ≥ 3 · 60 = 180

and hence a contradiction to efficiency.

2.3. The gloves game, once again. In chapter III, we have calcu-
lated the core for the gloves game L = {1, 2} and R = {3}. The core clearly
shows the bargaining power of the right-glove owner. We will now consider
the core for a case where the scarcity of right gloves seems minimal:

L = {1, 2, ..., 100}
R = {101, ..., 199} .

If a payoff vector

(x1, ..., x100,x101, ..., x199)

is to be long to the core, we have

199∑

i=1

xi = 99

by the efficiency axiom. We now pick any left-glove holder j ∈ {1, 2, ..., 100} .
We find

v (L\ {j}∪R) = 99

and hence

xj = 99−
199∑

i=1,
i�=j

xi (efficiency)

≤ 99− 99 (blockade by coalition L\ {j}∪R)
= 0.

Therefore, we have xj = 0 for every j ∈ L.
Every right-glove owner can claim at least 1 because he can point to

coalitions where he is joined by at least one left-glove owner. Therefore,
every right-glove owner obtains the payoff 1 and every left-glove owner the
payoff zero. Inspite of the minimal scarcity, the right-glove owners get every-
thing.

If two left-glove owners burned their glove, the other left-glove owners
would get a payoff increase from 0 to 1. (Why?)

E������� IV.16. Consider a generalized gloves game where

• player 1 has one left glove,
• player 2 has two left gloves and
• players 3 and 4 have one right glove each.

Calculate the core. How does the core change if player 2 burns one of

his two gloves?
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The burn-a-glove strategy may make sense if payoffs depend on the
scarcity in an extreme fashion as they do for the core.

3. Cost division games

We model cost-division games (for doctors sharing a secretarial office
or faculties sharing computing facilities) by way of cost functions and cost-
savings functions.

D�������
� IV.10 (cost-division game). For a player set N , let c : 2N →
R+ be a coalition function that is called a cost function. On the basis of c,
the cost-savings game is defined by v : 2N → R and

v (K) =
∑

i∈K
c ({i})− c (K) ,K ⊆ N.

The idea behind this definition is that cost savings can be realized if
players pool their resources so that

∑
i∈K

c ({i}) is greater than c (K) and

v (K) is positive.
We consider a specific example. Two towns A and B plan a water-

distribution system.Town A could build such a system for itself at a cost of
11 million Euro and twon B would need 7 million Euro for a system tailor-
made to its needs. The cost for a common water-distribution system is 15
million Euro. The cost function is given by

c ({A}) = 11, c ({B}) = 7 and

c ({A,B}) = 15.

The associated cost-savings game is v : 2{A,B} → R defined by

v ({A}) = 0, c ({B}) = 0 and

v ({A,B}) = 7 + 11− 15 = 3.

v’s core is obviously given by
{
(xA, xB) ∈ R2+ : x1 + x2 = 3

}
.

The cost savings of 3 = 11 + 7− 15 can be allotted to the towns such that
no town is worse off compared to going alone. Thus, the set of undominated
cost allocations is

{
(cA, cB) ∈ R2 : cA + cB = 15, cA ≤ 11, cB ≤ 7

}
.

4. Endowment games

Gloves games are a specific class of endowment games. In these games,
players own an endowment (in the gloves game: a right or a left glove). We
first define the endowment economy and then, on that basis, the endowment
game.



60 IV. MANY GAMES

D�������
� IV.11 (endowment economy). An endowment economy is a
tuple

E =
(
N,G,

(
ωi

)
i∈N , agg

)

consisting of

• the set of agents N = {1, 2, ..., n} ,
• the finite set of goods G = {1, ..., ℓ} ,
• for every agent i ∈ N, an endowment ωi =

(
ωi1, ..., ω

i
ℓ

)
∈ Rℓ+ where

ω :=
∑

i∈N
ωi =

(
∑

i∈N
ωi1, ...,

∑

i∈N
ωiℓ

)

is the economy’s total endowment, and

• an aggregation functions agg : Rℓ → R.

Two remarks are in order:

• Do you see the connection between ω and the exchange Edgeworth
box introduced in chapter II on pp. 16?

• The aggregation function aggregates the different goods’ amounts
into a specific real number in the same way as the min-operator
does in the gloves game.

D�������
� IV.12 (endowment game). Consider an endowment econ-
omy E. An endowment game vE : 2N → R is defined by

vE (K) := agg

(
∑

i∈K
ωi1, ...,

∑

i∈K
ωiℓ

)
.

We sometimes write vω rather than vE .

Within the class of endowment games, we can define the sum of two
coalition functions on N in the usual manner — just sum the worths of every
coalition. For example, we have

(
v{1,2},{3} + v{1},{2,3}

)
({2})

= v{1,2},{3} ({2}) + v{1},{2,3} ({2})
= 0 + 0 = 0

However, taking the specific nature of endowment games into account, it is
also plausible to sum endowments and take it from there. In that case, we
find that player 2 has a left glove (in v{1,2},{3}) and a right glove (in v{1},{2,3})
and hence the worth 1. We capture this idea by the following definition:

D�������
� IV.13 (summing of endowment games). Consider two en-
dowment economies E and F which have the same player set N, the same
set of goods G and the same aggregation function agg. In that case, E and
F are called structurally identical. The (possibly different) endowments are
denoted ωE and ωF , respectively, and the derived endowment games by vE
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and vF . The endowment-based sum of these games is denoted by vE ⊕ vF
and defined by

ωig = (ωE)
i
g + (ωF )

i
g , i ∈ N, g ∈ G and

(vE ⊕ vF ) (K) : = agg

(
∑

i∈K
ωi1, ...,

∑

i∈K
ωiℓ

)
.

Note that the sum of two gloves games need not be a gloves game, but a
generalized gloves game where players can have any number of left or right
gloves.

Endowment-based summing is of economic interest. For example, we
can consider two autarkic economies that open up for trade and define the
gains from trade:

D�������
� IV.14 (summing of endowment games). For a player set
N , consider two endowment economies E and F . The gains from trade are
defined by

GfT (E ,F) = (vE ⊕ vF) (N)− [vE (N) + vF (N)] .

Thus the usual sum of coalition function ignores all substantial linkages
that might exist between them.

E������� IV.17. Show that the gains from trade are zero for any gloves
game vE := v{L},{R} and vF := vE .

A specific class of endowment games has been proposed by Owen (1975):
production games. In these games, players’ endowments represent factors of
production rather than consumption goods. The idea is that the players pool
their factors of production and sell the output. We define the aggregation
function agg : Rℓ → R by

agg (ω1, ..., ωℓ) := p · f (ω1, ..., ωℓ)

where f is a production function and p the price vector. If m goods are
produced, p is a price vector with m entries and · stands for the scalar
product. Thus, the endowment game’s worths stand for

• the revenue
• generated by the output
• produced with the factors of production
• a coalition is endowed with.

5. Properties of coalition functions

5.1. Zero players and symmetric players.
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D�������
� IV.15 (zero player). A player i ∈ N is a zero player for a

coalition function v ∈ VN if
v (K∪{i}) = v (K\ {i})

holds for every coalition K ⊆ N .

D�������
� IV.16 (inessential player). A player i ∈ N is an inessential

player for a coalition function v ∈ VN if
v (K∪{i})− v (K\ {i}) = v ({i})

holds for every coalition K ⊆ N .

5.2. Inessentiality and additivity. We begin with boring coalition
functions.

D�������
� IV.17 (triviality). A coalition function v ∈ VN is called
trivial if

v (K) = 0

holds for every coalition K ⊆ N .

Thus, a trivial coalition function v ∈ VN is the zero coalition function
v = 0.

D�������
� IV.18 (inessentiality). A coalition function v ∈ VN is called
inessential if

v (K) =
∑

i∈K
v ({i})

holds for all K ⊆ N .

D�������
� IV.19. A coalition function is called additive if v (R ∪ S) =

v (R) + v (S) holds for all coalitions R and S ⊆ N obeying R ∩ S = ∅.

L���� IV.1. A coalition function v is inessential if and only if every

player i ∈ N is an inessential player for v and if and only if v is additive.

5.3. Monotonicity and superadditivity. Nearly all the coalition func-
tions we work with in this book are monotonic (see definition IV.1 on p. 52)
and superadditive. Monotonicity and superadditivity are closely related:

• Monotonicity means that adding players never decreases the worth.
• Superadditivity can be tanslated as “cooperation pays”.

D�������
� IV.20 (superadditivity). A coalition function v ∈ VN is
called superadditive if for any two coalitions R and S

R ∩ S = ∅
implies

v (R) + v (S) ≤ v (R ∪ S) .

v (R ∪ S)− (v (R) + v (S)) ≥ 0 is called the gain from cooperation.
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Glove games are monotonic because the number of glove pairs cannot
decrease if additional players (and hence additional gloves) are added. They
are also superadditive because the number of glove pairs cannot decrease
when two disjoint coalitions pool their gloves.

E������� IV.18. Is the coalition function v, given by N = {1, 2, 3} and
v ({1, 2, 3}) = 5,

v ({1, 2}) = v ({1, 3}) = v ({2, 3}) = 4,

v ({1}) = v ({2}) = v ({3}) = 0

superadditive?

E������� IV.19. How about superadditivity of unanimity games, of the
Maschler game or of a contradictory simple game?

While monotonicity and superadditivity seem very similar properties,
monotonicity does not imply superadditivity as you can see from N = {1, 2}
and v ({1}) = v ({2}) = 3 and v ({1, 2}) = 4.

E������� IV.20. Show that every monotonic game v is non-negative,
i.e., fulfills v (K) ≥ 0 for alle K ⊆ N.

E������� IV.21. Show that superadditivity and non-negativity imply
monotonicity.

5.4. Convexity. Superadditivity means: cooperation pays. Convexity
implies superadditivity, but is stronger. Convexity is interesting because the
Shapley value can be shown to lie in the core of any convex game.

D�������
� IV.21 (convexity). A coalition function v ∈ VN is called
convex if for any two coalitions S and S′ with S ⊆ S′ and for all players
i ∈ N\S′, we have

v (S ∪ {i})− v (S) ≤ v
(
S′ ∪ {i}

)
− v

(
S′

)
.

v is called strictly convex if the inequality is strict.

Thus, the marginal contribution is large for large coalitions. May-be,
you find fig. 1 helpful.

Let us consider the example of by N = {1, 2, 3, 4} and the coalition
function v given by

v (S) = |S| − 1, S �= ∅.
Note that the marginal contribution is zero for any player who joins the
empty set,

v (∅ ∪ {i})− v (∅) = [|{i}| − 1]− 0 = 0,

while the marginal contribution with respect to any nonempty coalition is
1. Thus, this coalition function is convex.
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F����� 1. Strict convexity

E������� IV.22. Is the unanimity game uT convex? Distinguish between
i ∈ T and i /∈ T . Is uT strictly convex?

Why are convex coalition functions called convex? The reader remem-
bers that function f : R → R that are defined by f (x) = x2 or f (x) = ex

are called convex. If they are twice differentiable, the second derivatives (2
and ex in our examples) are positive.

To see that convex coalition functions behave similarly, we consider the
special case of symmetric coalition functions. In fig. 2, you see that the
differences increase as they do for x2.

Sometimes, an alternative characterization of convexity is helpful:

T �
��� IV.1 (criterion for convexity). A coalition function v is convex
if and only if for all coalitions R and S, we have

v (R ∪ S) + v (R ∩ S) ≥ v (R) + v (S) .

v is strictly convex if and only if

v (R ∪ S) + v (R ∩ S) > v (R) + v (S)

holds for all coalitions R and S with R\S �= ∅ and S\R �= ∅.

We do not present a proof for this criterion. The reader can find a proof
in the textbook on lattice theory by Topkis (1998).
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F����� 2. Convexity for symmetric coalition functions

We now turn to the relationship between superadditivity and convexity.

E������� IV.23. Is the Maschler game convex? Is it superadditive?

Thus, a superadditive coalition function need not be convex. However,
the inverse is true.

E������� IV.24. Using the above criterion for convexity, show that
every convex coalition function is superadditive.

5.5. The Shapley value and the core. The Shapley value need not
be in the core even if the core is nonempty. This assertion follows from the
following exercise that is taken from Moulin (1995, S. 425).

E������� IV.25. Consider the coalition function given by N = {1, 2, 3}
and

v (K) =





0, |K| = 1
1
2 , K = {1, 3} or K = {2, 3}
8
10 , K = {1, 2}
1, K = {1, 2, 3}

Show that
(
4
10 ,

4
10 ,

2
10

)
belongs to the core but that the Shapley value does not.

However, the Shapley value can be shown to lie in the core for convex
coalition functions:
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T �
��� IV.2. If a coalition function v is convex, the Shapley value

Sh (v) lies in the core.
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6. Topics and literature

The main topics in this chapter are

• simple game
• winning coalition
• veto player
• dictator
• null player
• unanimity game
• apex game
• weighted voting game
• buying-a-car game
• Maschler-Spiel
• endowment game
• superadditivity
• convexity
• monotonicity

We introduce the following mathematical concepts and theorems:

• linear independence
• span
• basis
• coefficients

We recommend .

7. Solutions

Exercise IV.1
ηi = 0 means that player i’s marginal contribution is zero with respect

to every coalition and hence player i is a null player.
Exercise IV.2

Can there be a coalition K such that v (K\ {i}) = 1 for a veto player i
or a dictator i?

If i is a veto player, we have v (K\ {i}) ≤ v (N\ {i}) = 0 for every
coalitionK ⊆ N and hence v (K\ {i}) = 0. Thus, a veto player i ∈ N cannot
fulfill v (K\ {i}) = 1. A dictator i cannot fulfill v (K\ {i}) = 1 because the
worth of a coalition is 1 if and only if the dictator belongs to the coalition.
Exercise IV.3

A dictator is always a veto player — without him the coalition cannot
win. However, a veto player need not be a dictator. Just consider the simple
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game v on the player set N = {1, 2} defined by v ({1}) = v ({2}) = 0,

v ({1, 2}) = 1. Players 1 and 2 are two veto players but not dictators.
Exercise IV.4

ηi = 2n−1 implies that every subset K of N\ {i} is a loosing coalition
while K ∪ {i} is winning. Player i is a dictator and a veto player.
Exercise IV.5

Let v be a simple game with a veto player i ∈ N . Then v (K) = 1

implies i ∈ K. By i /∈ N\K, we obtain v (N\K) = 0 — the desired result.
Let v be a simple game with two veto players i and j, i �= j. Then

v ({i}) = 0 (by j /∈ {i}) and v (K\ {i}) = 0 (by i /∈ K\ {i}) hold.
Exercise IV.6

For the unanimity game uT , the null players are the players from N\T .
Exercise IV.7

The core is
{
(x1, x2, x3, x4) ∈ R4+ : x1 + x2 = 1

}

and the Shapley value is given by

Sh
(
u{1,2}

)
=

(
1

2
,
1

2
, 0, 0

)
.

Exercise IV.8
For n = 2, we have

h1 (K) =

{
0, K = {1} or K = ∅
1, otherwise

= u{2}.

n = 3 yields the symmetric game

h1 (K) =

{
1, |K| ≥ 2

0, otherwise

(Symmetry means that the worths depend on the number of the players,
only.)
Exercise IV.9

No, the apex player is not a veto player. If all the other player unite
against the apex player, they win:

hi (N\ {i}) = 1.

For the same reason, the apex player is not a dictator, either.
Exercise IV.10

We first show that hi is not contradictory. Assume hi (K) = 1 for any
coalitionK ⊆ N . Then, one of two cases holds. Either we have K = N\ {i}.
This implies hi (N\K) = hi ({i}) = 0. Or we have i ∈ K and |K| ≥ 2. Then,
hi (N\K) = 0. Thus, hi is noct contradictory.
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We now show that hi is decidable. Take any K ⊆ N with hi (K) = 0.
This implies K = {i} or K � N\ {i}. In both cases, the complements are
winning coalitions: N\K = N\ {i} or N\K � {i} .
Exercise IV.11

Since the apex player obtains the marginal contributions for positions 2
through n− 1, his Shapley payoff is

n− 2

n
· 1.

Due to efficiency, the other (symmetric!) players share the rest so that each
of them obtains

1

n− 1

(
1− n− 2

n

)
=

2

n (n− 1)
.

Thus, we have

Sh (h1) =

(
n− 2

n
,

2

n (n− 1)
, ...,

2

n (n− 1)

)
.

Exercise IV.12
One possible solution is

[
1;

1

t
, ...,

1

t
, 0, ..., 0

]

where 1
t is the weight for the powerful T -players while 0 is the weight for

the unproductive N\T -players.
Exercise IV.13

Every permanent member is a veto player by 4 · 7 + 10 · 1 = 38 < 39.

Because of 5 · 7 + 4 · 1 = 39, four non-permanent members are necessary for
passing a resolution.
Exercise IV.14

The voting rule is not contradictory and not decidable. This is just a
corollary of exercise IV.5 (p. IV.5).
Exercise IV.15

By efficiency and symmetry, we have

Sh (v) = (24, 24, 24) .

Exercise IV.16
The core has to fulfill

x1 + x2 + x3 + x4 = 2
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and also the inequalities

xi ≥ 0, i = 1, ..., 4,

x1 + x3 ≥ 1,

x1 + x4 ≥ 1,

x2 + x4 ≥ 1 and

x2 + x3 + x4 ≥ 2.

We then find

x1 = 2− (x2 + x3 + x4) ≤ 0

and hence

x1 = 0 (because of x1 ≥ 0),

x3 ≥ 1 and x4 ≥ 1.

Using efficiency once more supplies x2 = 0 and

(0, 0, 1, 1)

is the only candidate for a core. Indeed, this is the core. Just check all
the inequalities above and also those omitted. Player 2’s payoff is 0 in this
situation. If he burns his second glove, we find (non-generalized) gloves
game v{1,2},{3,4} where player 2 may achieve any core payoff between 0 and
1.

Exercise IV.17
The number of gloves pairs in vE ⊕ vE is twice the number of glove pairs

in vE .
Exercise IV.18

For any i, j ∈ {1, 2, 3} , i �= j, we have v ({i}) + v ({j}) = 0 + 0 < 4 =

v ({i, j}) and v ({i}) + v (N\ {i}) = 0 + 4 < 5. Hence, v is superadditive.
Exercise IV.19

Every unanimity game is superadditive. Assume a unanimity game uT
that is not superadditive. Then, we would have to disjunct coalitions R and
S with v (R) + v (S) > v (R ∪ S). The whole set of productive players T
cannot be contained in both R and S. If it is contained in R (or in S), it
is also contained in R∪S. Then, we have v (R) + v (S) = 1 = v (R ∪ S) and
the desired contradiction. If T is not contained in R and not contained in
S, we have v (R) + v (S) = 0 and the inequality cannot be true, either.

The Maschler game is also superadditive. We need to consider the two
inequalities

0 + 0 ≤ 60 and 0 + 60 ≤ 72.

A simple game is contradictory if we have a coalition K such that
v (K) = v (N\K) = 1. By v (K) + v (N\K) = 2 > 1 = v (N) , super-
additivity is violated.
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Exercise IV.20
For all coalitions K ⊆ N , we have K ⊇ ∅ and, by monotonicity v (K) ≥

v (∅) = 0.

Exercise IV.21
Consider two coalitions S,S′ ⊆ N with S ⊆ S′ gegeben. Monotonicity

follows from

v
(
S′

)
= v

(
S ∪

(
S′\S

))

≥ v (S) + v
(
S′\S

)
(superadditivity)

≥ v (S) (non-negativity).

Exercise IV.22
Yes, uT is convex. For i ∈ T and S ⊆ S′ ⊆ N with i /∈ S′, we obtain

uT (S ∪ {i})− uT (S) = uT (S ∪ {i})− 0 (S � T )

≤ uT
(
S′ ∪ {i}

)
− 0 (uT is monotonic)

= uT
(
S′ ∪ {i}

)
− uT

(
S′

)
(S′ � T ).

If, however, i is not included in T, both v (S ∪ {i})−v (S) and v (S′ ∪ {i})−
v (S′) are equal to zero. This shows that uT is convex, but not strictly
convex.
Exercise IV.23

The Maschler game is superadditive (see exercise IV.19, p. 63), but
not convex. For S = {1}, S′ = {1, 2} and i = 3, we have

v (S ∪ {i})− v (S) = v ({1, 3})− v ({1}) = 60

> 12 = v ({1, 2, 3})− v ({1, 2})
= v

(
S′ ∪ {i}

)
− v

(
S′

)
.

Exercise IV.24
Let R and S be disjunct coalitions. If v is convex, we obtain

v (R ∪ S) = v (R ∪ S) + v (∅)
= v (R ∪ S) + v (R ∩ S)

≥ v (R) + v (S) .

Thus, v is superadditive.
Exercise IV.25

Player 3’s Shapley value is

Sh3 (v) =
1

3
· 0 + 1

3
· 1
2
+

1

3
· 2

10
=

7

30
.

Symmetry and efficiency yield

Sh1 (v) = Sh2 (v) =
1

2
·
(
1− 7

30

)
=

23

60
.
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Since we have

Sh1 (v) + Sh2 (v) = 2 · 23
60

=
23

30
<

24

30
=

8

10
= v ({1, 2}) ,

the Shapley value does not belong to the core. You can check that
(
4
10 ,

4
10 ,

2
10

)

fulfills all the necessary inequalities.

8. Further exercises without solutions

Show that the Shapley value for the cost function and the Shapley value
for the cost-savings function amount to the same result.



CHAPTER V

Dividends

1. Introduction

This chapter is rather technical in nature. We discuss the vector space of
coalition functions. It is a well-known result from linear algebra that every
vector space has a basis.

It turns out that the unanimity games form a basis of the vector space
of coalition functions on a player set N. This means that every coalition
function can be “expressed” by unanimity games.

2. Definition and interpretation

Harsanyi (1963) defines devidends:

D�������
� V.1 (Harsanyi dividend). Let v ∈ VN be a coalition func-
tion. The dividend (also called Harsanyi dividend) is a coalition function dv

on N defined by

dv (S) =
∑

K⊆S
(−1)|S|−|K| v (K) .

T �
��� V.1 (Harsanyi dividend). For any coalition function v ∈ VN ,
its Harsanyi dividends are defined by the induction formula

dv (S) = v (S) for |S| = 1,

dv (S) = v (S)−
∑

K⊂S
dv (K) for |S| > 1

Why are the values of the coalition function dv called dividends? Con-
sider a player i who is a member of 2n−1 coalitions S ⊆ N. Player i “owns”
coalition S together with the other players from S where his ownership frac-
tion is 1

|S| . Let us, now, assume that each coalition S brings forth a dividend

dv (S). Then, player i should obtain the sum of average dividends

∑

i∈S⊆N

dv (S)

|S| .

It can be shown that this sum equals the Shapley value Shi (v). Thus, the
term dividend makes sense if we assume that players get the Shapley value.

73
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3. Coalition functions as vectors

As noted in chapter III, VN can be considered the vector space of coali-
tion functions on N . Since we have 2n subsets of N, 2n − 1 (the worth of ∅
is always zero!) entries suffice to describe any game v ∈ VN . For example,
u{1,2} ∈ G{1,2,3} can be identified with the vector from R7


 0︸︷︷︸

{1}
, 0︸︷︷︸
{2}

, 0︸︷︷︸
{3}

, 1︸︷︷︸
{1,2}

, 0︸︷︷︸
{1,3}

, 0︸︷︷︸
{2,3}

, 1︸︷︷︸
{1,2,3}


 .

E������� V.1. Write down the vector that describes the Maschler game

v (K) =





0, |K| = 1

60, |K| = 2

72, |K| = 3

You know how to sum vectors. We can also multiply a vector by a real
number (scalar multiplication). Both operations proceed entry by entry:

E������� V.2. Consider v = (1, 3, 3) , w = (2, 7, 8) and α = 1
2 and

determine v +w and αw.

4. Spanning and linear independence

Rm, m ≥ 1, is a prominent class of vector spaces some of which obey
m = 2n − 1. We need some vector-space theory:

D�������
� V.2 (linear combination, spanning). A vector w ∈ Rm is
called a linear combination of vectors v1, ..., vk ∈ Rm if there exist scalars
(also called coefficients) α1, ..., αk ∈ R such that

w =
k∑

ℓ=1

αℓvℓ

holds. The set of vectors {v1, ..., vk} is said to span Rm if every vector from
Rm is a linear combinations of the vectors v1, ..., vk.

Consider, for example, R2 and the set of vectors

{(1, 2) , (0, 1) , (1, 1)} .

Any vector (x1, x2) is a linear combination of these vectors. Just consider

2x1 (1, 2)− (3x1 − x2) (0, 1)− x1 (1, 1)

= (2x1 − x1, 4x1 − (3x1 − x2)− x1)

= (x1, x2) .

E������� V.3. Show that (0, 1) is a linear combination of the other two
vectors, (1, 2) and (1, 1)!
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Using the result of the above exercise, we have

(x1, x2)

= 2x1 (1, 2)− (3x1 − x2) (0, 1)− x1 (1, 1)

= 2x1 (1, 2)− (3x1 − x2) [(1, 2)− (1, 1)]− x1 (1, 1)

= [2x1 − (3x1 − x2)] (1, 2)− [x1 + (3x1 − x2)] (1, 1)

so that any vector from R2 is a linear combination of just (1, 2) and (1, 1) .

If we want to span R2 (or any Rm), we try to find a minimal way to
do so. Any vector in a spanning set that is a linear combination of other
vectors in that set, can be eliminated.

D�������
� V.3 (linear independence). A set of vectors {v1, ..., vk} is
called linearly independent if no vector from that set is a linear combination

of other vectors from that set.

E������� V.4. Are the vectors (1, 3, 3) , (2, 1, 1) and (8, 9, 9) linearly in-
dependent?

Merging these two definitions gives rise to one of the most important
concept for vector spaces.

D�������
� V.4 (basis). A set of vectors {v1, ..., vk} is called a basis for
Rm if it spans Rm and is linearly independent.

An obvious basis for Rm consists of the m unit vectors

(1, 0, ..., 0) ,

(0, 1, 0, ..., ) ,

...,

(0, ..., 0, 1) .

Let us check whether they really do form a basis. Any x = (x1, ..., xm) is a
linear combination of these vectors by

x1 (1, 0, ..., 0) + x2 (0, 1, 0, ..., ) + ...+ xm (0, ..., 0, 1)

= (x1, 0, ..., 0) + (0, x2, 0, ..., ) + ...+ (0, ..., 0, xm)

= (x1, ..., xm) .

This proves that the unit vectors do indeed span Rm.
In order to show linear independence, consider any linear combination

of m− 1 unit vectors, for example

α1 (1, 0, ..., 0) + α2 (0, 1, 0, ..., ) + ...+ αm−1 (0, ..., 0, 1, 0)

which is equal to (α1, ..., αm−1, 0) and unequal to (0, ..., 0, 1) for any coeffi-
cients α1, ..., αm−1.
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L���� V.1 (basis of unit vectors). Them unit vectors (1, 0, ..., 0) , ..., (0, ..., 0, 1) ∈
Rm form a basis of the vector space Rm.

According to the above definition, a basis is a set of

(1) linearly independent vectors
(2) that span Rm.

However, we do not need to check both conditions:

T �
��� V.2 (basis criterion). Every basis of the vector space Rm has
m elements. Any set of m elements of the vector space Rm that span Rm

form a basis. Any set of m elements of the vector space Rm that are linearly
independent form a basis.

The reader might have noticed that the coefficients needed to express x
as a linear combinations of unit vectors are uniquely determined. This is
true for any basis:

T �
��� V.3 (uniquely determined coefficients). Let {v1, ..., vm} be a
basis of Rm and let x be any vector such that

x =
m∑

i=1

αivi =
m∑

i=1

βivi.

Then αi = βi for all i = 1, ..,m.

5. The basis of unanimity games

We have shown in the previous section that the unit games (that at-
tribute the worth of one to exactly one nonempty coalition) form a basis of
VN . They are the 2n − 1 coalition functions vT , T �= ∅, given by

vT (S) =

{
1, S = T

0, S �= T

An alternative and prominent basis of VN is given by the unanimity games:

L���� V.2 (unanimity games form basis). The 2n−1 unanimity games

uT , T �= ∅, form a basis of the vector space VN .

According to theorem V.2, it is sufficient to show that the unanimity
games are linearly independent. We use a proof by contradiction and assume
that there is a unanimity game uT that is a linear combination of the others:

uT =
k.∑

ℓ=1

βℓuTℓ

where

• the coalitions T , T1, ..., Tk are all pairwise different,
• k ≤ 2n − 2 holds and
• βℓ �= 0 holds for all ℓ = 1, ..., k.
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Let us assume |T | ≤ |Tℓ| for all ℓ = 1, .., k. We can always rearrange the
equation and rename the coalitions so that this condition is fulfilled. Using
the coalition T as an argument, we now obtain

1 = uT (T )

=
k∑

ℓ=1

βℓuTℓ (T )

=
k∑

ℓ=1

βℓ · 0

= 0

and hence the desired contradiction.

E������� V.5. In the above proof, do you see why uTℓ (T ) = 0 holds for

all ℓ = 1, ..., k?

Now, let us reconsider lemma V.2 and theorem V.3. They say that for
any v ∈ VN there exist uniquely determined coefficients λv (T ) such that

v =
∑

T∈2N\{∅}
λv (T )uT

holds. This equation can also be expressed by

v (S) =
∑

T∈2N\{∅}
λv (T )uT (S) , S ⊆ N. (V.1)

Indeed, the coefficients can be shown to be the Harsanyi dividends:

λv (T ) := dv (T ) .

We will not provide a proof for this intriguing fact. Instead, we borrow an
example from Slikker & Nouweland (2001, p. 7)). Consider N := {1, 2, 3}
and the coalition function v given by

v (S) =





0, |S| = 1

60, S = {1, 2}
48, S = {1, 3}
30, S = {2, 3}
72, S = N

This coalition function can also be expressed by the vector



0 ({1})
0 ({2})
0 ({3})
60 ({1, 2})
48 ({1, 3})
30 ({2, 3})
72 ({1, 2, 3})



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Using the induction formula, the coefficients are

dv ({1}) = dv ({2}) = dv ({3}) = 0,

dv ({1, 2}) = v ({1, 2})− dv ({1})− dv ({2})
= 60− 0− 0 = 60,

dv ({1, 3}) = v ({1, 3})− dv ({1})− dv ({3})
= 48− 0− 0 = 48,

dv ({2, 3}) = v ({2, 3})− dv ({2})− dv ({3}) = 30 and

dv ({1, 2, 3}) = v ({1, 2, 3})− dv ({1, 2})− dv ({1, 3})− dv ({2, 3})
−dv ({1})− dv ({2})− dv ({3})

= 72− 60− 48− 30− 0− 0− 0

= −66
and we obtain

dv ({1, 2})u{1,2} + dv ({1, 3})u{1,3} + dv ({2, 3})u{2,3} + dv ({1, 2, 3})uN

= 60




0

0

0

1

0

0

1




+ 48




0

0

0

0

1

0

1




+ 30




0

0

0

0

0

1

1




− 66




0

0

0

0

0

0

1




=




0

0

0

60

48

30

72




and hence the expected vector.

E������� V.6. Calculate the coefficients for the following games on N =

{1, 2, 3} :
• v ∈ VN is defined by v ({1, 2}) = v ({2, 3}) = v ({1, 2, 3}) = 1 and

v ({1}) = v ({2}) = v ({3}) = v ({1, 3}) = 0.

• v ∈ VN is defined by

v (S) =





0, |S| ≤ 1

8, |S| = 2

9, S = N
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6. Topics and literature

The main topics in this chapter are

• Harsanyi dividend
• stability
• linear independence
• span
• basis
• coefficients

We recommend

7. Solutions

Exercise V.1
The vector describing the Maschler game is


 0︸︷︷︸

{1}
, 0︸︷︷︸
{2}

, 0︸︷︷︸
{3}

, 60︸︷︷︸
{1,2}

, 60︸︷︷︸
{1,3}

, 60︸︷︷︸
{2,3}

, 72︸︷︷︸
{1,2,3}


 .

Exercise V.2
We obtain v+w = (1, 3, 3)+(2, 7, 8) = (3, 10, 11) and αw = 1

2 (2, 7, 8) =(
1, 72 , 4

)
.

Exercise V.3
We have (1, 2)− (1, 1) = (0, 1) . Thus, we need the coefficients 1 and −1.

Exercise V.4
No, they are not linearly independent. Consider 2 (1, 3, 3) + 3 (2, 1, 1) =

(8, 9, 9) .

Exercise V.5
Take any ℓ ∈ {1, ..., k} . In order for uTℓ (T ) = 1 to hold, T would need

to be a superset of Tℓ. However, by |T | ≤ |Tℓ| , T and Tℓ would then need to
be equal which they are not.
Exercise V.6

In general, we have

dv (T ) :=
∑

K∈2T \{∅}
(−1)|T |−|K| v (K) .
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For the first game, we find

dv ({1}) = dv ({2}) = dv ({3}) = 0,

dv ({1, 2}) = (−1)2−1 v ({1}) + (−1)2−1 v ({2}) + (−1)2−2 v ({1, 2}) = 1,

dv ({1, 3}) = (−1)2−1 v ({1}) + (−1)2−1 v ({3}) + (−1)2−2 v ({1, 3}) = 0,

dv ({2, 3}) = (−1)2−1 v ({2}) + (−1)2−1 v ({3}) + (−1)2−2 v ({2, 3}) = 1,

dv ({1, 2, 3}) = (−1)3−1 v ({1}) + (−1)3−1 v ({2}) + (−1)3−1 v ({3})
+ (−1)3−2 v ({1, 2}) + (−1)3−2 v ({1, 3}) + (−1)3−2 v ({2, 3})
+ (−1)3−3 v ({1, 2, 3})

= 0 + 0 + 0− 1− 0− 1 + 1

= −1
while the second leads to

dv (T ) = 0 für |T | = 1,

dv (T ) = dv ({1, 2}) = (−1)2−1 v ({1}) + (−1)2−1 v ({2}) + (−1)2−2 v ({1, 2}) = 8 for |T | = 2

dv ({1, 2, 3}) = 3 · (−1)3−2 v ({1, 2}) + (−1)3−3 v ({1, 2, 3})
= −24 + 9 = −15.

8. Further exercises without solutions



CHAPTER VI

Axiomatizing the Shapley value

1. Introduction

This is a book on applications. Nevertheless, the reader should see the
most prominent example of the axiomatization of a value, the Shapley value.
We prepare the ground in section 2 — axiomatization means to find just the
right set of axioms. If there are too many aioms, they contradict each other.
Too few axioms are incapable of pointing to just one solution concept. If we
strike the right balance, the axioms single out exactly one solution concpet.

The proof of the axiomatization theorem comes in two parts:

(1) We show that the Shapley value fulfills the four axioms (section 3.
(2) We prove that there is only one value fulfilling the four axiom (sec-

tion 4). By the first part, this value needs to be the Shapley value.

Also, we present two other systems of axioms for the Shapley value
(sections 5 and 6). The third axiomatization can be linked to a discussion
on the concept of power-over (section 7).

Finally, we present the Banzhaf solution in section 8 which is an alter-
native to the Shapley value, in particular for simple games.

2. Too many axioms, not enough axioms

For any given set of axioms, we have three possibilities:

• There is no solution concept that fulfills all the axioms. That is,
the axioms are contradictary.

• The axioms are compatible with several solution concepts.
• There is one and only one solution concept that fulfills the axioms.
That is, the solution concept is axiomatized by this set of axioms.

E������� VI.1. Consider the following two axioms:

(1) Every player obtains the same payoff.
(2) Summing the players’ payoffs yields v (N).

(3) Every null player (with zero marginal contributions everywhere) ob-
tains zero payoff.

and the following two solutions:

(1) Every player obtains v (N) /n.

(2) Every player obtains the ρ-value for the rank order (1, 2, ..., n).

81
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Can you identify a set of contradictory axioms and can you identify a axioms

fulfilled by both solution concepts?

D�������
� VI.1. A solution concept σ (on VN or on V) is said be
axiomatized by a set of axioms if σ fulfills all the axioms and if any solution

concept to do so is identical with σ.

The Shapley value is defined by

Shi (v) =
1

n!

∑

ρ∈RON

MCρ
i (v) .

This formula tells us to sum up and average the marginal contributions
for each rank order. The formula obeys some axioms and disobeys others.
It turns out that the following four axioms are equivalent to the Shapley
formula:

D�������
� VI.2. Let σ be a solution function σ on VN . σ obeys

• the efficiency (or Pareto) axiom if ∑i∈N σi (v) = v (N) holds for

all coalition functions v ∈ VN ,
• the symmetry axiom if σi (v) = σj (v) is true for all coalition func-

tions v ∈ VN and for any two symmetric players i and j,
• the null-player axiom if we have σi (v) = 0 for all coalition functions

v ∈ VN and for any null player i and
• the additivity axiom in case of σ (v +w) = σ (v) + σ (w) for any

two coalition functions v,w ∈ VN with N (v) = N (w) .

The main aim of this chapter is to prove

T �
��� VI.1 (1. axiomatization of Shapley value). The Shapley for-
mula is axiomatized by the four axioms mentioned in the previous definition.

3. The Shapley formula fulfills the four axioms

3.1. Efficiency axiom. The efficiency axiom holds for the Shapley
value and even for the marginal contributions.

D�������
� VI.3 (ρ-solution). For a player set N and a rank order

ρ ∈ RON , the ρ-solution is given by

(MCρ
1 (v) , ...,MCρ

n (v)) .

Thus, let us assume any rank order ρ ∈ RON . We can savely assume
ρ = (1, ..., n) . If the players come in a different order, we can rename them
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so as to obtain the order (1, ..., n). We find

∑

i∈N
MCρ

i (v) =
∑

i∈N
[v (Ki (ρ))− v (Ki (ρ) \ {i})]

= [v ({ρ1})− v (∅)]
+ [v ({ρ1, ρ2})− v ({ρ1})]
+ [v ({ρ1, ρ2, ρ3})− v ({ρ1, ρ2})]
+...

+
[
v
({
ρ1, ..., ρn−1

})
− v

({
ρ1, ..., ρn−2

})]

+
[
v ({ρ1, ..., ρn})− v

({
ρ1, ..., ρn−1

})]

= v (N)− v (∅)
= v (N) .

L���� VI.1. The ρ-solutions and the Shapley value fulfill the efficiency
axiom.

The efficiency of the ρ-solutions has been shown above. The efficiency
of the Shapley value follows immediately:

∑

i∈N
Shi (v) =

∑

i∈N

1

n!

∑

ρ∈RON

MCρ
i (v)

=
∑

ρ∈RON

1

n!

∑

i∈N
MCρ

i (v) (rearranging the summands)

=
∑

ρ∈RON

1

n!
v (N) (ρ-solutions are efficient)

= n!
1

n!
v (N)

= v (N) .

3.2. Symmetry axiom. Astonishingly, the symmetry axiom is not
easy to show. We refer the reader to Osborne & Rubinstein (1994, S. 293).
Intuitively, symmetry is obvious. After all,

• two players are symmetric if they contribute in a similar fashion
and

• the Shapley formula’s inputs are these marginal contributions.

3.3. Null-player axiom. A null player contributes nothing, per defi-
nition. The average of nothing is nothing. Therefore, the null-player axiom
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holds for the Shapley value. Just look at
∑

i∈N
Shi (v) =

∑

i∈N

1

n!

∑

ρ∈RON

MCρ
i (v)

=
∑

i∈N

1

n!

∑

ρ∈RON

0

= 0.

3.4. Additivity axiom. In order to show additivity, note

(v +w) (K)− (v +w) (K\ {i})
= v (K) +w (K)− (v (K\ {i}) +w (K\ {i}))
= [v (K)− v (K\ {i})] + [w (K)−w (K\ {i})]

for any two coalition functions v, w ∈ VN any player i ∈ N and any coalition
K ⊆ N. Therefore, we find

Shi (v +w)

=
∑

i∈N

1

n!

∑

ρ∈RON

MCρ
i (v +w)

=
∑

i∈N

1

n!

∑

ρ∈RON

[(v +w) (Ki (ρ))− (v +w) (Ki (ρ) \ {i})]

(definition of marginal contribution)

=
∑

i∈N

1

n!

∑

ρ∈RON

([v (Ki (ρ))− v (Ki (ρ) \ {i})]

+ [w (Ki (ρ))−w (Ki (ρ) \ {i})]) (see above)

=
∑

i∈N

1

n!

∑

ρ∈RON

[v (Ki (ρ))− v (Ki (ρ) \ {i})]

+
∑

i∈N

1

n!

∑

ρ∈RON

[w (Ki (ρ))−w (Ki (ρ) \ {i})]

= Shi (v) + Shi (w) .

4. ... and is the only solution function to do so

We now want to show that any solution function that fulfills the four
axioms is the Shapley value. We follow the proof presented by Aumann
(1989, S. 30 ff.). We remind the reader of two important facts.

• The unanimity games uT , T �= ∅, form a basis of the vector space
VN (see chapter IV, pp. 76) so that every coalition function v is a
linear combination of these games:

v =
∑

T∈2N\{∅}
λT (v)uT . (VI.1)
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• For any game γuT , γ ∈ R, the players fromN\T are the null players
(compare exercise IV.6, S. 54).

Consider, now, any solution function σ that obeys the four axioms. We
obtain

∑

i∈T
σi (γuT ) =

∑

i∈T
σi (γuT ) +

∑

i∈N\T
σi (γuT ) (null-player axiom)

= (γuT ) (N) (Pareto axiom)

= γuT (N)

= γ.

The null players (from N\T ) get zero payoff, the (symmetric!) T -players
share γ :

σi (γuT ) =

{
γ
|T | , i ∈ T

0, i /∈ T.

Let now v be any coalition function on N . Using the above results and
applying the additivity axiom several times, we find

σi (v) = σi


 ∑

T∈2N\{∅}
λT (v)uT


 (eq. VI.1)

=
∑

T∈2N\{∅}
σi (λT (v)uT ) (additivity axiom)

=
∑

T∈2N\{∅}

{
λT (v)
|T | , i ∈ T

0, i /∈ T.
(with γ := λT (v) )

Thus, the axioms determine the payoffs. Since the Shapley formula fulfills
the axioms, we obtain the desired result

σ = Sh.

And we are done.

5. A second axiomatization via marginalism

The Shapley value is an average of the marginal contributions of the
players. Thus, whenever we have two coalition functions v and w such that
the marginal contributions (with respect to any given coalition) of a player
is the same under v and under w, the player’s Shapley value is the same.
This fact is called the marginalism axiom:

D�������
� VI.4 (marginalism axiom). A solution function σ on VN is
said to obey the marginalism axiom if, for any player i ∈ N and any two

coalition functions v,w ∈ VN with N (v) = N (w) ,

MCK
i (v) =MCK

i (w) ,K ⊆ N (v)
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implies

σi (v) = σi (w) .

The marginalism axiom is quite strong. Young (1985) has shown that
the Shapley value can be axiomatized by just three axioms:

T �
��� VI.2 (2. axiomatization of Shapley value). The Shapley for-
mula is axiomatized by the symmetry axiom, the marginalism axiom and the

efficiency axiom.

6. A third axiomatization via balanced contributions

Finally, we want to consider the axiom of balanced contributions which
is due to Myerson (1980). The basic idea is that players suffer equally if one
of them withdraws from the game. We need some formal preliminary:

D�������
� VI.5. Let v ∈ VN be a coalition function and let S ⊆ N,

S �= ∅ be a coalition. The restriction of v onto S is the coalition function

v|S : 2S → R,

K �→ v|S (K) = v (K) .

Thus, v|S attributes the same worths as v but only to subsets of S.

D�������
� VI.6 (axiom of balanced contributions). A solution function
σ on V is said to obey the axiom of balanced contributions if, for any coalition
function v and any two players i, j ∈ N (v) =: N,

σi (v)− σi
(
v|N\{j}

)
= σj (v)− σj

(
v|N\{i}

)

holds.

The reader notes that we employ the solution function on V, not on VN .
After all, v|N\{j} has one player less than game v. We will dwell on the
interpretation of the balanced contributions in a minute. Before, let us note
the axiomatization theorem:

T �
��� VI.3 (3. axiomatization of Shapley value). The Shapley for-
mula is axiomatized by the efficiency axiom and the axiom of balanced con-

tributions.

Balanced contributions is a very powerful axiom. Note, however, that
we claim this axiom not just for a given player set N but for all its subsets
also.
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7. Balanced contributions and power-over

7.1. Introduction. The power of people and the power of some peo-
ple over others have long been a central concern in sociology, politics, and
psychology while Bartlett (1989) and Rothschild (2002) find a neglect of
power apart from market power in mainstream economics. However, power
seems to be an extraordinary elusive concept. As Bartlett (1989, pp. 9-10)
observes, there exists a ”multiplicity of concepts” of power, but no ”widely
accepted concept of power within either economics or its sister social sci-
ences”.

The thesis of this section is that there are basically three reasons for
this lamentable state. First, power may be defined with reference to actions
(actor 1 forces actor 2 to perform an act against 2’s will) or with reference
to payoffs (actor 1 benefits more than actor 2). This corresponds to the
difference between I-power (with I standing for ”influence”) and P-power
(with P denoting ”prize” or ”payoff”) by Felsenthal & Machover (1998). Of
course, I-power and P-power are closely related because actions result in
payoffs and payoffs flow from actions.

An early and prominent definition of power is due to Max Weber (1968,
p. 53):

”Power is the probability that one actor within a social
relationship will be in a position to carry out his own will
despite resistance ... .”

Obviously, this is I-power. A Weberian P-power definition would be the
following:

”Power is the probability that one actor within a social
relationship will obtain costly benefits from others.”

Secondly, the multiplicity of power concepts also stems from the fact that
power and power-over need to be distinguished. Consider James Coleman’s
(1990, p. 133) definition:

”The power of an actor resides in his control of valuable
events. The value of an event lies in the interests powerful
actors have in that event. ... Power ... is not a property
of the relation between two actors (so it is not correct in
this context to speak of one actor’s power over another,
although it is possible to speak of the relative power of
two actors).”

Most authors, however, prefer to understand power relatively, i.e., in
terms of the power an actor 1 exercises over another actor 2. Proponents
of this tradition are Max Weber (1968), Richard Emerson (1962), Dorwin
Cartwright (1959, p. 196), and Vittorio Hösle (1997, p. 394-396) .
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In this section, we will side with these authors and will talk about power
in the sense of power-over. Our focus is on a third problem. According to
some definitions, power is ubiquitous. For example, Viktor Vanberg (1982,
p. 59, fn 48) observes that in every exchange relationship both sides do what
they would not have done without the influence of the other party.

Indeed, if 1 offers 2 some money to perform a service and 2 obliges, does
1 have power over 2? Or, the other way around, does 2 have power over 1
because he ”forces” 1 to give him money for some important (to 1) service.
According to everyday usage, 1 exerts power over 2 if 1 obtains the service
for ”too little” money (”exploitation”) while 2 exerts power over 1 if 2 asks
for ”too much” and 1 is in an urgent need for the service (”profiteering”,
”extortion”, ”usury”).

In line with the above observation, we claim that every fruitful defin-
ition of power-over needs a reference point which may concern a ”usual”,
”normal”, or ”moral” situation. We will argue for several and quite diverse
reference points in section 7.2. It seems quite unavoidable that reference
points contain some measure of arbitrariness and need to be defended rather
specifically.

In section 7.3, we will try an alternative reference point that is not
arbitrary. The idea of this reference point is simple. Actors may suffer (or
gain) if other actors withdraw (where would you be without me?). In such
a setting, 1 exerts power over 2 if 2 suffers more from a withdrawal by 1
than vice versa. However, we will find good reasons for this definition to
fail. Indeed, if we use the Shapley value, withdrawal of 1 harms 2 as much as
withdrawal of 2 harms 1 — this is the axiom of balanced contributions. While
this may first seem counterintuitive, we will be able to indicate plausible
mechanisms for this to come about.

The idea of this section is to tackle the reference-point issue by consid-
ering the difference between actual payoffs and payoffs according to some
reference point. Of course, we will use cooperative game theory to define
these payoffs.

The general idea of defining power by way of payoff differences can al-
ready be found in Johan Galtung (1969) who defines ”violence ... as the
cause of the difference between the potential and the actual”. Less directly,
Lukes (1986, p. 5) suggests ”that to have power is to be able to make a
difference to the world.” Our difference approach captures these differences.

7.2. Payoff reflections of power-over .
7.2.1. Payoff differences. We want to measure power-over by looking at

the payoff differences caused by the exercise of power of one player over
another. In most examples, a player 1 exercises power over another player
2. We consider two coalition functions, v and w. Often, by v we mean a
coalition function describing the actual social or economic situation where
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player 1 exercises power over player 2. w, on the other hand, describes what
the players would get if, contrary to the actual state of affairs, player 2 were
not subject to the power exerted by player 1. Formally, we usually get

D1 := ϕ1 (v)− ϕ1 (w) > 0

and

D2 := ϕ2 (v)− ϕ2 (w) < 0.

7.2.2. Example: market power. First, we consider the example of the
gloves game where we assume one left-glove holder (player 1) and 4 right-
glove holders (players 2 through 5). The left-glove holder is in a monopoly
(or monopsony) position. The Shapley value is

(
4
5 ,

1
20 ,

1
20 ,

1
20 ,

1
20

)
. Assume

that player 1 sells his left glove. He obtains the price of 4
5 . Each of the

players 2 through 5 have 1
4 chance to buy the glove for a price of 45 . Hence,

each right-glove holder has an expected utility of 14
(
1− 4

5

)
= 1

20 .

Let us now invoke the norm of equal splitting of gains between player 1
and player 2 to whom player 1 happens to sell the left glove. Then, payoffs
are

(
1
2 ,
1
2 , 0, 0, 0

)
. There exists a coalition function w leading to these payoffs.

Then, player 1’s power over player 2 is reflected by

D1 = ϕ1 (v)− ϕ1 (w)

=
4

5
− 1

2

=
3

10

and

D2 = ϕ2 (v)− ϕ2 (w)

=
1

20
− 1

2

= − 9

20
.

7.2.3. Example: emotional dependence. As a second example, we con-
sider the emotional dependence that may sometimes exist between a player
M (man) and a player W (woman). They may both like to live together so
that v (M,W ) > 0. However, he may be more independent of her than the
other way around. Then,

v (M) > v (W )

is a plausible assumption. (If the reader finds the example objectionable,
she or he is welcome to reverse the roles.)
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The Shapley values are given by

ϕM =
1

2
v (M) +

1

2
[v (M,W )− v (W )]

=
1

2
v (M,W ) +

1

2
[v (M)− v (W )]

>
1

2
v (M,W ) +

1

2
[v (W )− v (M)]

= ϕW .

His payoff is higher than her’s. Applying the egalitarian norm (w (M) =

w (W ) = 1
2v (M,W )) we obtain ϕM (w) = 1

2v (M,W ) = ϕW (w). We would
therefore diagnose that he has power over her:

DM = ϕM (v)− ϕM (w)

=
1

2
[v (M)− v (W )]

> 0

>
1

2
[v (W )− v (M)]

= DW

Both examples make clear that the problem about a reference point is not
”solved”. We rather choose to offer a taxonomy: If the reference point
is some or other norm (or defined by some or other counterfactual), then
we obtain this or that payoff difference. While this may seem an evasive
strategy, we argue that power-over necessarily needs a reference point and
that there is no unambiguous choice of such a point.

7.3. Action reflexions of power-over.
7.3.1. Withdrawing and quitting. Instead of invoking some quite arbi-

trary fairness norms, one might consider the differences

ϕ1 (v)− ϕ1

(
v|N\2

)

and

ϕ2 (v)− ϕ2

(
v|N\1

)

known from the axiom of balanced contributions. For player 1, v|N\2 is the
game v without player 2. In words: ϕ1 (v)−ϕ1

(
v|N\2

)
measures the loss to

player 1 if player 2 withdraws. We might try the following definition: Player
1 exerts power over player 2, if player 1 suffers less from a withdrawal by
player 2 than vice versa.

Interestingly, this definition fails if we use the Shapley value: What
1 can do to 2 by withdrawing is exactly equal to what 2 can do to 1 by
withdrawing. This is just what balanced contributions means.
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7.3.2. Example: Revisiting the gloves game. Let us reconsider the gloves
game. Again, we assume one left-glove holder (player 1) and 4 right-glove
holders (players 2 through 5) (see subsection 7.2.2). It might seem that
player 1’s threat of withdrawal carries more weight than player 2’s threat of
withdrawal. However, this is not the case. The Shapley values are

(
4

5
,
1

20
,
1

20
,
1

20
,
1

20

)
for N = {1, 2, 3, 4, 5} ,

(
3

4
,
1

12
,
1

12
,
1

12

)
for N = {1, 3, 4, 5} and

(0, 0, 0, 0) for N = {2, 3, 4, 5}

so that we have

ϕ1 (v)− ϕ1

(
v|N\2

)

=
4

5
− 3

4

=
1

20

and

ϕ2 (v)− ϕ2

(
v|N\1

)

=
1

20
− 0.

The reason for the equality of these differences is this: Player 1 obtains a
price of 45 for his left glove in case of 4 potential buyers, but a price of 34
in case of 3 potential buyers. So indeed, player 2’s withdrawal does not
do much damage to player 1. But player 2’s disutility caused by player 1’s
withdrawal is small also. If player 1 is around, player 2 will have a small
chance (14) of getting the glove and will also have to pay a high price (45).
Therefore, in the presence of player 1, player 2 gets the payoff 1 − 4

5 = 1
5

with a chance of 1
4 only. The small payoff of 1/20 is lost when player 1

withdraws.
While payoff differences with respect to the threat of withdrawal are not

useful for defining power-over, they can be used to theorize about the action
players have to take. In the gloves example, it is the balanced contributions
that allow player 1 to charge a high price for his left glove.

7.3.3. Example: Revisiting emotional dependence. We also reconsider
the emotional-dependence example (see section 7.2.3) and obtain her payoff
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difference as

ϕW (v)− ϕW

(
v|N\M

)

=

[
1

2
v (M,W ) +

1

2
v (W )− 1

2
v (M)

]
− v (W )

=
1

2
[v (M,W )− v (W )− v (M)] .

In case of superadditivity, his threat of withdrawal (divorce, say) is effective
and she suffers from it. However, for player M we get the same result:

ϕM (v)− ϕM

(
v|N\W

)
= ϕW (v)− ϕW

(
v|N\M

)
.

Again, we can use this equality to infer actions: Just because of v (M) >

v (W ) , he can make her do the washing-up. But taking her washing-up into
account, she suffers less from a break-down of the relationship and his loss
of her would be more serious than in a ”fair” partnership.

7.4. Negative sanctions and the threat to withdraw. The equal-
ity of the threats to withdraw may be particularly astonishing for negative
sanctions and coercion (see Willer 1999, pp. 24). Indeed, if a robber (player
1) points his gun to my, player 2’s, head, it may seem impossible for me to
”withdraw”. However, we need to look more closely.

It is important to note that withdrawing is analyzed within the given
game v. The question of whether a player can quit a game or opt out is a
totally different one. For example, I normally do not need to partake in a
market game but sometimes I cannot help being part of a game as in our
gun-and-money game.

First, we need to define the coalition function. For the coalition {1, 2},
v (1, 2) = 0 seems plausible. I hand over some money c > 0 to the robber so
that his gain is my loss. We then have ϕ1 (v) = c = −ϕ2 (v) which fulfills
the efficiency axiom. (Of course, I may be traumatized by the experience
and he may be afraid of being caught and arrested in which case v (1, 2)

should be negative.)
One may be tempted to put v (2) = 0 since I do not lose any money if the

robber is not there. However, what I can achieve on my own still depends
on what the robber does (withdrawal is not quitting!). If I do not hand over
the money peacefully, he may injure me. We define the worth for a coalition
K as the minimum of what the other players, N\K, can inflict on K. We
let i represent the pain of being injured and obtain v (2) = −i < 0.

Similarly, v (1) is the minimum of what I can inflict on the robber. I can
run away and force him to injure me. Then, he will be in fear of prosecution
for injury; let f stand for this fear so that we have v (1) = −f.
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Now, because of v (1) = v|N\2 (1) and ϕ1

(
v|N\2

)
= v (1), my running

away or his injuring me leads to the payoff differences

ϕ1 (v)− ϕ1

(
v|N\2

)

= c︸︷︷︸
money

obtained

− −f︸︷︷︸
disutility from fear of

prosecution for injury

and

ϕ2 (v)− ϕ2

(
v|N\1

)

= −c︸︷︷︸
money given

to robber

− −i︸︷︷︸
disutility from injury

The equality between these two differences can now be used to calculate the
money I will have to hand over to the robber. It is given by

c =
i− f

2
.

The less the robber’s fear of prosecution for injury and the higher my un-
willingness to suffer injury, the higher the robber’s loot. For c to be non-
negative, we need i ≥ f ; my fear of injury has to be higher than the robber’s
fear of prosecution.

7.5. RevisitingWeber’s definition of power. For the Shapley value,
the threat of withdrawal from a cooperative agreement has to be symmetric
between the two players. In the gloves game, this symmetry determines the
price of gloves; in the emotional-dependence example it leads to her doing
the washing up; and in the case of robbery, the robber’s gain obtains.

Of course, the holder of the non-scarce commodity would prefer a fair
price of 12 , the dependent woman would like to share the burden of housework
evenly, and the victim of robbery would prefer to hold on to his money.
However, the holder of the scarce commodity, the man in the dependency
example and the robber manage to ”realize their own will ... against the
resistance” of the other party. We just cited Max Weber in order to indicate
that we consider these three examples instances of power in his sense.

In fact, a research program suggests itself: Whenever we have a seem-
ingly asymmetric power-over relationship we should look out for Weberian
power by equalizing the payoff differences with respect to the threat of with-
drawal. For example, power-over relationships may exist between parents
and children, God and humans, a king and his subjects, a bureaucrat and
people obtaining permission, master and slave, etc.. Which actions lead to
balanced contributions?
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8. The Banzhaf solution

8.1. The Banzhaf formula. The Banzhaft solution is due to Banzhaf
(1965) who applied it to weighted majority games. The Banzhaf formula is
given by

Bai (v) =
1

2n−1
∑

K⊆N,
i/∈K

[v (K ∪ {i})− v (K)] , i ∈ N.

Similar to the Shapley value, an average of marginal contributions is calcu-
lated. However, while Shapley considers all rank orders, Banzhaf proposes
to look at all coalitions which (do not) contain a given player i. We can find

∣∣∣2N\{i}
∣∣∣ = 2|N\{i}| = 2n−1

of these coalitions.
Thus, under the Shapley value, every rank order has the same probability

while the Banzhaf index attributes the same probability for each coalition
that contains a specfic player.

E������� VI.2. Given N = {1, 2, 3} , write down the coalitions that do
not contain player i.

The Banzhaf formula can be applied to any game but the main field of
application concerns simple games. Then, the Banzhaf formula is also called
Banzhaft power index or Banzhaf index.

Restricting attention to simple games, we can focus on pivotal coalitions.
We remind the reader of the definition found in chapter IV:

D�������
� VI.7 (pivotal coalition). For a simple game v, K ⊆ N is a

pivotal coalition for i ∈ N if v (K) = 0 and v (K ∪ {i}) = 1. The number of

i’s pivotal coalitions is denoted by ηi (v) ,

ηi (v) := |{K ⊆ N : v (K) = 0 and v (K ∪ {i}) = 1}| .

We have η (v) := (η1 (v) , ..., ηn (v)) and η̄ (v) :=
∑

i∈N ηi (v) .We sometimes

omit the game and write ηi (η, η̄) rather than ηi (v) (η (v) , η̄ (v)).

Thus, a player i is pivotal for a coalitionK if v (K) = 0 and v (K ∪ {i}) =
1 hold. Player i’s number of pivotal coalitions is denoted by ηi (v) (or ηi).

E������� VI.3. Find ηi for a null player and for a dictator.

Now, the Banzhaf index for player i can be rewritten as

Bai (v) =
ηi

2n−1
.

E������� VI.4. Calculate the Banzhaf payoffs for player 1 in case of

N = {1, 2, 3} and u{1,2}. What do you find for N = {1, 2, 3, 4} and u{1,2,3}?
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E������� VI.5. Find the Banzhaf payoffs for N = {1, 2, 3, 4} and the
apex game h1 defined by

h1 (K) =





1, 1 ∈ K and K\ {1} �= ∅
1, K = N\ {1}
0, sonst

Does the Banzhaf solution fulfill Pareto efficiency?

8.2. The Banzhaf axiomatization. While the Banzhaf index violates
Pareto efficiency in general, it always fulfills the other three Shapley axioms.
Indeed, the following theorem can be shown:

T �
��� VI.4 (axiomatization of the Banzhaf value). The Banzhaf
formula is axiomatized by null-player axiom, the symmetry axiom, the mar-

ginalism axiom and the merging axiom.

You know all these axioms except the merging axiom. It means that if
you merge two players into one player, then this new player obtains the sum
of what the two constituent players got.

D�������
� VI.8 (merging players). For a game (N, v) and two players
i, j ∈ N, i �= j, the merged game (Nij, vij) is given by Nij = (N\ {i, j})∪{ij}
and

vij (K) =

{
v (K) , K ⊆ N\ {ij}
v((K\{ij}) ∪ {i, j}), ij ∈ K

for all K ⊆ Nij .

D�������
� VI.9 (merging axiom). A solution function σ is said to obey
the merging axiom if we have

σi (v) + σj (v) = σij (Nij , vij)

for any merged game in the sense of the definition above.

Consider the gloves game v{1,2},{3}. Its Shapley payoffs are Sh
(
v{1,2},{3}

)
=(

1
6 ,
1
6 ,
2
3

)
while the Banzhaf formula yields Ba

(
v{1,2},{3}

)
=

(
1
4 ,
1
4 ,
3
4

)
.

Let us now assume that players 1 and 2 merge. The new player 12

obtains the Shapley payoff 1
2 >

1
6 +

1
6 . Intuitively, he players 1 and 2 (from

the same market side) do not compete against each other any more so that
their joint payoff increases while player 3 suffers. In contrast the Banzhaf
payoffs are 1

2 for both 12 and 3. In line with the merging axiom, we have
1
4+

1
4 =

1
2 . However, player 3’s payoff reduces so that there is some indication

of decreased competition between the left-hand glove owners even for this
value.

If players 2 and 3 merge, the new player 23 is a dictator with Shapley
value 1 and Banzhaf value 1. Again, the Banzhaf value obeys the merging
axiom while the Shapley value does not.
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9. Topics and literature

The main topics in this chapter are

• axiomatization
• balanced contributions
• marginalism
• power-over
• P-power and I-power

We introduce the following mathematical concepts and theorems:

• t

•
We recommend

10. Solutions

Exercise VI.1
The set of all three axioms is contradictory. Just consider the unanimity

game u{1} for N = {1, 2}. According to the third axiom, we should have
σ2

(
u{1}

)
= 0, while the second axom then yields σ1

(
u{1}

)
= 1−σ2

(
u{1}

)
=

1. However, the first axiom claims σ1
(
u{1}

)
= σ2

(
u{1}

)
.

Both solution concepts fulfill axioms 2. Using the same unanimity game
as above, the first solution concept yields the payoffs σ1

(
u{1}

)
= σ2

(
u{1}

)
=

1
2 while the rank order ρ = (1, 2) leads to the rank-order value (1, 0).
Exercise VI.2

Player 1 does not belong to four coalitions: ∅, {2} , {3} , {2, 3}.
Exercise VI.3

For a null player, we find ηi = 0, while ηi = 2n−1 characterizes a dictator.
Exercise VI.4

Player 1 has the two pivotal coalitions, {2} and {3}. Therefore, his
Banzhaf index is 2

4 =
1
2 .

Exercise VI.5
For player 1, every coalition is pivatal except ∅ and {2, 3, 4}. Therefore,

we find Ba1 (h1) =
6
8 = 3

4 .
Player 2’s pivatal coalitions are {1} and {2, 3} and he therefore obtains

Ba2 (h1) = 2
8 = 1

4 . By symmetry, we obtain Ba3 (h1) = Ba4 (h1) = 1
4 .

Therefore, the sum of Banzhaf payoffs exceeds the worth of the grand coali-
tion:

3

4
+ 3 · 1

4
=

3

2
> 1 = h1 (N) .

The Banzhaf index is not Pareto efficient.
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11. Further exercises without solutions

(including Banzhaf)
The Shapley value on partitions





Part C

The Shapley value on partitions



In the second part of our book, we introduce the Shapley value and other
simple solution concepts. In this third part, we now get to more complicated
problems where the players are structured in some way or other. We assume
that players split up in disjunct groups called components (of a partition).
Components might stand for groups of people that

• work together and create worth, for example people trading goods
with each other or people working in firms (chapter VII) or

• bargain together where unions are the prime example (chapter
VIII).

In chapter IX, we combine both sorts of partition. The fact that workers
belong to a firm is expressed by a working-together partiton while a second
partition stands for the union that a worker may or may not belong to.



CHAPTER VII

The outside option values

1. Introduction

Let us reconsider the Shapley value and the core for the gloves game.
The core represents the competitive solution where the holders of the scarce
commodity (the right-glove owners in case of |R| < |L|) obtain a payoff of
1. This result holds for |L| = 100 and |R| = 99 as well as for |L| = 100 and
|R| = 1. The following table reports the core payoffs for an owner of a right
glove in a market with r right-glove owners and l left-glove owners:

number l of left-glove owners
0 1 2 3 4

number r 1 0 ∈ [0, 1] 1 1 1
of 2 0 0 ∈ [0, 1] 1 1
right-glove 3 0 0 0 ∈ [0, 1] 1
owners 4 0 0 0 0 ∈ [0, 1]

Shapley & Shubik (1969, p. 342) denounce the ”violent discontinuity exhib-
ited by ... the core”.

In contrast, the Shapley value is sensitive to the relative scarcity of the
gloves. The following table, taken from Shapley & Shubik (1969, S. 344),
tells the Shapley values for the right-glove owner, again depending on the
number of right and left gloves:

number l of left-glove owners
0 1 2 3 4

number r 1 0 0,500 0,667 0,750 0,800
of 2 0 0,167 0,500 0,650 0,733
right-glove 3 0 0,083 0,233 0,500 0,638
owners 4 0 0,050 0,133 0,271 0,500

This table clearly shows how the payoff increases with the number of players
on the other market side. Shapley & Shubik (1969, p. 344) show that the
Shapley value of the gloves game converges to the core: When replicating
the game (i.e., increasing the number of left and right gloves by way of
multiplication), the Shapley values converge toward 0 or 1 in case of l �= r

(for l = r we get a core payoff 1
2). Consider, for example, r = 1 and l = 2

(bold face) and then, by using the factor 2, r = 2 and l = 4. You see that the

101
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payoff for the scarce-resource holder increases. The convergence can also be
seen from the following table:

replication factor n = 3, r = 1 n = 4, r = 1

1 0.6666... 0.75
10 0.8822... 0.9407...
100 0.9816... 0.9927...

Note that the Shapley value attributes a positive value to all players
unless |L| = 0 holds or |R| = 0. However, in case of |L| > |R|, some
left-glove owners will not be able to strike a deal. They should then get a
pay-off of zero. Therefore, the Shapley value is an ex-ante value, indicating
the expected payoff to an agent in the gloves game before it is clear whether
or not he will find a trading partner.

In this chapter, we are interested in an ex-post value that should give
us an idea about the payoff for glove holders once they have, or have not,
found a trading partner. In particular, this value could be used to make
predictions about the price of a left (or right) glove. While the Shapley value
does not attempt to predict a price, the values presented in this chapter are
candidates for that purpose.

The trading-partner distribution can be modelled by coalition struc-
tures. A coalition structure is a partition on the set of players; the sets
making up the partition are called components. Building on the Shapley
value, several partitional values (or values for coalition structures) have been
presented in the literature, most notably by Aumann & Drèze (1974) and
Owen (1977). There is an important interpretational difference between the
Aumann-Dreze (AD) value and the Owen value. For Aumann and Dreze,
players are organized in (active) components in order to do business together.
Then the players within each component should arguably get its worth, as
in the Aumann-Dreze value (AD-value). This is the property of component
efficiency. The idea of the Owen value is that players form bargaining com-
ponents (unions etc.) that offer the service of all their members or no service
at all. In this chapter, we have the Aumann-Dreze interpretation in mind.
The Owen value is the subject matter of the next chapter.

By component efficiency, the AD-value seems a good candidate for pre-
dicting the price of a left glove. Of course, we have to specify a partition
before we can apply the AD-value. Turning to the gloves game, we often as-
sume maximal-pairs partitions. These are partitions that host min (|L| , |R|)
components, each containing one left-glove holder and one right-glove owner.
If |L| > |R|, a maximal-pairs partition contains other components as well,
with elements from L only. A left-glove and a right-glove owner who make
up one component of the partition, receive an AD-value of 1/2 each, irre-
spective of how many other left-hand or right-hand gloves are present.
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The AD-payoffs do not accord well with our intuition about competi-
tion. More specifically, they do not take account of outside options, i.e.
the number of left and right gloves outside the component in question.
The outside-option value (oo-value, for short) W due to Wiese (2007) and
the outside-option value Ca introduced by Casajus (2009) are component-
efficient value that produce results that are more sensitive to the relative
scarcity of gloves. Assume player set N = {1, 2, 3} and the gloves game
v{1},{2,3}. Now let P = {{1, 2} , {3}} be a maximal-pairs partition. We find

AD
(
v{1},{2,3},P

)
=

(
1

2
,
1

2
, 0

)
,

W
(
v{1},{2,3},P

)
=

(
2

3
,
1

3
, 0

)
,

Ca
(
v{1},{2,3}

)
=

(
3

4
,
1

4
, 0

)

The oo-values attributes a higher payoff to player 1 than to player 2 thus re-
flecting the outside opportunities of player 1 (v ({1, 3}) = 1 > 0 = v ({2, 3})).

In spirit, the bargaining set (a concept we will not go into) is close to
the outside-option values. (In the above example, the bargaining set yields
(0, 60, 0), a somewhat ”extreme” solution.) In fact, I find Maschler’s (1992,
pp. 595) introducing remarks pertinent to these value:

During the course of negotiations there comes a moment
when a certain coalition structure is ”crystallized”. The
players will no longer listen to ”outsiders”, yet each [com-
ponent] has still to adjust the final share of proceeds. (This
decision may depend on options outside the [component],
even though the chances of defection are slim).

Arguably, there are many economic and political situations where we
need these properties. Apart from market games (as the gloves game), one
might think of the power within a government coalition. This power rests
with the parties involved (component efficiency) but the power of each party
within the government depends on other governments that might possibly
form (outside options).

Close to the AD-approach, the oo-values obey component efficiency,
symmetry and additivity. However, we argue that these values cannot pos-
sibly obey the null-player axiom. Consider N = {1, 2, 3} and the unanimity
game u{1,2} which maps the worth 1 to coalitions {1, 2} and {1, 2, 3} and
the worth 0 to all other coalitions. We now look at the coalition struc-
ture P1 = {{1, 3} , {2}} . By component efficiency, we get σoo1

(
u{1,2},P1

)
+

σoo3
(
u{1,2},P1

)
= 0 = σoo2

(
u{1,2},P1

)
. Player 3 is a null player; his contribu-

tion to any coalition is zero. Yet, his payoff cannot be zero under σoo. The
reason is this: Player 1 has outside options. By joining forces with player
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2 (thus violating the existing coalition structure) he would have claim to a
payoff of 1/2.Within the existing coalition structure, he will turn to player 3
to satisfy at least part of this claim. But then, player 3’s payoff is negative.

Most solution concepts found in the literature do obey the null-player
axiom. A noticeable excepts is the solidarity value concocted by Nowak
& Radzik (1994). Consider the unanimity game N = {1, 2, 3} and the
unanimity game u{1,2}. The two productive players do not obtain 1

2 (their
Shapley value but only 7

18 ; they leave
4
18 for null player 3, for charity reasons.

It should also be clear that a component-efficient value that respects out-
side options cannot always coincide with the value for some ”stable” parti-
tion. In our example, stable partitions might be given by P2 = {{1, 2} , {3}}
or P3 = {{1, 2, 3}}. By component efficiency the sum of payoffs for all three
players is zero for P1 but 1 for P2 and P3.

Some readers might object to a negative payoff for player 3 by pointing
to the possibility that player 3 departs from coalition {1, 3} to obtain the
zero payoff. However, for the purpose of determining the outside-option
value, the coalition structure P is given. The stability of P is another —
separate — issue that we will with in subsection ??. Also, it is easy to show
that negative payoffs need not bother us if we consider the gloves game and
a maximal-pairs partitions.

It has been noted that the oo-values are close the AD-value and the
Shapley value. Indeed, they are generalizations of both these values.

This chapter is organized as follows: In section 2 basic definitions (par-
titions, partitional games) are given. Section 3 presents important axioms
for partitional values. We briefly introduce the Aumann-Dreze value in sec-
tion 4 before presenting the outside-option values due to Wiese (with an
application to the gloves game) and due to Casajus (with an application
to the elections in Germany for the Bundestag 2009) in sections 5 and 6,
respectively. We discuss the differences between these values in section 7.
In the final section 8, we turn to the question of stable partitions.

2. Solution functions for partitional games

2.1. Partitions. Partitioning a set means to define subsets such that
every element from the set is an element from exactly one subset. Consider
the set {1, 2, 3, 4}.

{{1, 2} , {3} , {4}}
is an example of a partition of that set while

{{1, 2} , {4}} or

{{1, 2} , {2, 3} , {4}}

are not.
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D�������
� VII.1 (partition). Let N be a set (of players). A system of
subsets

P = {C1, ..., Ck}
is called a partition if

• Cj = N,

• Cj ∩Cj′ = ∅ for all j �= j′ from {1, ..., k} and
• Cj �= ∅ for all j = 1, ..., k

hold. The subsets Cj ⊆ N are called components.

The set of all partitions on N is denoted by PN . The component hosting

player i is denoted by P (i) .

Sometimes, we need to compare partitions.

D�������
� VII.2. A partition P1 is called finer than a partition P2
if P1 (i) ⊆ P2 (i) holds for all i ∈ N. In that case, P2 is called coarser
than P1. The finest partition is called the atomic partition and given by
{{1} , ..., {n}} . The coarsest partition is called the trivial partition and equal
to {N}.

E������� VII.1. Is P1 finer or coarser than P2?
(1) P1 = P2 = {{1, 2} , {3, 4} , {5}} ,
(2) P1 = {{1, 2} , {3, 4} , {5}} , P2 = {{1, 2, 3} , {4, 5}} ,
(3) P1 = {{1, 2} , {3, 4} , {5}} , P2 = {{1, 2} , {3} , {4} , {5}} .

2.2. Partitional games. We are now set to define partitional games.

D�������
� VII.3 (partitional game). For any player set N , every coali-
tion function v ∈ VN and any partition P ∈ PN , (v,P) is called a partitional
game. The set of all partitional games on N is denoted by VpartN and the set

of all partitional games for all player sets N by Vpart.

We need to extend the definition of a solution function:

D�������
� VII.4 (solution function for partitional games). A function
σ that attributes, for each partitional game (v,P) , a payoff to each of v’s
players,

σ (v,P) ∈ R|N(v)|,
is called a solution function (on Vpart).

3. Important axioms for partitional values

Solution functions σ on (N,PN) might obey one or several of the fol-
lowing axioms. We concentrate on the axioms that we make use of in this
chapter. We encounter additional ones in the next chapter.
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D�������
� VII.5 (component-efficiency axiom). A solution function σ
(on Vpart) is said to obey the component-efficiency axiom if

∑

i∈C
σi (v,P) = v (C)

holds for all partitional games (v,P) ∈ Vpart and all C ∈ P.

Component effciency is a natural requirement for partitions if we have
the “work together and create worth” interpretation in mind. The next
axiom says that a player’s payoff depends on his component only, not on the
way the players outside his component are structured.

D�������
� VII.6 (component-focus axiom). Consider a player i ∈ N

and two partitions P and P ′ from PN that obey P (i) = P ′ (i). A solution
function σ (on Vpart) is said to obey the component-focus axiom if

σi (v,P) = σi
(
v,P ′

)

holds for all coalition functions v ∈ VN .

E������� VII.2. Does the axiomof component focus imply

σi (v,P) = σi (v, {P (i) ,N\P (i)})?

While the axiomatizations to follow do not make use of the component-
focus axiom, the three new values in this chapter (AD-value, the Casajus
and the Wiese value) fulfill it.

We need a symmetry axiom where symmetry has to refer to the coalition
function and to the partition.

D�������
� VII.7 (P-symmetry). Two players i and j from N are called

P-symmetric if they symmetric and if P (i) = P (j) holds.

D�������
� VII.8 (symmetry axiom). A solution function σ is said to

obey the symmetry axiom if we have

σi (v,P) = σj (v,P)

for all partitional games (v,P) ∈ Vpart and for any two P-symmetric players
i and j.

As argued above, a component-efficient value that takes outside options
into account, cannot possibly satisfy the null-player axiom:

D�������
� VII.9 (null-player axiom). A solution function σ is said to
obey the null-player axiom if we have

σi (v,P) = 0

for all partitional games (v,P) ∈ Vpart and for every null player i ∈ N.
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A much milder requirement is the grand-coalition null-player axiom in-
troduced by Casajus (2009):

D�������
� VII.10 (grand-coalition null-player axiom). A solution func-
tion σ is said to obey the grand-coalition null-player axiom if we have

σi (v, {N}) = 0

for all partitional games (v, {N}) ∈ Vpart and for every null player i ∈ N.

Of course, we also have an additivity axiom:

D�������
� VII.11 (additivity axiom). A solution function σ is said to
obey the additivity axiom if we have

σ (v +w,P) = σ (v,P) + σ (w,P)
for any two coalition functions v,w ∈ V with N (v) = N (w) and any parti-

tion P ∈ PN(v).

4. The Aumann-Dreze value: formula and axiomatization

Once we know how to calculate the Shapley value, it is simple to obtain
the Aumann-Dreze payoffs. Just proceed in two steps:

(1) Restrict the coalition function to the components.
(2) Calculate the Shapley value for the restricted function.

D�������
� VII.12 (Aumann-Dreze value). The Aumann-Dreze value
on Vpart is the solution function AD given by

ADi (v,P) := Shi
(
v|P(i)

)
, i ∈ N

The Aumann-Dreze value is an obvious extension of the Shapley value:

L���� VII.1. We have AD (v, {N}) = Sh (v) .

E������� VII.3. Calculate the Aumann-Dreze payoffs for P = {{1} , {2, 3}}
and the coalition functions

• u{1,2} and
• v{1,2},{3}.

The axiomatization for the Aumann-Dreze value is very close to the
Shapley axiomatization:

T �
��� VII.1 (Aumann-Dreze axiomatization). The Aumann-Dreze
value is the unique solution function on Vpart that fulfills the symmetry ax-
iom, the component-efficiency axiom, the null-player axiom and the additiv-

ity axiom.

The Aumann-Dreze value rests on the premise that every component is
an island. There are not interlinkages between players in a component and
those outside.
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5. The outside-option value due to Wiese

5.1. Definition and properties. TheWiese outside-option value uses
a rank-order definition. Assume a partition P, a rank order ρ and a player
i. Player i belongs to the component P (i) and also to the set Ki (ρ). If
player i appears, is he the last player of his component, i.e., have all the
other players from P (i) appeared before him? Formally, this is true if and
only if

P (i) ⊆ Ki (ρ)

holds.

E������� VII.4. Indicate the players that complete their components for
the partition P = {{1, 2, 3} , {4, 5} , {6}} and the rank order ρ = (3, 5, 6, 1, 2, 4)!

While the Aumann-Dreze value ignores any effect of players outside a
component on those inside, the outside-option values model these effects.
The Wiese (2007) value has an interpretation in terms of rank orders.

D�������
� VII.13 (Wiese value). The Wiese value on Vpart is the so-
lution function W given by

Wi (v,P) :=
1

n!

∑

ρ∈RON

{
v (P (i))−∑

j∈P(i)\{i}MCj (v, ρ) , P (i) ⊆ Ki (ρ) ,

MCi (v, ρ) , otherwise,

The reader notes that player i’s payoff does not depend on the partition
P in general, but only on P (i). In looking at a rank order ρ, player i

gets her marginal contribution MCi (v, ρ) if she is not the last player in her
component in ρ, i.e., if P (i) is not included in Ki (ρ). If i is the last player
in her component, she gets the worth of this component minus the payoffs
(marginal contributions MCj (v, ρ)) to the other players in her component.

The above formula lends itself to an interpretation very close to the one
given for the Shapley value. For both formulae, we consider that all players
arrive in a random order. For the Shapley value, the player’s receive their
marginal contribution with respect to the players arriving before them. In
our formula, matters are a bit more complicated. For every rank order ρ,
exactly one player i from P (i) is not followed by other players from her com-
ponent. The other players from P (i) \ {i} get their marginal contributions
as in the Shapley case. This marginal contribution will not always concern
players from P (i) exclusively. Some of the players in Kj (ρ) , j ∈ P (i) \ {i} ,
may well be outside P (i) = P (j) so that outside options are taken into ac-
count. Player i, who is the last player in her component, obtains the worth
of her component net of the marginal contributions awarded to the other
players in her component.

The construction makes clear that theWiese value is component efficient.
Since the axiomatization for this is not very nice, we confine ourselves to
state some important properties.
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T �
��� VII.2 (properties of the Wiese value). The Wiese value obeys
the symmetry axiom, the component-efficiency axiom, the grand-coalition

null-player axiom and the additivity axiom. It violates the null-player axiom.

The Wiese value is a generalization of the Shapley value in two senses:

L���� VII.2. We have W (v, {N}) = Sh (v) .

For a proof, consider the trivial partition P = {N} and a player i ∈ N .
Note that N = P (i) is a subset of Ki (ρ) only if i is the last player in
ρ. In that case, we have v (P (i)) −∑

j∈P(i)\{i}MCj (v, ρ) = MCi (v, ρ) by
(component) efficiency.

L���� VII.3. Let v be a simple game and W (v) its set of winning

coalitions. Let there be a veto player iveto ∈ N , i.e., iveto ∈ W for all

W ∈ W (v) . Let P be a partition of N such that P (iveto) ∈ W (v). Then,

Wiveto (v,P) = Shi (v).

We do not provide a proof, but invite the reader to consult Wiese (2007).

5.2. Application: the gloves game.
5.2.1. Every player holds one glove, only. The Wiese value for a right-

glove owner whose component also contains a left-glove owner is given in
the following table:

no. of left-glove holders
0 1 2 3 4

no. of 1 0 0.500 0.667 0.750 0.800
right- 2 0 0.333 0.500 0.633 0.717
glove 3 0 0.250 0.367 0.500 0.614
holders 4 0 0.200 0.283 0.386 0.500

It seems clear that the value is an ex-post value while retaining the
sensitivity to the relative scarcity. Thus, if a right-glove owner manages to
sell his glove, he can expect the price given in that table. The reader may
also note that in case of one right-glove owner, only, this agent obtains the
Shapley value, in accordance with lemma VII.3.

In private communication, Joachim Rosenmüller conjectured that the
outside-option value of the gloves game converges to the core. (After all,
the Shapley value does.) The following examples corroborate this conjecture:

replication factor n = 3, r = 1 n = 4, r = 1

1 0.6666... 0.75
10 0.8531... 0.9278...
100 0.9734... 0.9904...

As yet, a proof has not been found.
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5.2.2. The generalized gloves game. Exercise IV.16 (p. 58) alerts us to
the fact that burning gloves may be a profitable strategy if payoffs are eval-
uated with the core.

Consider the situation of farmers. They may well benefit from a bad
harvest that hits all of them. However, we might be surprised to find a
single farmer who benefits from a bad harvest striking himself only but not
the other farmers. In this sense the core exhibits an extreme outcome.

It is clear that a Shapley-payoff recipient will never burn a glove. After
all, his marginal benefit can never increase by such an action. How does the
Wiese value fare in that respect?

Let us now consider the endowment economy (see the general definition
on p. 60)

E =
(
N, {L,R} ,

(
ωiL, ω

i
R

)
i∈N ,min

)

where player i ∈ N has ωiL left and ωiR right gloves. The corresponding
endowment coalition function is defined by

vE (K) = min

(
∑

i∈K
ωiL,

∑

i∈K
ωiR

)
.

For example, let E be specified by

ω1L = 1, ω1R = 0,

ω2L = 2, ω2R = 0,

ω3L = 1, ω3R = 0,

ω4L = 0, ω4R = 1,

ω5L = 0, ω5R = 1,

ω6L = 0, ω6R = 1.

This game is obviously very close to v{1,2,3},{4,5,6}. Player 2 holds two gloves
while all the other players hold one glove each, with players 1 to 3 holding
left gloves and players 4 to 6 holding right gloves. For the maximal-pairs
partition

P = {{1, 4} , {2, 5} , {3, 6}}
we obtain the Wiese payoff

{
5

12
,
31

60
,
5

12
,
7

12
,
29

60
,
7

12

}

while the Wiese payoff is
{
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

}

for the gloves game v{1,2,3},{4,5,6}.
We have three observations. First, player 2 benefits from her additional

endowment although her component’s worth is 1 in both cases. Second,
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by component efficiency, player 5 suffers from the increased endowment of
player 2. Third, players 4 and 6 who hold right gloves, benefit from the
increase in left gloves. These observations can be generalized:

P�


����
� VII.1. Let ω and ω̂ be two endowments and i, j (i �= j)

two players from N. Let ωk = ω̂k for all k �= i, ωiR = ω̂iR and ω
i
L < ω̂iL. We

denote the corresponding endowment games by vω and vω̂, respectively. For

any partition P, we get
•

Wi (vω,P) ≤Wi (vω̂,P) ,
• if P (i) = {i, j} and ωiL + ωjL ≥ ωiR + ωjR,

Wj (vω,P) ≥Wj (vω̂,P) ,
• if P (j) �= P (i) , ωjR ≥ ωkR, and ω

j
L ≤ ωkL for all k ∈ P (j),

Wj (vω,P) ≤Wj (vω̂,P) ,
The first assertion states that a player whose endowment is increased

(player 2 in the above example) can never be hurt by this increase. This
result is in contrast to results for the core where a player may benefit from
burning a glove. The second assertion is a direct conclusion from the first,
together with component efficiency. The third generalizes the observation
about players 4 and 6 above: Since player j holds less left gloves and more
right gloves than any other player in his component, he will benefit more
from a higher endowment of left gloves outside his component than the
other players in his component. For a proof, consult the working paper
“The outside-option value - axiomatization and application to the gloves
game” on the webpage http://www.uni-leipzig.de/~micro/wopap.html.

6. The outside-option value due to Casajus

6.1. The splitting axiom. The splitting axiom is the central axiom
for the outside-option value concocted by Casajus (2009):

D�������
� VII.14 (splitting axiom). Consider two partitions P1 and
P2 such that P1 is finer than P2. If two players i and j belong to the same
component of the finer partition (j ∈ P1 (i)), we have

σi (v,P2)− σi (v,P1) = σj (v,P2)− σj (v,P1)
for all partitional games (v,P) ∈ Vpart.

Casajus makes a good case for this axiom: “Splitting a structural coali-
tion affects all players who remain in the same structural coalition in the
same way. As the value is already meant to reflect the outside options of the
players, one could argue that the gains/losses of splitting/separating should
be distributed equally within a resulting structural coalition.”

We come back to the splitting axiom later.
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6.2. Axiomatization of the Casajus value. The Casajus value does
not, as far as we know, admit a rank-order definition. Instead it builds on
the Shapley values in the most simple fashion:

D�������
� VII.15 (Casajus value). The Casajus value on Vpart is the
solution function Ca given by

Cai (v) := Shi (v) +
v (P (i))−∑

j∈P(i) Shj (v)

|P (i)|

According to this value, the players obtain the Shapley value which
then has to be made component-efficient. If the sum of the Shapley values
in a component happens to equal the component’s worth, the Casajus value
equals the Shapley value. If the sum of a component’s Shapley values exceed
the component’s worth, the difference, averaged over all the players in the
component, has to be “paid” by every player.

T �
��� VII.3 (axiomatization of Casajus value). The Casajus for-
mula is axiomatized by the symmetry axiom, the component-efficiency ax-

iom, the grand-coalition null-player axiom, the additivity axiom and the

splitting axiom.

E������� VII.5. Determine the Casajus value for N = {1, 2, 3} and
the unanimity game u{1,2}. Consider both P = {{1, 3} , {2}} and P =

{{1, 2} , {3}} .

6.3. Application: elections in Germany for the Bundestag 2009.
6.3.1. Political parties. In 2009, 27 parties were present in one or several

or all of the 16 German Länder. Among these, we find

• SPD — Sozialdemokratische Partei Deutschlands (16 lists)
• CDU — Christlich Demokratische Union Deutschlands (15 lists —
not in Bavaria)

• FDP — Freie Demokratische Partei (16 lists)
• DIE LINKE — Die Linke (16 lists)
• GRÜNE — Bündnis 90/Die Grünen (16 lists)
• CSU — Christlich-Soziale Union in Bayern (1 list only — Bavaria)
• NPD — Nationaldemokratische Partei Deutschlands (16 lists)
• MLPD — Marxistisch-Leninistische Partei Deutschlands (16 lists)
• PIRATEN — Piratenpartei Deutschland (15 lists, not in Saxony)
• DVU — Deutsche Volksunion (12 lists)
• REP — Die Republikaner (11 lists)
• ödp — Ökologisch-Demokratische Partei (8 lists)
• BüSo — Bürgerrechtsbewegung Solidarität (7 lists)
• Die Tierschutzpartei — Mensch Umwelt Tierschutz (6 lists)
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F����� 1

6.3.2. Results. The election for the 17th German Bundestag took playe
on September, 27th, 2009 and brought forth some extreme results:

• The participation rate (70.78%) was the lowest ever recorded in the
Federal Republic of Germany.

• The Christian democrats and the liberals collected the number of
votes necessary to form a government coalition.

• The liberals, the lefts and the greens obtained the best results in
their party histories.

• The parties of the ruling grand coalition (Christian democrats, so-
cial democrtes) lost in big way:
— The social democrats witnessed their worst result in any elec-
tion for the Bundestag.

— The Christian democrats saw their worst election result since
1949.

The vote distribution can be seen from the following table:
The vote distribution leads to the seat distribution seen in the following

diagram:
6.3.3. Coalitions functions and actual political outcome. Which parties

can form government coalitions? The Christian democrats and the liberales
ruled out a coalition with the leftist party. So did Frank-Walter Steinmeier
on behalf of the social democrats.

The liberals excluded a coalition with the greens and the social de-
mocrats (traffic-light coalition: red - yellow - green). The green party ex-
cluded the Jamaica coalition (black - yellow - green).

We suggest to consider three assumptions:
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F����� 2

• assumption 1: Black - yellow and black - red are possible coalitions,
only.

• assumption 2: Apart from the two coalitions mentioned in assump-
tion 1, red - yellow -green and black - yellow - green are also possible

• assumption 3: All government coalitions are feasible except that
the left party will not be seen in a coalition with the christian
democrats or the liberals.

Thus, we have three different coalition functions:
Under assumption 1, we find the coalition function

v (K) =





1, CDU ∈ K, SPD ∈ K

1, CDU ∈ K,FDP ∈ K

0, otherwise

with the Shapley payoffs

ShCDU =
2

3
,ShSPD =

1

6
,ShFDP =

1

6
,

the Casajus payoffs for the black - yellow coalition

χCDU =
3

4
, χSPD = 0, χFDP =

1

4

and the Casajus payoffs for the black - red coalition

χCDU =
3

4
, χSPD =

1

4
, χFDP = 0

Taking the seat distribution into account, assumptions 2 and 3 do not
change the above coalition function:

• The green party is a null player within a Jamaica (black - yellow -
green) coalition.
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• The traffic-light (red - yellow - green) coalition does not avail of
50% of the seats in the Bundestag.

Therefore, the promises made by the liberals and greens proved not to be
expensive ex-post.

The actual government coalition has the Christian democrats form a
government coalition with the liberal party. The actual distribution of min-
istries taken over by these parties approximates the Casajus values. 11
portfolios are in the hands of CDU/CSU and 5 in the hands of the liberals
with 5

16 being slightly above 4
16 =

1
4 .

6.3.4. Coalitions functions and the Sonntagsfrage. German demographers
regularly ask potential voters about their actual inclinations. On February,
19th, 2010, a few months after the 2009 elections, Infratest dimap reported
these results:

distribution of votes ... of seats
SPD 27 28

CDU 34 36

Left 10 10

FDP 10 10

Green 15 16

After the Oskar Lafontaine (a very prominent member of the left party
and a former social democrat disliked by many social democrats) withdraws
from politics, some social democrats are ready to review their willingness to
form a coalition with the left party.

Therefore, one might reconsider assumption 3 from above. We now
obtain the coalition function

v (K) =





1, CDU ∈ K,SPD ∈ K

1, CDU ∈ K,Green ∈ K

1, SPD ∈ K,Green ∈ K,FDP ∈ K

1, SPD ∈ K,Green ∈ K,Left ∈ K

0, otherwise

the Shapley payoffs

ShCDU =
22

60
,ShSPD =

17

60
,ShFDP =

2

60
,ShLinke =

2

60
, ShGreen =

17

60

and the Casajus payoffs

• for the grand coalition:

χCDU =
39

72
, χSPD =

33

72
,

• for the black-green coalition:

χCDU =
39

72
, χGreen =

33

72
,
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• for the black-green-liberal coalition:

χSDP =
30

72
, χGreen =

30

72
, χFDP =

12

72

• for the red-red-green coalition:

χSDP =
30

72
, χGreen =

30

72
, χLeft =

12

72

• and, finally, for the Jamaica coalition

χCDU =
34

72
, χGreen =

28

72
, χFDP =

10

72
.

Thus, the Christian democrats are free to choose the social democrats or
the green party as a coalition partner. Both have no better alternative than
to go along.

7. Contrasting the Casajus and the Wiese values

7.1. The splitting axiom. We try to find out under what circum-
stances the Wiese value violates the splitting axiom. Consider the game on
N = {1, 2, 3} partly given by

v (i) = 0, i = 1, 2, 3,

v (N) = 1.

The Shapley values for players 1 and 2 are

W1 (v, {N}) = Sh1 (v) =
2 + v(1, 2) + v(1, 3)− 2v (2, 3)

6
,

W2 (v, {N}) = Sh2 (v) =
2 + v(1, 2) + v(2, 3)− 2v (1, 3)

6

Consider the grand coalition N = {1, 2, 3} and assume that players 1 and 2

split off. Then we obtain the partition

P = {{1, 2} , {3}}

and the Wiese payoffs

W1 (v,P) =
−2 + 2v(1, 2) + v(2, 3)

6
,

W2 (v,P) =
−2 + 2v(1, 2) + v(1, 3)

6
.

The splitting axiom claims that players 1 and 2 should benefit (or be hurt)
equally. It holds for the Casajus value where we find

Ca1 (v, {N})−Ca1 (v,P) = Sh1 (v)−
(
Sh1 (v) +

v ({1, 2})− Sh1 (v)− Sh2 (v)

2

)

= Sh2 (v)−
(
Sh2 (v) +

v ({1, 2})− Sh1 (v)− Sh2 (v)

2

)

= Ca2 (v, {N})−Ca2 (v,P)
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The splitting axiom is not fulfilled by the Wiese value. In fact, we have

W1 (v, {N})−W1 (v,P) < W2 (v, {N})−W2 (v,P)

if an only if

v(1, 3)− v (3) < v(2, 3)− v (3)

holds. Thus, splitting away from player 3 hurts player 1 less than player 2 iff
player 1’s marginal contribution with respect to player 3 is less than player
2’s marginal contribution.

One could argue that this is quite a sensible outcome. Assume that the
above inequality holds, i.e., player 2’s marginal contribution with respect to
player 3 is higher than player 1’s contribution. The splitting axiom used for
the Casajus value implies that player 1 has to pay damages to player 2 so
that both are harmed equally. In the final analysis, the question seems to
be whether outside options are as important as inside opportunities. The
Casajus value says “yes” while the Wiese value says “not quite”.

7.2. Why make the last player the residual claimant? Noting
that the Wiese value makes the last player in a component the residual
claimant, Casajus (2009, p. 56) asks why not take the first or any other
position. Indeed, let us define a series of valuesW k for k = 0, 1, ..., |P (i)|−1

by

W k
i (v,P) = 1

n!

∑

ρ∈RON

{
v (P (i))−∑

j∈P(i)\{i}MCj (v, ρ) , |P (i) \Ki (ρ)| = k,

MCi (v, ρ) , otherwise,

The haveW =W 0.Generalizating lemma VII.2 (p. 109), we haveW k (v, {N}) =
Sh for k ∈ {0, 1, ..., |P (i)| − 1} .

Let us do the same exercise as in the previous subsection, this time for
W 1. We find

6W 1
1 (v,P) = v (1, 2)−MC2 (v, (1, 2, 3)) + v (1, 2)−MC2 (v, (1, 3, 2))

+MC1 (v, (2, 1, 3)) +MC1 (v, (2, 3, 1))

+v (1, 2)−MC2 (v, (3, 1, 2))

+MC1 (v, (3, 2, 1))

= v (1, 2)− [v (1, 2)− v (1)] + v (1, 2)− [v (1, 2, 3)− v (1, 3)]

+ [v (1, 2)− v (2)] + [v (1, 2, 3)− v (2, 3)]

+v (1, 2)− [v (1, 2, 3)− v (1, 3)]

+ [v (1, 2, 3)− v (2, 3)]

= 3v (1, 2) + 2v (1, 3)− 2v (2, 3)
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and hence

W 1
1 (v,P) =

3v (1, 2) + 2v (1, 3)− 2v (2, 3)

6
and

W 1
2 (v,P) =

3v (1, 2)− 2v (1, 3) + 2v (2, 3)

6
by component efficiency.

We now get

W 1
1 (v, {N})−W 1

1 (v,P) < W 1
2 (v, {N})−W 1

2 (v,P)
if an only if

v (2, 3)− v (3) < v (1, 3)− v (3)

holds. Thus, splitting away from player 3 hurts player 1 less than player 2
iff (and although) player 1’s marginal contribution with respect to player 3
is larger than player 2’s marginal contribution. Thus, we have the opposite
result as in the previous section.

8. Attacking the stability problem

In the introduction, we consider the the player set N = {1, 2, 3}, the
unanimity game u{1,2}, and the coalition structure P = {{1, 3} , {2}} . We
argue that outside-option values attribute a negative payoff to player 3.

Indeed, we find

Ca3
(
u{1,2},P

)
= Sh3

(
u{1,2}

)
+
u{1,2} ({1, 3})− Sh1

(
u{1,2}

)
− Sh3

(
u{1,2}

)

|{1, 3}|

= 0 +
0− 1

2 − 0

2
= −1

4
and

W3

(
u{1,2},P

)
=

1

6


0− 0︸ ︷︷ ︸
(1,2,3)

+ 0− 0︸ ︷︷ ︸
(1,3,2)

+ 0− 1

2︸ ︷︷ ︸
(2,1,3)

+ 0︸︷︷︸
(2,3,1)

+ 0︸︷︷︸
(3,1,2)

+ 0︸︷︷︸
(3,2,1)


 = − 1

12
.

Of course, player 3 will not be happy with this payoff. After all, she can
obtain the payoff zero by forming a component by herself. In other words,
the above partition is not stable.

Adapting the definition proposed by Hart & Kurz (1983), we define
stability in the following manner:

D�������
� VII.16. A coalition structure P is stable for a solution func-
tion σ (on Vpart) if there is no coalition L such that all players from L profit

from forming a component, i.e. if for all L �= ∅ we have
σi (v,P) ≥ σi (v, {L,N\L}) for some i ∈ L,

or, equivalently, if for all L �= ∅ we have
σi (v,P) ≥ σi (v,N\L) for some i ∈ L.
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Our definition is simpler than the orignal one. The reason is that the
outside option value for a player in component C is not influenced by how
the players outside C are partitioned (this is the component-focus axiom).

E������� VII.6. Consider the apex game h1 for N = {1, .., 4}. Find
the Casajus values and examine the stability of the partitions P ′ = {N} ,
P ′′ = {{1} , {2, 3, 4}} , P ′′′ = {{1, 2} , {3, 4}} , and P ′′′′ = {{1, 2, 3} , {4}}.

We will present a few results on stability, which are due to Casajus (2009,
p. 56), Tutic (2010 (?)), and Wiese (2007):

T �
��� VII.4. The following stability results can be shown:

• Stable coalition structures for the Casajus outside-option value exist
for all coalition functions.

• Stable coalition structures for the Wiese outside-option value do not
exist for all coalition functions.

• Stable coalition structures for the Wiese outside-option value exist
for all symmetric and for all convex games.

• Any stable partition P fulfills Wi (v,P) ≥ v ({i}) for all players
i ∈ N .

• Consider a weighted majority game [g1, ..., gn] and the correspond-
ing coalition function v ∈ VN . Let iveto be a veto player, i.e., let
giveto ≥ ∑

i∈N,i�=iveto gi. If P (iveto) is a winning coalition, P is
stable.
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9. Topics and literature

The main topics in this chapter are

• outside-option values
• Casajus value
• Wiese value
• component efficiency
• splitting axiom

We introduce the following mathematical concepts and theorems:

• t

•
We recommend.

10. Solutions

Exercise VII.1
We find:

(1) P1 is both finer and coarser than P2.
(2) P1 is neither finer nor coarser than P2.
(3) P1 is coarser than P2, but not finer.

Exercise VII.2
Yes.

Exercise VII.3
We have u{1,2} (1) = v{1,2},{3} (1) = 0 and hence AD1

(
u{1,2},P

)
=

AD1
(
v{1,2},{3},P

)
= 0. For the unanimity game, we findAD3

(
u{1,2},P

)
= 0

for null player 3 and AD2

(
u{1,2},P

)
= u{1,2} ({2, 3})− 0 = 0 by component

efficiency. Turning to the gloves game, we obtain

AD2
(
v{1,2},{3},P

)
= Sh2

(
v{1,2},{3}

∣∣
{2,3}

)

= Sh2
(
v{2},{3}

)

=
1

2

= AD3
(
v{1,2},{3},P

)
.

Exercise VII.4
The players 6, 2 and 4 complete their components.

Exercise VII.5
The Shapley value for the unanimity game u{1,2} is Sh

(
u{1,2}

)
=

(
1
2 ,
1
2 , 0

)

so that we get player 1’s Casajus value

Ca1
(
u{1,2}, {{1, 3} , {2}}

)
=

1

2
+

0−
(
1
2 + 0

)

2
=

1

4
.
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The other players’ payoffs can be obtained by component efficiency. Finally,
we have

Ca
(
u{1,2}, {{1, 3} , {2}}

)
=

(
1

4
, 0,−1

4

)
.

For the other partition, we find

Ca
(
u{1,2}, {{1, 2} , {3}}

)
=

(
1

2
,
1

2
, 0

)
.

For example, you could have applied component efficiency to player 3 and
then P-symmetry to the other two players.
Exercise VII.6

The Casajus values are

Ca
(
h1,P ′

)
=

(
1

2
,
1

6
,
1

6
,
1

6

)
,

Ca
(
h1,P ′′

)
=

(
0,

1

3
,
1

3
,
1

3

)
,

Ca
(
h1,P ′′′

)
=

(
2

3
,
1

3
, 0, 0

)
, and

Ca
(
h1,P ′′′′

)
=

(
5

9
,
2

9
,
2

9
, 0

)
.

Up to symmetry, these four partitions are the only serious candidates for
stable partitions. P ′ is not stable because the coalitions {1, 2} or {2, 3, 4}
can profitably deviate. P ′′′′ is not stable because of P ′′′. P ′′ and P ′′′ are
stable.

11. Further exercises without solutions

(1) Assume two men, Max (M) and Onno (O), who both love Ada (A).
Their coalition function is given

v (K) =





0, |K| ≤ 1

6, K = {M,A}
4, K = {O,A}
1, K = {M,O}
2, K = {M,O,A}

• Calculate the AD payoffs and the outside options values due
both to Casajus andWiese for the partition P = {{M,A} , {O}}!

• Comment!
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(2) A capitalist employs two workers 1 and 2. The firm’s coalition func-
tion is given by N = {K, 1, 2} and

v ({K}) = 10,

v ({1}) = v ({2}) = v ({1, 2}) = 0,

v ({K, 1}) = v ({K, 2}) = 16,

v (N) = 19

Find the players’ payoffs by applying suitable solution concepts for
• full employment,
• partial employment (worker 2 is fired).
Comment!

(3) Consider the player set N = {m,w1, w2} where m stands for a
man and w1 and w2 for two women. The government’s viewpoint
on marriages, homosexual marriages and polygamy is expressed by
the coalition functions v given by

v ({m}) = v ({w1}) = v ({w2}) = 0,

v ({m,w1}) = v ({m,w2}) = 5,

v ({w1, w2}) = 3,

v (N) = −2.
• Is v monotonic, superadditive or essential?
• Which solution concept would you like to apply? How about
the

— core
— the Shapley value,
— the AD-value,
— the outside-option value (due to either Casajus orWiese)?

(4) Using the axioms, derive the Shapley payoffs and the AD-payoffs
for the coalition function given by N = {1, 2, 3, 4} and

v (K) =





0, K ∈ {{1} , {2} , {3}}
10, K ∈ {{4} , {1, 4} , {2, 4} , {3, 4}}
60, K ∈ {{1, 2} , {1, 3} , {2, 3}}
72, K = {1, 2, 3}
70, K ∈ {{1, 2, 4} , {1, 3, 4} , {2, 3, 4}}
82, K = N

and the partition P = {{1, 2, 3} , {4}}!



CHAPTER VIII

The union value

1. Introduction

The components in this chapter are bargaining groups. They players
in such a component put their aggregate contributions in the balance. A
priori, it is unclear whether that is a good idea. For example, German
citizens form a component within the European Union. It seems that the
average German stands a smaller chance of becoming a EU commissioner
than an Irish person.

• We find that the productive players in a unanimity game profit
when they dissociate themselves from other productive players.

• Left-glove owners may benefit from forming a cartel of left-glove
holders.

The main idea behind the Owen, or union, value is this. We consider two
games. First, the components play against each other leading to some ag-
gregate payoff for each of them. Second, within each component, the players
bargain about their share of the component’s aggregate payoff.

We proceed as follows. In the next section, we explain how some rank
orders are not consistent with some partitions. We present the union value
in section 3 and its axiomatizations in section 4. Examples in section 5
conclude the chapter.

The Owen value is a generalization of the Shapley value. This will
become obvious for the trivial partition P = {N} (one bargaining block
containing all players) and for the atomic partition P = {{1} , {2} , ..., {n}}
(every player bargains for himself). In section 6, we show that the Shapley
value can be obtained as the mean of Owen values for different partitions.

2. Partitions and rank orders

Before presenting the union value, we need to do some preparatory
groundwork. First of all, we remind the reader of definition VIII.1 (p. 123):
For a component P of the player set N , the component containing player
i ∈ N is denoted by P (i) ∈ 2N . Second, we need to define P (R) for a player
set R ⊆ N .

D�������
� VIII.1 (subpartition). Let P = {C1, ..., Ck} be a partition
of N . Partition P1 is called a subpartition of P2 if P1 ⊆ P2 holds. The set

123
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of components containing any player from R ⊆ N is given by

P (R) := {C ⊆ N : ∃i ∈ R such that C = P (i)}

According to the above definition, we have C ∩R �= 0 ⇔ C ∈ P (R) for
all C ∈ P. Differently put, P (R) is a subpartition of P (i.e., P (R) contains
nothing but components from P) and the smallest subpartition that places
all players from R in components. We get from a partition P to P (R) by
deleting those components that do not contain R-players.

E������� VIII.1. Express P (T ) and P (i) ∩ T in your own words.

D�������
� VIII.2 (union of components). Let P = {C1, ..., Ck} be a
partition of N . We denote the union of R-components by

⋃
P (R) :=

⋃

i∈R
P (i) .

Thus, P (R) is a set of subsets of N while
⋃

P (R) is a subset of N .

Alternatively,
⋃

P (R) is the set with partition P (R).

E������� VIII.2. Consider P = {{1} , {2} , {3, 4} , {5, 6, 7}} and find
P ({2, 5}) and

⋃
P ({2, 5}) .

Do you see that P (i) is a subset of N while P ({i}) is the set that
contains P (i) , P ({i}) = {P (i)}? Also, P (R) is a subpartition of P while
P (i) is not. Do not worry your head off if you do not understand. In any
case, have a close look at the following exercise.

E������� VIII.3. Determine P (2) , P ({2, 3}) , P ({2}) and P (N\ {2, 3})
for N = {1, ..., 4} and the partitions

• P = {{1} , {2} , {3, 4}} and
• P = {{1} , {2, 3} , {4}}!

Are any of the resulting expression partitions?

We now turn to the final and most important bit of formal language. For
a given partition P ∈ PN , we want to consider those rank orders ρ ∈ ROn

that leave the players of each component together. Consider, for example,
the partition P = {{1} , {2} , {3, 4}} . The rank order ρ = (3, 1, 2, 4) tears
the component {3, 4} apart while the rank order ρ = (3, 4, 1, 2) does not.

D�������
� VIII.3 (consistent rank orders). A rank order ρ ∈ ROn is

called consistent with a partition P ∈ PN , if, for every component C from

P, there exist an index j and a number ℓ ∈ {0, ..., n− j} such that
C =

{
ρj, ρj+1, ..., ρj+ℓ

}

holds. The set of all rank oders on N that are consistent with a partition P
are denoted by ROPn or RO

P .
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The ROPn is contained in the set ROn. Starting with ROn, we get to
ROPn n by deleting those rank oders that tear apart players belonging to the
same component.

E������� VIII.4. Which of the following rank oders are consistent with
the partition P = {{1} , {2} , {3, 4} , {5, 6, 7}}?

• ρ = (1, 2, 3, 4, 5, 6, 7)

• ρ = (2, 1, 4, 5, 6, 7, 3)

• ρ = (1, 5, 2, 3, 4, 6, 7)

• ρ = (1, 4, 3, 7, 5, 6, 2)

E������� VIII.5. Which rank orders from RO7 are consistent with

• P = {{1, 2, 3, 4, 5, 6, 7}} or
• P = {{1} , {2} , {3} , {4} , {5} , {6} , {7}}?

You certainly remember

|ROn| = n!

We derive this formula on p. 42. How many rank orders are consistent with
a partition

P = {S1, ..., Sk}?
Note.

• We have k! possibilities to rank the components S1 through Sk.
• Within component Sj, there are |Sj |! possibilities to rank its play-
ers.

Thus, we find ∣∣ROPn
∣∣ = k! · |S1|! · ... · |Sk|!

and hence a second reason why
∣∣∣RO{{1,2,...,n}}n

∣∣∣ =
∣∣∣RO{{1},{2},...,{n}}n

∣∣∣ (see

exercise VIII.5) holds.

3. Union-value formula

The union partition stands for groups of players who put their aggregate
marginal contribution into the balance.

D�������
� VIII.4 (Owen value). The Owen value on Vpart is the solu-
tion function Ow given by

Owi (v,P) =
1

|ROPn |
∑

ρ∈ROPn

[v (Ki (ρ))− v (Ki (ρ))] , i ∈ N.

Thus, in contrast to the Shapley value, we consider the rank orders that
are consistent with the partition P, only, rather than all rank orders.

Let us consider the player set N = {1, 2, 3} , the gloves game v{1,2},{3}.
Right gloves are scarce and the Shapley payoffs are

(
1
6 ,
1
6 ,
2
3

)
. Let us now

assume that the left-glove owners form a cartel so that we are dealing with
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the partition P = {{1, 2} , {3}}. We have four rank orders consistent with
P:

(1, 2, 3) , (2, 1, 3) , (3, 1, 2) and (3, 2, 1) .

Thus, we obtain the Owen payoffs

Ow1
(
v{1,2},{3},P

)
=

1

4


 0︸︷︷︸
(1,2,3)

+ �︸︷︷︸
(1,3,2)

+ 0︸︷︷︸
(2,1,3)

+ �︸︷︷︸
(2,3,1)

+ 1︸︷︷︸
(3,1,2)

+ 0︸︷︷︸
(3,2,1)


 =

1

4
,

Ow2
(
v{1,2},{3},P

)
=

1

4


 0︸︷︷︸
(1,2,3)

+ �︸︷︷︸
(1,3,2)

+ 0︸︷︷︸
(2,1,3)

+ �︸︷︷︸
(2,3,1)

+ 0︸︷︷︸
(3,1,2)

+ 1︸︷︷︸
(3,2,1)


 =

1

4
,

Ow3
(
v{1,2},{3},P

)
=

1

4


 1︸︷︷︸
(1,2,3)

+ �︸︷︷︸
(1,3,2)

+ 1︸︷︷︸
(2,1,3)

+ �︸︷︷︸
(2,3,1)

+ 0︸︷︷︸
(3,1,2)

+ 0︸︷︷︸
(3,2,1)


 =

2

4
.

In this case, unionization pays.
Do you see that P = {{1, 2, ..., n}} and P = {{1} , {2} , ..., {n}} lead to

the same Owen values?

4. Axiomatization

The Owen value is a solution function σ on (N,PN) that obeys

• the efficiency axiom,
• the symmetry axiom (payoff equality for P-symmetric players),
• the null-player axiom, and
• the additivity axioms.

These axioms do not suffice to pin down the Owen value. We introduce
additional axioms which need some preparation. The symmetry axiom for
components claims that symmetric components should obtain the same ag-
gregate payoff. Thus, this axiom is well in line with the two games underlying
the Owen value, the game between components first and the game within
components second.

D�������
� VIII.5 (component symmetry). Consider a partition P ∈
PN . Two components C and C

′ from P are called symmetric if

v
(⋃

P (K)∪C
)
= v

(⋃
P (K)∪C ′

)

holds for all K ⊆ N\ (C∪C ′) .

D�������
� VIII.6 (symmetry axiom for components). A solution func-
tion (on Vpart) σ is said to obey symmetry between components if

σC (v,P) = σC′ (v,P)

holds for all symmetric components C and C ′ from P.
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Owen (1977) suggests a nice axiomatization:

T �
��� VIII.1 (Axiomatization of the Owen value). The Owen for-
mula is the unique solution function that fulfills the symmetry axiom, the

symmetry axiom for components, the efficiency axiom, the null-player ax-

iom and the additivity axiom.

Let us revisit the gloves game v{1,2},{3} and the partition P = {{1, 2} , {3}}
(see section 3). Both components are needed to produce the worth of 1.
Therefore, the symmetry axiom for components yields

Ow1
(
v{1,2},{3},P

)
+Ow2

(
v{1,2},{3},P

)
= Ow3

(
v{1,2},{3},P

)

efficiency then leads to

Ow3
(
v{1,2},{3},P

)
= 1−

(
Ow1

(
v{1,2},{3},P

)
+Ow2

(
v{1,2},{3},P

))

= 1−Ow3
(
v{1,2},{3},P

)

and hence to Ow3
(
v{1,2},{3},P

)
= 1

2 . Finally, the symmetry between players
1 and 2 produces Ow1

(
v{1,2},{3},P

)
= Ow2

(
v{1,2},{3},P

)
= 1

4 .

5. Examples

5.1. Unanimity games. We now develop a general formula for una-
nimity games. First of all, we disregard any component C with C ⊆ N\T .
These null components do not influence the payoffs. Thus, we focus on com-
ponents that host at least one T -player and on the partition P (T ) . Each
component in P (T ) has the same probability 1

|P(T )| to be the last compo-
nent. Within each of these components, every i ∈ T player has the same
probability 1

|P(i)∩T | to complete T.
Thus, the Owen value yields the following payoffs for a unanimity game

uT , T �= ∅ :

Owi (uT ,P) =
{

1
|P(T )|

1
|P(i)∩T | , i ∈ T

0, otherwise

Every T -player obtains a positive payoff, even if not all T -players belong to
a single component.

Assume that a player i ∈ T, for whom |P (i) ∩ T | ≥ 2 holds, breaks off
and forms a component all by himself. In that case,

• the number of T -components increases from |P (T )| to |P (T )|+ 1

while
• the number of T -players in i’s component decreases from |P (i) ∩ T | ≥
2 to 1.

Then, his payoff weakly increases as can be seen from

1

|P (T )|
1

|P (i) ∩ T | ≤
1

|P (T )|+ 1

1

1
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which is equivalent to

|P (T )|+ 1

|P (T )| ≤ |P (i) ∩ T |

where equality holds for |P (T )| = 1 and |P (i) ∩ T | = 2, only.

5.2. Symmetric games. The Shapley values are identical for players
in a symmetric game. The simple reason is that players are symmetric in a
symmetric game. However, symmetric players may well not be P-symmetric.
Consider N = {1, 2, 3}, P = {{1, 2} , {3}} and the coalition function v given
by

v (S) =





0, |S| ≤ 1

α, |S| = 2

1, |S| = 3

for any α ∈ R. To calculate player 1’s Owen payoff, we consider the following
table.

rank order marginal contribution for player 1

1-2-3 0

2-1-3 α

3-1-2 α

3-2-1 1− α

sum 1 + α

Owen payoff 1+α
4

Since players 1 and 2 areP-symmetric, we haveOw2 (v,P) = Ow1 (v,P) =
1+α
4 . Efficiency yields

Ow3 (v,P) = 1−Ow1 (v,P)−Ow2 (v,P)

= 1− 2 · 1 + α

4
=

1

2
− 1

2
α.

Thus, we obtain Ow3 (v,P) �= Ow1 (v,P) unless α = 1
3 happens to hold.

5.3. Apex games. Unionization does not pay for powerful players in
a unanimity game. However, the weak players in an apex game win by
forming a union.

E������� VIII.6. Find the Owen payoffs for the n-player apex game h1
and the partition P = {{1} , {2, ..., n}} .

If the unimportant players form several components, the apex player
obtains a positive payoff. For example, if the players 2 to n form two com-
ponents, the apex player obtains the marginal payoff 1 in one out of three
cases — therefore, we have Ow1 (v,P) = 1

3 .

E������� VIII.7. Can you find a partition P = {{1} , C1, C2} such that
a player j ∈ {2, ..., n} obtains a higher payoff than 1

n−1?
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6. The Shapley value is an average of Owen values

We plan to present a probabilistic generalization of the Owen value.
Instead of looking at a particular partition, we assume a probability distri-
bution on the set of all partitions.

6.1. Probability distribution. In this section, we introduce probabil-
ity distributions on the set of partitions PN . This important concept merits
a proper definition, where [0, 1] is short for {x ∈ R : 0 ≤ x ≤ 1}:

D�������
� VIII.7 (probability distribution). LetM be a nonempty set.

A probability distribution on M is a function

prob : 2M → [0, 1]

such that

• prob (∅) = 0,

• prob (A∪B) = prob (A) + prob (B) for all A,B ∈ 2M obeying A ∩
B = ∅ and

• prob (M) = 1.

Subsets of M are also called events. For m ∈ M , we often write prob (m)

rather than prob ({m}) . If a m ∈ M exists such that prob (m) = 1, prob

is called a trivial probability distribution and can be identified with m. We

denote the set of all probability distributions on M by Prob (M).

E������� VIII.8. Throw a fair dice. What is the probability for the
event A, “the number of pips (spots) is 2”, and the event B, “the number of

pips is odd”. Apply the definition to find the probability for the event “the

number of pips is 1, 2, 3 or 5”.

Thus, a probability distribution associates a number between 0 and 1 to
every subset of M . (This definition is okay for finite sets M but a problem
can arise for sets with M that are infinite but not countably infinite. For
example, in case of M = [0, 1], a probability cannot be defined for every
subset of M, but for so-called measurable subsets only. However, it is not
easy to find a subset of [0, 1] that is not measurable. Therefore, we do not
discuss the concept of measurability.)

6.2. Symmetric probability distribution. We now consider prob-
ability distributions prob on M = PN . Following Casajus (2010), let us
consider those probability distributions that are unaffected by the labeling
of the players. We call these probability distributions “symmetric”. For
example, the probability distribution prob on P ({1, 2, 3}) given by

prob ({{1, 2} , {3}}) = 1

2
= prob ({{1} , {2, 3}})
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is not symmetric because of prob ({{2} , {1, 3}}) = 0. Also, defining prob by

prob ({{1, 2} , {3}}) = 1

does not yield a symmetric probability distribution, again because of prob ({{2} , {1, 3}}) =
0.

In contrast, the probability distributions prob1, prob2, and prob3 given
by

prob1 ({{1, 2} , {3}}) = prob1 ({{1} , {2, 3}}) = prob1 ({{2} , {1, 3}}) =
1

3
,

prob2 ({{1, 2, ..., n}}) = 1, and

prob3 ({{1} , {2} , ..., {n}}) = 1

are symmetric.
We now like to present the formal definition proposed by Casajus (2010).

Consider a bijection π : N → N . For example, for N = {1, 2, 3} , a bijection
π is defined by

π (1) = 3,

π (2) = 1, and

π (3) = 2.

For a partition P, π (P) is the partition {π (C) : C ∈ P}.

E������� VIII.9. Let P = {{1, 2} , {3}} . Find π (P) for the above bi-
jection π!

D�������
� VIII.8 (symmetric probability distribution). Let prob be a
probability distribution on PN . prob is called symmetric if every bijection

π : N → N yields

prob (P) = prob (π (P)) .

Let us applying the definition to the probability distributions prob1,
prob2, and prob3 given above. prob1 is symmetric because there exist three
partitions with

• one player in a singleton component and
• the two other players sharing a component

and these three partitions have the same probability (13).
Do you see that π ({1, 2, ..., n}) = {1, 2, ..., n} for every bijection π. Also,

every partition π keeps the atomic partition intact.

6.3. The probabilistic Owen value.

D�������
� VIII.9 (probabilistic Owen value). The probabilistic Owen
value on Vpart is the solution function Ow given by

Owi (v, prob) =
∑

P∈PN

prob (P)Owi (v,P) , i ∈ N,
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where prob ∈ Prob (PN) is a probability distribution on the set of partitions

of N .

Casajus (2010) shows the following result:

T �
��� VIII.2. For any symmetric probability distribution prob on

PN , we have

Ow (v, prob) = Sh (v) .
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7. Topics and literature

The main topics in this chapter are

• union value

We introduce the following mathematical concepts and theorems:

• t

•
We recommend

8. Solutions

Exercise VIII.1
P (T ) is the set of P’s components that contain at least one T -player.

P (i) ∩ T is the set of T -players in i’s component.
Exercise VIII.2

We have P ({2, 5}) = {{2} , {5, 6, 7}} and
⋃

P ({2, 5}) = {2, 5, 6, 7}.
Exercise VIII.3

For the first partition, we obtain P (2) = {2} , P ({2, 3}) = {{2} , {3, 4}} ,
P ({2}) = {{2}} and P (N\ {2, 3}) = {{1} , {3, 4}}, the second partition
yields P (2) = {2, 3} , P ({2, 3}) = {{2, 3}} , P ({2}) = {{2, 3}} andP (N\ {2, 3}) =
{{1} , {4}}. P ({2, 3}) , P ({2}) and P (N\ {2, 3}) are subsets of the parti-
tions and partitions in their own right, albeit of different sets.
Exercise VIII.4

The first and the last rank order are consistent with P. The second rank
order tears component {3, 4} apart and the third rank order does not leave
the component {5, 6, 7} intact.
Exercise VIII.5

For both partitions, we find ROPn = ROn.
Exercise VIII.6

The apex player’s marginal payoff is zero if his one-man component is
first and also if his component is last. Therefore, we have Ow1 (h1,P) = 0

and, by P-symmetry Owj (h1,P) = 1
n−1 for all players j = 2, ..., n− 1.

Exercise VIII.7
If all unimportant players j ∈ {2, ..., n} are gathered in one component,

each of them obtains 1
n−1 . In partition P = {{1} , C1, C2}, component C1

gets the payoff 1
3 (why?) which is also the payoff to some player j which

is the only player in that component — C1 = {j}. This player has a higher
payoff than 1

3 whenever n exceeds 4 :

1

3
>

1

n− 1
⇔ n ≥ 5.
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Exercise VIII.8
We have prob (A) = 1

6 and prob (B) = 1
2 for the two events and, by

A ∩B = ∅, prob (A∪B) = prob (A) + prob (B) = 1
6 +

1
2 = 4

6 .
Exercise VIII.9

We have

π (P) = {π (C) : C = {1, 2} or C = {3}}
= {π ({1, 2}) , π ({3})}
= {{1, 3} , {2}}

9. Further exercises without solutions

(1) Assume two men, Max (M) and Onno (O), who both love Ada (A).
Their coalition function is given

v (K) =





0, |K| ≤ 1

6, K = {M,A}
4, K = {O,A}
1, K = {M,O}
2, K = {M,O,A}

• Calculate the Owen payoffs for the partitionP = {{M,O} , {A}}!
• Comment!





CHAPTER IX

Unions and unemployment benefits

1. Introduction

There is more structure on labor markets than supply and demand func-
tions for labor reveal. First, some workers are employed while others are
unemployed. Second, some workers, employed or not, form a union. The
aim of this chapter is to analyze the interconnections between employment
and unionization. We will also see how unemployment benefits drive the
interplay of employment and unionization.

To fix ideas, consider one capitalist (player 1) who may employ 1 or 2
workers (players 2 and 3). If both workers are employed, we are dealing
with the (trivial) partition PAD = {{1, 2, 3}} . On the other hand, PAD =

{{1, 2} , {3}} reflects that worker 3 is unemployed.
Besides the AD-partition (modelling unemployment), we will introduce

the union partition which serves to model unionization. For our simple
example, the relevant union partitions are Pu = {{1} , {2} , {3}} and Pu =

{{1} , {2, 3}} , the first indicating the absence of a union and the second
unionization (workers 2 and 3 form a union). While the agents in an AD-
partition work together, the union components bargain as a group.

In order to address the problems of unionization and unemployment, we
need a value that depends on both the AD-partition and the union partition.
Therefore, we will blend the outside-option value and the Owen value. The
resulting value is called union outside-option value.

Our model is not the first to try a cooperative application to labor market
issues. In a recent paper, Bae (2005) uses the Shapley value to analyze the
merger incentives of firms and their unions. The merging of unions means
that workers of both unions join the productive process. In terms of our
model, this union merger would be reflected in an appropriate AD- rather
than Owen partition. Indeed, the author uses AD-payments without any
outside-option argument.

In spirit, our setup is close to the modelling by Berninghaus, Güth, Lech-
ler & Ramser (2001). They consider the question of whether parties are bet-
ter off bargaining on their own (decentralized bargaining) or together with
others (collective bargaining). However, instead of a partitional approach,
these authors use the Nash bargaining solution and propose the following
procedure. If the two players merge (collective bargaining), there is only one

135
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Nash bargaining game; if they do not merge, two separate Nash bargaining
games are considered.

In our approach, there is only one game to play. This, in our mind,
allows for interdependencies between the “two” bargaining processes. For
example, if two workers offer their services to a capitalist, one might expect
that the payoff for each of them depends on the productivity of the other.
This is indeed what we will find.

Together with unionization, we analyze unemployment benefits. These
have to be understood in a broad sense and may include (the monetary
equivalent of) the benefits of leisure. Of course, unemployment benefits can
be negative if the financial hand-out is low and if unemployed agents suffer
from boredom or the stigma of being unemployed.

While the outside-option value is the basic input, the outer structure of
our model is non-cooperative and has three stages. 1. On the basis of the
unemployment benefits, the workers decide on unionization. 2. The capi-
talist makes an employment offer to the workers, individually or to both. 3.
The workers, who foresee the wages, decide on whether to accept employ-
ment or not. In contrast to principal—agent models, the principal does not
propose wages. Instead, wages rest on the productivities of the workers, the
outside options, and the unionization.

As might be expected, unemployment benefits do not only define the
payoff for unemployed workers but influence the payoff for the employed
ones. Although an employed worker does not receive unemployment benefits,
his payoff (“wage”) is a positive function of unemployment benefits. This
fact has often been noted in the labor-market literature (see, for example,
Snower 1995, p. 626).

However, unemployment benefits also determine employment. We find
that unemployment benefits may drive people out of work. In this chapter,
there are two reasons for this to happen. Either unemployment benefits
drive up wages by increasing workers’ threat point so that employment is
not worthwhile for the capitalist. Or, unemployment benefits are so high
that workers prefer not to work although the capitalist would be ready to
offer employment (voluntary unemployment).

We also look into the question of how unionization influences wages and
employment. The economic effects of trade unions have been analyzed for a
long while, at least since the seminal works by Dunlop (1944) (the union as
an economic organization maximizing the wage bill), Ross (1948) (the union
as a political institution fighting for fairness and equity), and Freeman &
Medoff (1984) (the union as a two-faced institution, provoking inefficiency
(high wages and unemployment) on one hand and promoting productivity
and better workplace conditions on the other hand). More recent appraisals
are Blanchflower & Bryson (2004), Kaufman (2002), and Turnbull (2003).



2. THE UNION OUTSIDE-OPTION VALUE 137

Of course, our model cannot do justice to all the exhaustive theoretical and
empirical work cited in these surveys. What we try to do is to shed some
light on these issues from the point of view of cooperative game theory. The
rather complex setup (outside options, two partitions) makes impossible a
general approach. Rather, we will have to content outselves with a specific
three-player example along the lines of the above partitions.

With respect to wages, we find that a worker will prefer to be part of
a union if the other worker (also a union member!) is unemployed and
outside options are important. Indeed, unions prevent the capitalist from
exploiting the industrial reserve. Our model is supported by the often ob-
served “union/nonunion relative wage differential” (for an early survey, see
Lewis 1986) only, if unemployed workers keep on being union members. If
there is no unemployment, overstaffing (to be made precise later) makes
unionization worthwhile for the employed.

Our prediction about the effect of unionization on employment is am-
biguous. If workers are free to choose whether to form unions or not, they
will not unionize if doing so is detrimental to employment.

In summary, we argue that our approach is well-suited for the problem at
hand. In particular, it is an improvement over the cooperative models cited
above. It can address the complicated interlinkages between unionization,
unemployment benefits, and unemployment (industrial reserve) in a novel
framework.

We proceed as follows. We present the union outside-option value in
section 2. We apply this value in section 3. Section 4 concludes this chapter.

2. The union outside-option value

Values return payoff vectors for coalition functions and partitions. You
remember that

• a value on N is a function σ : VN → Rn;
• a (partitional) value on (N,PN) is a function σ : VN ×PN → Rn;
• a (bi-partitional) value on (N,PN ,PN) is a function σ : VN×PN×
PN → Rn.

The Shapley value is an example for a function on N while the AD-value, the
outside-option values and the Owen value are partitional values on (N,P) .

In this chapter, we develop a bi-partitional value that blends a generalized
Wiese value with the Owen value.

In order to prepare the generalized Wiese value, we present an alterna-
tive, rank-order definition, of the AD-value:
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L���� IX.1 (A rank-order definition of the AD-value). The AD-value
is is given by

ADi (v,P) =
1

n!

∑

ρ∈RO
MC

Ki(ρ)∩P(i)
i (v) , i ∈ N

According to this alternative characterization of the AD-value, we con-
sider all rank orders but disregard all players outside player i’s component.

D�������
� IX.1 (generalizedWiese value). The generalized Wiese value
is the solution function W given by

Wi (v,PAD, λ)

=
1

n!

∑

ρ∈RO

{
v (PAD (i))−∑

j∈PAD(i)\{i}MCj (ρ,PAD, λ) , PAD (i) ⊆ Ki (ρ) ,

MCi (ρ,PAD, λ) , otherwise,

λ ∈ [0, 1] and

MCi (ρ,PAD, λ) = λMC
Ki(ρ)
i (v) + (1− λ)MC

Ki(ρ)∩PAD(i)
i (v) .

We have dealt with the special case of λ := 1 in chapter VII. Again,
player i gets a marginal contribution, here MCi (ρ,PAD, λ), if he is not the
last player in his component in ρ, i.e., if PAD (i) is not included in Ki (ρ).
A last player is the residual claimant who gets the worth of his component
after repaying the other players’ marginal contributions.

The difference between the Wiese value presented in chapter VII and
this generalized version lies in the parameter λ. In case of λ = 0, we get the
AD-value as a special case which can be seen

• from the above lemma and
• from component efficiency which ensures that the last player also
gets his marginal contribution.

Positive values of λ reflect outside opportunities where marginal contri-
butions to coalitions outside P (i) get a positive weight. Low values of λ
reflect the inability to use outside options as a serious threat in bargain-
ing. For example, employment of yet another worker may not be feasi-
ble or substitution of the presently employed by the presently unemployed
may not be possible. For the trivial partition PAD = {N} we obtain
Wi (v, {N} , λ) = Shi (v) = ADi (v, {N}) for all λ ∈ [0, 1].

We now remind the reader of the Owen value which is given by

Owi (v,Pu) =
1

|ROPu |
∑

ρ∈ROPu

MC
Ki(ρ)
i (v) , i ∈ N.

Finally, we can present the union outside-option value. It is obtained by
merging the union and the outside-option values in the obvious manner:
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D�������
� IX.2 (union outside-option value). The union outside-option
value is the solution function OW given by

OWi (v,PAD, λ,Pu)

=
1

|ROPu |
∑

ρ∈ROPu

{
v (PAD (i))−∑

j∈P(i)\iMCj (ρ,PAD, λ) , PAD (i) ⊆ Ki (ρ) ,

MCi (ρ,PAD, λ) , otherwise,
, i ∈ N

λ ∈ [0, 1] and

MCi (ρ,PAD, λ) = λMC
Ki(ρ)
i (v) + (1− λ)MC

Ki(ρ)∩PAD(i)
i (v) .

3. A simple labour market

3.1. Partitions and payoffs. Turning to the 3-player example from
the introduction, we consider three AD-partitions, PAD = {{1, 2, 3}}, PAD =

{{1, 2} , {3}} , and PAD = {{1} , {2} , {3}} . In the first, the capitalist (player
1) employs both workers (players 2 and 3), in the second, player 3 is un-
employed, and in the third, both are unemployed. We also deal with two
union partitions, Pu = {{1} , {2} , {3}} and Pu = {{1} , {2, 3}} . The second
indicates that workers 2 and 3 form a union. Thus, we have 6 partition
combinations.

To fix ideas, we set v (N) := 100 (any positive value or a variable would
do) and let a2 := v ({1, 2}) and a3 := v ({1, 3}) . We assume a2 > a3 ≥ 0,

i.e., worker 2 is more productive than worker 3 in a one-worker firm. If
workers are not employed, they receive unemployment benefit, u ≥ 0. Hence,
v ({2}) = v ({3}) = u and v ({2, 3}) = 2u. Since we want to concentrate
on unionization and unemployment benefits, we let v ({1}) := 0, assuming
zero normal profits for the capitalist. Superadditivity (which we do not, in
general, assume) implies

2u ≤ 100,

a2 + u ≤ 100, and

a3 + u ≤ 100.

We first report the values and then (see the next section) solve a three-stage
model.

Result 1: For the six partition combinations, the union outside-option
value yields the following payoffs:
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PAD Pu ϕu−oo

{{1, 2, 3}} {{1} , {2} , {3}}




A := 100
3 + a2

6 + a3
6 − u

B := 100
3 + a2

6 − a3
3 + u

2

C := 100
3 − a2

3 + a3
6 + u

2




{{1, 2, 3}} {{1} , {2, 3}}




D := 50− u

E := 25 + a2
4 − a3

4 + u
2

F := 25− a2
4 + a3

4 + u
2




{{1, 2} , {3}} {{1} , {2} , {3}}




G := a2
2 + 1

6λ (a3 − u)− u
2

H := a2
2 − 1

6λa3 +
1
6u (3 + λ)

= a2
2 − 1

6λ (a3 − u) + u
2

I := u




{{1, 2} , {3}} {{1} , {2, 3}}




J := a2
2 − u

2

K := a2
2 + u

2

L := u




{{1} , {2} , {3}} {{1} , {2} , {3}}
or {{1} , {2, 3}}




M := 0

N := u

P := u




In particular, we find:

Result 1a: If the capitalist wants to employ one worker only, he will
choose the more productive worker 2. For moderate unemployment
benefits (u < a3), worker 2’s wage is higher in the presence of a
union than without a union. In order to accept employment, worker
2 needs to be sufficiently productive and unemployment benefits
need to be sufficiently low.

Result 1b: The incentives of the capitalist to employ worker 3 on
top of worker 2 depend on whether or not the workers form a
union. If they do, worker 3 will be employed whenever his mar-
ginal contribution exceeds unemployment benefits. If there is no
union, the capitalist might be prepared to employ a worker 3 even
if that worker’s marginal contribution is negative. In case of low
average marginal contributions (12 (100− a3) +

1
2 (100− a2) < 50)

the workers prefer to be unionized.

The values in the above table are obtained by straightforward calcula-
tions. The first row corresponds to the Shapley value (all workers employed,
no union). The Owen value (all workers employed, workers form a union) is
seen in row 2. In the last row, the capitalist does not employ any worker so
that no output is produced. Then the capitalist and the workers are paid
their reservation payoff, a profit of 0 and the unemployment benefit u, re-
spectively. Rows 3 and 4 refer to the case where only worker 2 is employed.
For these cases, the (union) outside-option value has been devised. The
appendix provides an example of how the payoff is to be calculated.
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Note that the bargaining power of any agent is expressed by the two
partitions and by λ. In particular, the capitalist cannot make a take-it-or-
leave-it offer to the worker(s) in order to lower their payoffs to the reservation
level.

We can use the values to theorize about the players’ preferences. By sim-
ple comparisons (note the letters standing for the payoffs), and explicating
Result 1a, we find:

• By a2 > a3, the capitalist prefers to have worker 2 rather than
worker 3 as his only employee (compare profits G and J, respec-
tively, with the symmetrical profits obtained by interchanging work-
ers 2 and 3).

• If worker 2 is the only employee and if the workers are not unionized,
worker 2’s payoff

H =
a2
2
− 1

6
λ (a3 − u) +

1

2
u

reveals that the capitalist can use worker 3 to lower worker 2’s
wage. This mechanism will work,
— if there is a high degree of flexibility and outside options (λ is
high),

— if worker 3 is productive (if he were employed), and
— if unemployment benefits are moderate.
In terms of Marx (1985, pp. 657), worker 3 forms the industrial

reserve.
If, however, unemployment benefits are not moderate (u > a3),
the capitalist suffers from the outside option (dealing with worker
3). Indeed, worker 2 might say to the capitalist that the capitalist
would need to deal with worker 3 unless he, worker 2, would be
prepared to put up employment.
Interestingly, unionization prevents the use of the industrial reserve
by the capitalist. This can be seen from worker 2’s payoff K =
a2
2 + 1

2u. A comparison of H with K shows that unions make
worker 2 more willing to accept employment in case of a3 > u.

Turning to Result 1b, we find:

• If the workers form a union, the capitalist wants to employ worker
3 on top of worker 2 whenever worker 3’s marginal contribution
100− a2 exceeds unemployment benefit u (D > J).

If there is not union, the capitalist might be willing to employ
worker 3 even if that worker has a negative marginal contribution.
Indeed, we find

A > G⇔ 100− a2 >
1

2
[u (3− λ)− a3 (1− λ)]
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where moderate unemployment benefits can make the right-hand
term negative. In that case, the third worker is not employed for
his productiveness but is brought into the firm in order to in-
crease the capitalist’s bargaining power vis-a-vis worker 2. This
function is especially important to the capitalist if he cannot use
the unemployed worker 3 as industrial reserve. Formally, we have
∂[ 12 [u(3−λ)−a3(1−λ)]]

∂λ = 1
2 (a3 − u) , where a3 > u (moderate unem-

ployment benefits) and low values of λ make employment of worker
3 more probable.

• Since both E > B and F > C are equivalent to 1
2a2 +

1
2a3 > 50,

both employed workers prefer unionization if their average produc-
tivity in a one-worker firm is sufficiently high, or differently put, if
the average marginal contribution of the additional worker is suf-
ficiently low (12 (100− a3) +

1
2 (100− a2) < 50). Thus, overstaffing

makes unionization worthwhile for the employed. In contrast, the
capitalist prefers unionization if the workers are relatively unpro-
ductive. A comparable result has been presented by Horn & Wolin-
sky (1988, p.488) in the context of a non-cooperative model. They
assume a2 = a3 and find an incentive to unionize in case of a2 > 50

which is a special case of our result. The reader is invited to consult
the appendix for details.

3.2. The sequential model.
3.2.1. Game sequence. We now turn to a model consisting of three stages.

First, the workers decide on unionization. Here, we apply the Pareto prin-
ciple so that one worker alone can decide about unionization if the other is
indifferent. Second, the capitalist makes an employment offer to worker 2,
worker 3, both, or none. (Wages are determined later.) Finally, the workers
accept employment or decline. If any worker declines, no workers are em-
ployed. This is not restrictive. Since the capitalist can foresee the workers’
payoffs and decisions, he will make acceptable offers. In order to maintain
tractability, we assume λ := 1.

3.2.2. Solving for subgame-perfect equilibria. If the capitalist plans to
employ one worker only (stage 2), he will choose the more productive worker
2 by a2 > a3 (see profits G and J). Thus, at stage 2, the capitalist chooses
between

• employing worker 2, only,
• employing both workers, and
• employing none.

By a2 > a3, both workers will accept employment if worker 3 accepts (see
payoffs B > C and E > F ). Solving the model requires simple but tedious
case distinctions which we will relegate to the appendix.
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3.3. Employment (stages 2 and 3).
3.3.1. Voluntary unemployment. From the point of view of social pol-

icy, it is an important question whether unemployment benefits affect un-
employment and voluntary unemployment. As De Vroey (2004, pp. 13)
points out, several alternative definitions of voluntary unemployment co-
exist. Definitions of voluntary unemployment make use of counterfactual
thought experiments: Would the unemployed worker like to be employed in
lieu of another actually employed one? Since we deal with small numbers
of heterogeneous workers, we propose the following working definition: an
unemployed worker is voluntarily unemployed if employing him - on top of
the actually employed workers - would lead to an unattractive wage rate,
i.e., a wage rate lower than his unemployment benefit.

Result 2: Voluntary unemployment may happen.
In order to show Result 2, we look at the special case depicted in figure

1. “Nu” stands for “no union” and “Nu2” refers to one of several cases (see
appendix). The agents preferences are indicated in their respective lines and
are noted as a function of unemployment benefits u. For example, to the left
of the first vertical line, the capitalist will prefer to employ worker 2 instead
of employing no worker. To the left of the second vertical line, he prefers
to employ both workers rather than none. To the left of the last vertical
line, the capitalist would rather employ both workers than worker 2, only.
The preferences for worker 2 (who will get an offer if only one worker gets
an offer) and of both workers (identical to the preferences of worker 3) are
depicted in a similar way. The fourth line (”accepted offer”) summarizes
these lines into statements about employment.

u

13
5

13
400

2
a

25 and ,50 union, no :Nu2 Case 3
2

3
3

a
aa +<<+<

Capitalist:                2   none             both   none                                                                           both   2
 
Worker 2:                                                                             yes   no

Both workers:                                                                                                      yes   no

Accepted offer:                                    both   none 

involuntary          involuntary               voluntary
unemployment     unemployment        unemployment
of both workers    of worker 3             of both workers

              full 
employment

Figure 1: Preferences and outcomes in case Nu2

In the actual case, the capitalist is able to achieve his preferred outcome
(both workers left of the second vertical line, none to the right of this line)
because both workers are prepared to put up employment whenever the
capitalist is ready to offer employment to both.
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We see that involuntary and voluntary unemployment can well happen.
Between the second and third vertical line, worker 2 would be prepared to
accept employment of him alone and both workers would be prepared to
accept employment of both. Here, we have involuntary unemployment of
both workers. The area between the third and fourth vertical line is difficult
to classify. Worker 3 is involuntarily unemployed. However, worker 2 is not
prepared to be employed on his own while he is willing to be employed if
both workers were active. To the right of the fourth line (at high levels of
unemployment benefits), we have voluntary unemployment of both workers.

3.3.2. Employment and unionization. We now present the results about
the effects of unemployment benefits and unionization on employment.

Result 3: As a general picture, unemployment is an increasing function
of the level of unemployment benefits. Depending on parameters, unions can
be harmful or beneficial for employment.

In order to show that unemployment benefits create unemployment, we
refer to two figures. Figure 2 is based on a3 = 20 (an example for a3 < 50)
and figure 3 on a3 = 60 (an example for a3 > 50). In these figures, un-
employment benefit u is plotted against a2 ≥ a3. Obviously, unemployment
benefits are detrimental to employment.

2a

u

3a0
Both workers
are employed.

Both workers
are unemployed.

Worker 2is employed.3a

union
no union

Figure 2: Employment and unions for a3 = 20
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2a0
3a

u

Both workersare employed.

Both workers

are unemployed.

Worker 2
is employed. union

no union

3a

Figure 3: Employment and unions for a3 = 60

The effect of unionization on employment is quite unclear. For example,
in figure 2, in the leftmost triangle bordering the u-axis, we have unemploy-
ment without unions and full employment in case of unions. For the very
small triangle to the right of this triangle, we have unemployment in case
of, and full employment without, unions.

3.4. Union choice (stage 1). We now turn to stage 1 of our model,
i.e., to the question of whether workers will want to unionize. There are two
somewhat distinct reasons for unionization (or for deciding against unions).
Workers make their union-choices in order to be employed (i.e., in order to
obtain a salary instead of unemployment benefits) or in order to increase
their salary. Thus, we distinguish between the employment and the salary
motive.

Result 4: Workers are unanimous in their union choice and unions
can never be blamed for unemployment. Workers decide on unions for both
employment and salary motives. Unions tend to be beneficial for (employed!)
workers if there is overstaffing or unemployment.
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2a

u

3a0

Indifference
(both unemployed
anyway)

3a
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No union for salary motive
(both employed anyway) Union for salary m

otive

(both em
ployed anyway)

No union for salary motive
(worker 2 employed anyway)

Union for salary motive
(worker 2 employed anyway)

No union and
employment
for both rather
than worker 2

No union and
employment
for both rather
than none

Union and
employment
for both rather
than none

3100 a−

Figure 4: Union choice for a3 = 20

2a0
3a

u
Indifference
(both unemployed
anyway)

Union for salary motive
(both employed anyway)

Union for salary motive
(worker 2 employed anyway)

No union for salary motive
(worker 2 employed anyway)

Union and
employment
for 2 rather
than none

3a

Figure 5: Union choice for a3 = 60

Figures 4 (based on a3 = 20) and 5 (based on a3 = 60) inform about the
choice of unions by the two workers. If one worker (worker 3) is indifferent
towards unionization (because he is unemployed in either case), while the
other (worker 2) has a definite preference, we assume that the latter one’s
preferences count. We also find that if both workers are employed, their pref-
erences coincide. Therefore, unions can never be blamed for unemployment
from the point of view of stage 1.

In Result 1a, we note that moderate unemployment benefits (u < a3)
make worker 2 - as the only employee - prefer a union. This is reflected in
both figures. According to Result 1b, overstaffing (12 (100− a3)+

1
2 (100− a2) <
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50) imply that both (employed!) workers prefer a union. Indeed, the equiv-
alent formulation is a2 > 100−a3 which holds everywhere in figure 5 (which
is based on a3 > 50) and to the right of 100− a3 in figure 4.

4. Conclusions

With respect to employment maximization, the model takes a negative
view on (high) unemployment benefits and a differentiated view on union-
ization. In fact, depending on the parameters, unionization may increase or
decrease employment. If unions lead to higher wages, these wages may de-
press employment because the capitalist is not prepared to pay high wages.
However, unemployment may also result from an unwillingness of workers
to accept employment. In that case, high wages affected by a union may
actually be beneficial for employment.

Interestingly, endogenous unionization has positive effects on employ-
ment. A worker who foresees that the existence of a union leads to his being
unemployed will not join. Note, however, that in our model all workers
a unionized or none. In real-world labor markets, some percentage of the
workers (employed or unemployed) are union members, only. Then, union
members may lobby for high wages that prove detrimental for the employ-
ment of other, non-union workers.

The model may also provide an indication of when obligatory unions
(all the workers are obliged to join) can be expected to increase wages. If
a substantial industrial reserve exists, a union provides protection against
the potential competition by the unemployed. If (almost) all workers are
employed, unions are beneficial if there is overstaffing, i.e., if there are some
workers that might be laid off without much harm to productivity.

Our model uses a non-core cooperative solution concept which can read-
ily be criticized. Why do workers not earn their marginal product? Why
do markets not clear? In our mind, there are two justifications for applying
the union outside-option value. First of all, it encompasses a lot of social
structure (employment, unions) that would be very difficult to model in a
non-cooperative manner. Attempts in this direction have been presented by
Horn & Wolinsky (1988) and Jun (1989), both using the Rubinstein bar-
gaining procedure. These authors concentrate on the union aspect but do
not take unemployment or unemployment benefits into account. Another
interesting paper by Davidson (1988) assumes a Cournot oligopoly. Here,
workers are homogeneous and outside options and unemployment benefits
have no role to play.

Second, the use of non-core concepts may be taken to reflect labour
market rigidities. While the industrial reserve does indeed lower wages, it
cannot do so in a perfectly competitive fashion.
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Future research could be persued along the following lines. In this chap-
ter, we have a single employer. Our method could also be used with several
employers in order to provide a cooperative analogue to the above mentioned
Cournot approach by Davidson (1988).
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5. Appendix

5.1. Calculating G in Result 1. In order to confirm G = a2
2 +

1
6λ (a3 − u) − u

2 in the table of Result 1, assume PAD = {{1, 2} , {3}} and
Pu = {{1} , {2} , {3}}. We then obtain

MC1 ((1, 2, 3) ,PAD, λ) = MC1 ((1, 3, 2) ,PAD, λ)
= λMC

{1}
1 (v) + (1− λ)MC

{1}∩PAD(1)
1 (v)

= MC
{1}
1 (v) = 0− 0 = 0

MC1 ((3, 1, 2) ,PAD, λ) = λMC
{3,1}
1 (v) + (1− λ)MC

{3,1}∩PAD(1)
1 (v)

= λMC
{3,1}
1 (v) + (1− λ)MC

{1}
1 (v)

= λ (a3 − u) + (1− λ) (0− 0) = λ (a3 − u)

MC2 ((2, 1, 3) ,PAD, λ) = MC2 ((2, 3, 1) ,PAD, λ)
= λMC

{2}
2 (v) + (1− λ)MC

{2}∩PAD(2)
2 (v)

= MC
{2}
2 (v) = u− 0 = u

MC2 ((3, 2, 1) ,PAD, λ) = λMC
{3,2}
2 (v) + (1− λ)MC

{3,2}∩PAD(2)
2 (v)

= λMC
{3,2}
2 (v) + (1− λ)MC

{2}
2 (v)

= λ (2u− u) + (1− λ) (u− 0) = u

and

ϕu−oo1 (v,PAD, λ,Pu)

=
1

6


MC1 ((1, 2, 3) ,PAD, λ)︸ ︷︷ ︸

(1,2,3)

+MC1 ((1, 3, 2) ,PAD, λ)︸ ︷︷ ︸
(1,3,2)

+v ({1, 2})−MC2 ((2, 1, 3) ,PAD, λ)︸ ︷︷ ︸
(2,1,3)

+ v ({1, 2})−MC2 ((2, 3, 1) ,PAD, λ)︸ ︷︷ ︸
(2,3,1)

+MC1 ((3, 1, 2) ,PAD, λ)︸ ︷︷ ︸
(3,1,2)

+ v ({1, 2})−MC2 ((3, 2, 1) ,PAD, λ)︸ ︷︷ ︸
(3,2,1)




=
1

6


 0︸︷︷︸
(1,2,3)

+ 0︸︷︷︸
(1,3,2)

+ a2 − u︸ ︷︷ ︸
(2,1,3)

+ a2 − u︸ ︷︷ ︸
(2,3,1)

+ λ (a3 − u)︸ ︷︷ ︸
(3,1,2)

+ a2 − u︸ ︷︷ ︸
(3,2,1)




=
1

6
(3a2 − 3u+ λ (a3 − u)) =

a2
2

+
1

6
λ (a3 − u)− u

2
= G

5.2. Stages 2 and 3 in case of no unions. For any given u, we first
assume that workers decide against unions (stage 1). The capitalist

• prefers to employ both workers rather than worker 2, only, in case
of

A > G⇔ u < 100− a2 =: γ23>2,
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• prefers to employ worker 2, only, rather than none in case of

G > M ⇔ u <
3

4
a2 +

1

4
a3 =: γ2>0,

• and prefers to employ both workers rather than none in case of

A > M ⇔ u <
100

3
+

1

6
(a2 + a3) =: γ23>0.

Worker 2 is ready to accept employment as the only worker if

H > N ⇔ u <
3

2
a2 −

1

2
a3 =: ω2

holds. Both workers are prepared to put up employment if worker 3 is ready,
i.e., if

C > P ⇔ u <
200

3
− 2

3
a2 +

1

3
a3 =: ω23.

We obtain the following partition in a2 − a3 space:

Nu1 a3 < 50, a3 < a2 < 25 + 1
2a3 γ2>0 < ω2 < γ23>0 < ω23 < γ23>2

Nu2 a3 < 50, 25 + 1
2a3 < a2 <

400
13 + 5

13a3 γ2>0 < γ23>0 < ω2 < ω23 < γ23>2
Nu3 a3 < 50, 40013 + 5

13a3 < a2 < 40 + 1
5a3 γ2>0 < γ23>0 < ω23 < ω2 < γ23>2

Nu4 a3 < 50, 40 + 1
5a3 < a2 <

800
17 + 1

17a3 γ2>0 < ω23 < γ23>0 < γ23>2 < ω2
Nu5 a3 < 50, 80017 + 1

17a3 < a2 <
400
7 − 1

7a3 ω23 < γ2>0 < γ23>0 < γ23>2 < ω2
Nu6 a3 < 50, 4007 − 1

7a3 < a2 < 100− a3 ω23 < γ23>2 < γ23>0 < γ2>0 < ω2
Nu7 a2 + a3 > 100 γ23>2 < ω23 < γ23>0 < γ2>0 < ω2

5.3. Stages 2 and 3 in case of unions. Assume that the workers
have formed a union in stage 2. The capitalist

• prefers to employ both workers rather than worker 2, only, in case
of

D > J ⇔ u < 100− a2 =: γunion23>2 ,

• prefers to employ worker 2, only, rather than none in case of

J > M ⇔ u < a2 =: γunion2>0 ,

• and prefers to employ both workers rather than none in case of

D > M ⇔ u < 50 =: γunion23>0 .

Worker 2 is ready to accept employment as the only worker if

K > N ⇔ u < a2 =: ωunion
2

holds. Both workers are prepared to put up employment if worker 3 is ready,
i.e., if

F > P ⇔ u < 50− 1

2
(a2 − a3) =: ωunion

23 .
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We find the following partition in a2 − a3 space:

U1 a3 < 50, a3 < a2 <
100
3 + 1

3a3 < 50 γunion2>0 = ωunion
2 < ωunion

23 < γunion23>0 < γunion23>2

U2 a3 < 50, 1003 + 1
3a3 < a2 < 50 ωunion

23 < γunion2>0 = ωunion
2 < γunion23>0 < γunion23>2

U3
a3 < 50, a2 > 50

a2 + a3 < 100
ωunion
23 < γunion23>2 < γunion23>0 < γunion2>0 = ωunion

2

U4 a2 + a3 > 100 γunion23>2 < ωunion
23 < γunion23>0 < γunion2>0 = ωunion

2

5.4. Stage 1: Will the workers form a union? We merge the Nu-
partition with the U-partition to find out whether unionization is profitable
for the workers. We find that a relatively simple partition suffices to answer
this question:

1 a3 < 50, a3 < a2 < 25 + 1
2a3 < 50 Nu1 ∩U1

2 a3 < 50, 25 + 1
2a3 < a2 <

100
3 + 1

3a3 < 50 (Nu2 ∪Nu3) ∩U1
3 a3 < 50, 1003 + 1

3a3 < a2 < 40 + 1
5a3 < 50 Nu3 ∩U2

4 a3 < 50, 40 + 1
5a3 < a2 <

800
17 + 1

17a3 < 50 Nu4 ∩U2
5 a3 < 50, 80017 + 1

17a3 < a2 < 100− a3 (Nu5 ∪Nu6) ∩ (U2 ∪U3)
6 a2 > 100− a3 Nu7 ∩U4

Comparing the payoffs for the two workers in all these parameter regions,
we obtain figures 2 through 5 in the main text.

5.5. The Horn-Wolinsky model. Horn & Wolinsky (1988) assume
to workers, workers A and B who jointly produce x+ y while either one of
them alone produces x, only. Thus, we have

a2 = a3 = x.

The authors find that unionization pays in case of y < x. Letting x+y = 100

(which is not a serious assumption) and transferring this result into our
notation yields

100− x < x and

x > 50.

This is exactly our result for the special case a2 = a3.

Shapley values on networks





Part D

Shapley values on networks



In this part of the course, we aim to define and apply solutions that
depend on a network rather than a partition (as in the previous part). A
network represents the relationships that may exist between any two players.
For example, players may know each other so that they can cooperative. We
present the most famous value, the Myerson value in chapter X. It is based
on symmetric (undirected) links. We pursue this approach in chapter ??
that interprets the ideas put forward by the sociologist Granovetter: Are
weak links between agents more important than strong links?

Chapters XI and XII work with asymmetric (directed) links. In terms
of the interpretation, we look at permission and use structures and analyze
the payoff consequences of hierarchies.



CHAPTER X

The network value

1. Introduction

The main idea of the first chapter of this part is to modify a coalition
function by a network. We then apply the Shapley solution to the mod-
ified coalition function. The resulting value is called the network or the
Myerson value. This chapter leans heavily on the monography by Slikker &
Nouweland (2001).

Consider the upper network L1 presented in fig. 1. Players 1 and 3 are
not directly linked so that the modified coalition function vL1 is, inter alia,
given by

vL1 ({1, 3}) = v ({1}) + v ({3}) .
The same is true, of course, for the lower network L2: vL2 ({1, 3}) = v ({1})+
v ({3}) . In contrast, we find

vL1 ({1, 2, 3}) = v ({1, 2, 3})
vL2 ({1, 2, 3}) = v ({1, 2}) + v ({3})

The Myerson value for a coalition function v and for a network L is the
Shapley for vL. It turns out that it is definable by the axiom of balanced
contributions. If the link between players 2 and 3 is destroyed (moving from
the upper to the lower network), players 2 and 3 are harmed equally.

2. Links, networks, and subnetworks

We summarize the links between pairs of players in so-called networks.
On the set {1, 2, 3, 4} , player 1 may be linked with all the other players who

1 2 3

1 2 3

network 1

network 2

F����� 1. A simple network

155
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do not have direct links with each other. This network is described by

{12, 13, 14} .

D�������
� X.1 (network). Let N be a set (of players). The set of all

subsets with exactly two elements is called the full network and is denoted

by Lfull,
Lfull = {{i, j} : i, j ∈ N, i �= j} .

Elements ℓ from Lfull are called links. L ⊆ Lfull is called a network on N.

The set of all networks on N is denoted by LN . By L we denote the set of

networks on any player set N . L1 ⊆ Lfull is called a subnetwork of L2 ⊆ Lfull
if L1 ⊆ L2 holds.
In case of {i, j} ∈ L the players i and j are called directly linked. We

also write ij instead of {i, j}.
The set L (i) := {ℓ ∈ L : i ∈ ℓ} ⊆ L is the set of all links entertained by

player i.

Let R be a subset of N. The links on R induced by a network L is denoted
by L (R) and defined by

L (R) := {{i, j} : i, j ∈ R, {i, j} ∈ L} .

E������� X.1. Consider N = {1, 2, 3, 4} and define the network L where
player 2 is directly linked to players 1 and 3. Determine L (1) , L (2) und

L (4) .

Both L (i) and L (R) are subnetworks of L. We get L (i) from L by
deleting all the links that do not contain i. L (R) is obtained from L by
deleting all the links containing one or two players outside R. Therefore,
L (i) and L ({i}) differ. L (i) is nonempty whenever there is a link ℓ ∈ L
such that i ∈ ℓ. In contrast, L ({i}) is always empty:

L ({i}) = {{i, j} : i, j ∈ {i} , {i, j} ∈ L}
= ∅

Admittedly, all this is somewhat confusing. Can you solve the following
exercise?

E������� X.2. Assume an arbitrary network L on N. Can you find

other expressions for

• L (N) ,

• L ({1, 2}) (case distinction!) and
• ⋃

i∈N L (i)?

Our notation of networks is somewhat parallel to the notation chosen
for partitions. The following table juxtaposes important symbols used for
partitions and networks on player set N :
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partition network

symbol meaning symbol meaning

P partition L undirected graph
P (i) i’s component L (i) set of i’s links
PN set of partitions on N LN set of networks on N

P (R) set of components with R-players L (R) set of links on R

3. Trails and connectedness

Networks are more complicated than partitions.

D�������
� X.2 (connectedness). Let L be a network on N. A trail in

L from i to j (a i− j trail) is a network {i0i1, ..., ik−1ik} ⊆ L where i = i0
and j = ik. It is also denoted by T (i→ j) = 〈i = i0, ..., j = ik〉. The set of
such trails is denoted by T (i→ j) .

Players i and j are called connected or linked if an i− j trail exists or

if i = j holds. i and j are indirectly connected if they are connected but not

directly connected. i and j are called connected within a subset K ⊆ N if

they are connected by an i− j trail that is a subnetwork of L (K) . A subset

K ⊆ N is called internally connected if any two players i and j from K are

connected within K.

A network L is called connected if every pair of players is connected.
E������� X.3. Consider a network L on N and a player i ∈ N with

L (i) = ∅. We call such a player isolated. Show: If a network L �= ∅ admits
such a player, the network is not connected.

E������� X.4. Use the definition of a trail to define the direct and
indirect connectedness.

4. Networks and their partitions

We can generate partitions from graphs. In order to do so, we need to
know what an equivalence relation is. The following subsection shows that
partitions give rise to, and can be derived from, equivalence relations.

Let us consider three examples

4.1. Relations and equivalence classes. Our aim is to consider re-
lations on the goods space Rℓ+. However, we begin with three examples from
outside preference theory.

E���
"� X.1. For any two inhabitants from Leipzig, we ask whether

• one is the father of the other or
• they are of the same sex.

E���
"� X.2. For the set of integers Z (the numbers ..., −2, −1, 0, 1,
2, ...) , we consider the difference and examine whether this difference is an

even number (i.e., from ..., −2, 0, 2, 4, ...).
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All three examples define relations, the first two on the set of the in-
habitants from Leipzig, the last on the set of integers. Often, relations are
expressed by the symbol ∼ . To take up the last example on the set of inte-
gers, we have 5 ∼ −3 (the difference 5− (−3) = 8 is even) and 5 ≁ 0 (the
difference 5− 0 = 5 is odd).

D�������
� X.3 (relation). A relation on a set M is a subset of M×M.

If a tuple (a, b) ∈M ×M is an element of this subset, we often write a ∼ b.

Relations have, or have not, specific properties:

D�������
� X.4 (properties of relations). A relation ∼ on a set M is

called

• reflexive if a ∼ a holds for all a ∈M,

• transitive if a ∼ b and b ∼ c imply a ∼ c for all a, b, c ∈M,

• symmetric if a ∼ b implies b ∼ a for all a, b ∈M,

• asymmetric if a ∼ b implies b ≁ a (i.e., not b ∼ a),

• antisymmetric if a ∼ b and b ∼ a imply a = b for all a, b ∈M , and

• complete if a ∼ b or b ∼ a holds for all a, b ∈M .

L���� X.1. On the set of integers Z, the relation ∼ defined by

a ∼ b :⇔ a− b is an even number

is reflexive, transitive, and symmetric, but neither antisymmetric nor com-

plete.

“:⇔” means that the expression left of the colon is defined by the ex-
pression to the right of the equivalence sign.

P�

�. We have a − a = 0 for all a ∈ Z and hence a ∼ a; therefore,
∼ is reflexive. For transitivity, consider any three integers a, b, c that obey
a ∼ b and b ∼ c. Since the sum of two even numbers is even, we find that

(a− b) + (b− c)

= a− c

is also even. This proves a ∼ c and concludes the proof of transitivity.
Symmetry follows from the fact that a number is even if and only if its
negative is even.

∼ is not complete which can be seen from 0 ≁ 1 and 1 ≁ 0. Finally, ∼
is not antisymmetric. Just consider the numbers 0 and 2. �
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E������� X.5. Which properties have the relations “is the father of”
and “is of the same sex as”? Fill in “yes” or “no”:

property is the father of is of the same sex as

reflexive

transitive

symmetric

asymmetric

antisymmetric

complete

D�������
� X.5 (equivalence relation). Let ∼ be a relation on a set M
which obeys reflexivity, transitivity and symmetry. Then, any two elements

a, b ∈ M with a ∼ b are called equivalent and ∼ is called an equivalence
relation. By an equivalence class of a ∈M, we mean the set

[a] := {b ∈M : b ∼ a} .

Our relation on the set of integers (even difference) is an equivalence
relation. We have two equivalence classes:

[0] = {b ∈M : b ∼ 0} = {...,−2, 0, 2, 4, ...} and

[1] = {b ∈M : b ∼ 1} = {...,−3,−1, 1, 3, ...}

E������� X.6. Continuing the above example, find the equivalence classes
[17] , [−23] , and [100]. Reconsider the relation “is of the same sex as”. Can
you describe its equivalence classes?

Generalizing the above example, a ∼ b implies [a] = [b] for every equiv-
alence relation. Here comes the proof. Consider any a′ ∈ [a] . We need to
show a′ ∈ [b]. Now, a′ ∈ [a] means a′ ∼ a. Together with a ∼ b, transitivity
implies a′ ∼ b and hence a′ ∈ [b] . We have shown [a] ⊆ [b] . The converse,
[b] ⊆ [a], can be shown similarly.

The following lemma uses the above result and the observation a ∈ [a]

which is true by reflexivity.

L���� X.2. Let ∼ be an equivalence relation on a set M . Then, we
have

⋃

a∈M
[a] = M and

[a] �= [b]⇒ [a] ∩ [b] = ∅.

Thus, equivalence classes form a partition of the underlying set.
The other direction holds also: Once we have a partition, we can define

an equivalence relation whose equivalence classes are equal to the compo-
nents of the partition. Just say that two elements are related if they belong
to the same component.
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(a) 2

4

1
3

5

(b) 2

4

1 3

5

(c) 2

1 3

4
5

(d) 2

1 3

4 5

F����� 2. Vier Graphen

4.2. Generating partitions from graphs. According to the previous
subsection, we need an equivalence relation. Here it is:

D�������
� X.6 (connectedness as a relation). Let L be a network on
N. If players i and j (not necessarily i �= j) are connected, we write i ∼L j,
i.e., ∼L is a relation on N.

L���� X.3. ∼L defines an equivalence relation on N.

E������� X.7. Show that ∼L is an equivalence relation!

The equivalence classes of the equivalence relation ∼L form a partition:

D�������
� X.7. Let ∼L be the equivalence relation given above. We
note the resulting partition by N/L. For any nonempty subset S ⊆ N , S is

also partitioned (via ∼L(S)) and we define

S/L := S/ (L (S)) .

E������� X.8. Determine the partitions of the player subset {1, 3, 4}
resulting from the four networks depicted in fig. 2.

Do you see that a subset K ⊆ N is internally connected iff K/L = {K}
holds?

Assume any subset S ⊆ N and consider two extreme networks, L = ∅
and L = Lvoll. We find

• that S/∅ equals the atomic partition of S — every player is an island
and

• that S/Lfull equals the trivial partition {S} .
This observation can be generalized:
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L���� X.4. Let L1 and L2 be networks on N such that L1 is a sub-
network of L2, L1 ⊆ L2. Then S/L1 is finer than S/L2 for every subset
S ⊆ N .

The proof of this lemma is not difficult. Consider any player i ∈ S. The
component of S/L1 that contains i, (S/L1) (i) , consists of all the players
from S that are connected to i. All these player also belong to (S/L2) (i)
because all the links contained in L1 are also contained in L2.

N
����
� X.1. Given a network L on a player set N , the component
containing player i is often written as Ci rather than (N/L) (i) .

5. The Myerson game

5.1. Definition. The network value is due to Myerson (1977a). In
builds on a coalition function v ∈ VN and a network L. We proceed in three
steps:

• For all coalitions S ⊆ N,

— find the partition S/L and
— sum the worths v (K) for all components K of that partition.
These two steps define the network coalition function vL.

• Calculate the Shapley value Sh
(
vL

)
.

Accordingly, we first define the L-game and then the network value:

D�������
� X.8 (Myerson game). Let (v,L) be a network game. The
Myerson game based on this network game is the coalition function vL which
is defined by

vL (S) =
∑

K∈S/L
v (K) .

Take an example found in Slikker & Nouweland (2001, S. 22), where we
have N = {1, 2, 3}, the coalition function v given by

v (S) =





0, |S| ≤ 1

60, |S| = 2

72 S = N

and L = {12, 23} . While v is symmetrc, vL is not. We obtain

vL (S) =





0, |S| ≤ 1, S = {1, 3}
60, S = {1, 2} , S = {2, 3}
72 S = N

E������� X.9. Given any coalition function v ∈ VN , determine the
Myerson game vL for L = Lfull and for L = ∅.
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S T

TS ∪

F����� 3. The upper partition is finer than the lower one.

Let us now look at the Myerson game for N = {1, 2, 3, 4} , the unanimity
game u{1,3} and the network L = {12, 23, 34} . The productive players 1 and
3 need player 2 in order to link up. Player 4 is of no help. Thus, we find

uL{1,3} (K) =

{
1, K ⊇ {1, 2, 3}
0, otherwise.

and hence uL2{1,3} = u{1,2,3}.

E������� X.10. Given N = {1, 2, 3, 4} and the coalition function u{1,3},
determine the Myerson game for L = {12, 23, 34, 41}.

5.2. Derived properties of Myerson games.
5.2.1. Superadditivity. Do Myerson games vL inherit important proper-

ties from the basic game v? In particular, is vL superadditive or convex or
does vL possess a nonempty core whenever v has these properties?

L���� X.5. Let L be a network on N. If v ∈ VN is superadditive, so is
vL.

For proof, consider two disjunct subsets S and T ofN . S/L is a partition
of S and T/L a partition of T. Since S and T are disjunct, S/L ∪ T/L is
a partition of S ∪ T. Consider, for example, fig. 3 where S/L ∪ T/L is the
upper partition. It is finer than the lower partition, (S ∪ T ) /L, because
some links are cut in the upper part of the figure. Partition (S ∪ T ) /L has
three components while partition (S/L) ∪ (T/L) has four.
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Continuing our proof, we find

vL (S ∪ T ) =
∑

C∈(S∪T )/L
v (C)

≥
∑

C∈S/L
v (C) +

∑

C∈T/L
v (C)

= vL (R) + vL (S) .

5.2.2. Convexity. While superadditivity is transferred from v to vL, the
same is not true for convexity. We follow Slikker & Nouweland (2001, p.
59) and consider the network game given by N = {1, 2, 3, 4}, the "cycle"
L = {12, 23, 34, 41} and the coalition function v given by

v (S) = |S| − 1, S �= ∅.

v is convex, as shown in chapter IV (see p. 63).
However, vL is not convex. Note that the sets {1, 2, 3} , {1, 3, 4} and

{1, 2, 3, 4} are internally connected while {1, 3} is not. Therefore, we obtain

vL ({1, 2, 3}) = v ({1, 2, 3}) = 2,

vL ({1, 3, 4}) = v ({1, 3, 4}) = 2,

vL ({1, 2, 3, 4}) = v ({1, 2, 3, 4}) = 3 und

vL ({1, 3}) = v ({1}) + v ({3}) = 0 + 0 = 0.

and player 2’s marginal contributions to coalitions {1, 3} and {1, 3, 4}

MC
{1,3}
2

(
vL

)
= vL ({1, 2, 3})− vL ({1, 3}) = 2− 0

> 3− 2 = vL ({1, 2, 3, 4})− vL ({1, 3, 4})
= MC

{1,3,4}
2

(
vL

)
.

This inequality contradicts convexity of vL.

6. The network value

6.1. Network games. We now define network games and the appro-
priate solution function:

D�������
� X.9 (network game). For any player set N , every coalition
function v ∈ VN and any network L ∈ LN , (v,L) is called a network game
on N . The set of all network games on N is denoted by VnetN and the set of

all network games for all player sets N by Vnet.

D�������
� X.10 (solution function for network games). A function σ

that attributes, for each network game (v,L) , a payoff to each of v’s players,

σ (v,L) ∈ R|N(v)|,

is called a solution function (on Vnet).
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6.2. The Shapley value of the Myerson game. The sought-after
network value is nothing but the Shapley value applied to the Myerson game:

D�������
� X.11 (network value). The network, or Myerson, value is
the solution function My is given by

Myi (v,L) = Shi
(
vL

)
, i ∈ N (v)

The network value is a generalization of the Shapley value:

L���� X.6. We have My
(
v,Lfull

)
= Sh (v) .

E������� X.11. Calculate the network payoffs for N = {1, 2, 3}, L =

{12, 23} and the coalition functions
• u{1,2} and
• u{1,3}.

7. Properties of the network value

7.1. Summary of the properties. The network values has some no-
table properties.

T �
��� X.1 (properties of the communication value). The network
value obeys the component-decomposability axiom, the component-efficiency

axiom, the superfluous-player axiom, the superfluous-link axiom, the addi-

tivity axiom and the balanced-contributions axiom.

We consider all these properties in turn.
Networks induce partitions. Component decomposability and compo-

nent efficiency means that we can restrict attention to these components.
Payoffs do not depend on how the players outside are linked to each other
(decomposability) and the payoff total for a component equals the compo-
nent’s worth (efficiency).

Superfluous players are null players not of the original game v but of the
Myerson game vL. Of course, they do not affect the other players’ payoffs.
Similarly, superfluous links can be done away.

The fairness axiom is very close the the axiom of balanced contributions.

7.2. Components are islands. The reader is reminded of our nota-
tion Ci = (N/L) (i) for networks L on N . Very close the AD value, the
network value treats components as islands. This is obvious from both the
component-decomposability axiom and the component-efficiency axiom:

D�������
� X.12 (component-decomposability axiom). A solution func-
tion σ (on Vnet) is said to obey component decomposability if

σi (v,L) = σi
(
v|Ci

,L (Ci)
)

holds for all network games (v,L) and for all i ∈ N .
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The network solution is component-decomposable. This means that the
payoff for a player does not depend on how the graph L is structured outside
player i’s component. The payoff depends only on the coalition function
restricted to Ci and on the network restricted to Ci.

D�������
� X.13 (component-efficiency axiom). A solution function σ

on Vnet is said to obey the component-efficiency axiom if
∑

i∈Ci

σi (v,L) = v (Ci)

holds for all network games (v,L) and for all components Ci ∈ N/L.

We may conjecture the equality of the Myerson and the Aumann-Dreze
value whenever both deal with the same partition, P = N/L. However, this
is true only if all the links inside the components are present. In general,
however, we have

µ (v,L) �= ϕAD (v,N/L)
in general. Consider the player set N = {1, 2, 3, 4}, the network L =

{12, 23, 34, 41} and the unanimity game u{1,3}. sehen kann. According to
exercise X.10 (p. 162) the Myerson game uL{1,3} is given by

uL{1,3} (K) =

{
1, K ⊇ {1, 2, 3} or K ⊇ {1, 3, 4}
0, otherwise.

You can confirm or believe the author that the Shapley payoffs are
(

5

12
,
1

12
,
5

12
,
1

12

)
.

Answer the following question and you see why the above inequality may
well hold.

E������� X.12. Determine N/L and ϕAD (v,N/L) .

7.3. Superfluous players and superfluous links. Superfluous play-
ers are the null players in Myerson games.

D�������
� X.14 (superfluous player). Let (v,L) be a network game. A
player i ∈ N is called superfluous (with respect to network game (v,L)) if

vL (S) = vL (S ∪ i)

holds for all S ⊆ N .

Obviously, a player is superfluous in (v,L) if he is a null player in v. His
payoff is zero and the other player are not affected if the links to this player
are cut:
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D�������
� X.15 (superfluous-player axiom). A solution function σ on
Vnet is said to obey the superfluous-player axiom if

σ (v,L) = σ (v,L\L (i))

holds for all network games (v,L) and for every superfluous player i ∈ N.

E������� X.13. Use the superfluous-player axiom, component decom-
posability and component efficiency to find the Myerson solution for v =

u
{1,2,3,4,5}
{1,2,3} and L = {12, 23, 34, 45, 51, 13} which is a more complicated game
than the one offered on p. .

Links, rather than players, may also be superfluous:

D�������
� X.16 (superfluous link). Let (v,L) be a network game. A
link ℓ ∈ L is called superfluous (with respect to network game (v,L)) if

vL = vL\ℓ

holds.

E������� X.14. Is there a superfluous link in the network game given
by v = u

{1,2,3}
{1,2} and L = {12, 13}?

D�������
� X.17 (superfluous-link axiom). A solution function σ on

Vnet is said to obey the superfluous-link axiom if

σ (v,L) = σ (v,L\ℓ)
holds for all network games (v,L) and for every superfluous links ℓ ∈ L.

7.4. Balanced contributions. In chapter VI we have seen that the
threat to withdraw is a symmetrc property for the Shapley value (the axiom
of balanced contributions). We have a similar result for networks:

D�������
� X.18 (axiom of balanced contributions, one link). A solu-
tion function σ on Vnet is said to obey the axiom of balanced contributions
if, for any two players i, j ∈ N,

σi (v,L)− σi (v,L\{ij}) = σj (v,L)− σj (v,L\{ij})
holds for all network games (v,L).

This means that two player i and j are affected equally by a dissolution
of a direct link between them. The following axiom claims something similar,
this time not for individual links but for all links entertained by the players:

D�������
� X.19 (axiom of balanced contributions, all links). A solu-
tion function σ on Vnet is said to obey the axiom of balanced contributions
if, for any two players i, j ∈ N,

σi (v,L)− σi (v,L\L (j)) = σj (v,L)− σj (v,L\L (i))

holds for all network games (v,L).
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According to the second axiom, player i who cuts all his links harms
player j as much as j can harm player i by removing all links L (j).

7.5. Axiomatization of the network value. Among the several known
axiomatizations of the Myerson value, we like to highlight the two that make
use of balanced contributions:

T �
��� X.2. A solution concept σ on Vnet fulfills the two axioms of

• component efficiency and
• balanced contributions (for one link or for all links) for all player
sets N ⊆ N,

if and only if σ is the network value My.
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8. Topics and literature

The main topics in this chapter are

• networks
• Myerson value

We introduce the following mathematical concepts and theorems:

• t

•
We recommend the textbook by Slikker & Nouweland (2001).

9. Solutions

Exercise X.1
Network L is L = {{1, 2} , {2, 3}} or L = {12, 23}. The subnetworks are

L (1) = {12} , L (2) = L und L (4) = ∅.
Exercise X.2

Have you found

• L (N) = L,

• L ({1, 2}) =
{

{12} , 12 ∈ L
∅, 12 /∈ L and

• ⋃
i∈N L (i) = L?

Exercise X.3
L �= ∅ implies the existence of another player j �= i. If player i has no

links to any other player, i is not connected (directly or indirectly) to j.
Exercise X.4

Two players i and j are directly connected if there is a i − j trail con-
taining only these two players. If such a trail does not exist but a trail
containing these two players and also other players, the two players are
indirectly connected.
Exercise X.5

Did you also obtain

property is the father of is of the same sex as
reflexive no yes
transitive no yes
symmetric no yes
asymmetric yes no
antisymmetric no no
complete no no

Exercise X.6
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We have [17] = [−23] = [1] and [100] = [0] . The relation “is of the same
sex as” is an equivalence relation (see exercise X.5). The equivalent classes
are “the set of all males” and “the set of all females”.
Exercise X.7

We have to show three properties of ∼L:
• Reflexivity: For every player i ∈ N , i ∼L i is immediate from the
definition of connectedness.

• Symmetry: The existence of a trail from i to j implies the existence
of a trail from j to i.

• Transitivity: Assume three player i, j and k from N such that i is
connected to j and j is connected to k. If i = j or j = k holds, we
are done. Otherwise, we have to construct a trail from i to k which
we gain from merging the i− j trail with the j − k trail at j. (We
refrain from giving a proper definition of merging.)

Exercise X.8
For the player subset {1, 3, 4}, we find the partitions

• (a) P = {{1, 3, 4}} ,
• (b) P = {{1} , {3, 4}},
• (c) P = {{1, 3} , {4}} and
• (d) P = {{1, 3, 4}} .

Exercise X.9
We have S/Lfull = {S} for every S ⊆ N and therefore vL = v. For L = ∅,

S/L is the trivial partition of S and we obtain vL (S) =
∑

i∈S v ({i}) .
Exercise X.10

Players 1 and 3 are not linked within {1, 3} , but are linked within both
{1, 2, 3} and {1, 3, 4}. Therefore, the Myerson game uL{1,3} is given by

uL{1,3} (K) =

{
u{1,3} (K) , K �= {1, 3}
0, K = {1, 3}

=

{
1, K ⊇ {1, 2, 3} or K ⊇ {1, 3, 4}
0, otherwise.

Exercise X.11
We have uL{1,2} = u{1,2} and uL{1,3} = u{1,2,3} and hence

My
(
u{1,2},L

)
) = Sh

(
u{1,2}

)
=

(
1

2
,
1

2
, 0

)
and

My
(
u{1,3},L

)
) = Sh

(
u{1,2,3}

)
=

(
1

3
,
1

3
,
1

3

)
.

Exercise X.12
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L induces the trivial partition N/L = {N}. Then the AD value equals
the Shapley value and we find

ϕAD (v,N/L) =
(
1

2
, 0,

1

2
, 0

)
.

Exercise X.14
Man kann vermuten, dass die Verbindung zwischen den beiden produk-

tiven Spielern nicht überflüssig ist. Man sieht dies an

vL ({1, 2}) = v ({1, 2}) = 1 und

vL\{12} ({1, 2}) = v ({1}) + v ({2}) = 0.

Dagegen ist die Verbindung 13 überflüssig. Hierzu haben wir

v{12,13} (S) = v{12} (S) für alle S ⊆ {1, 2, 3}
zu zeigen: Für alle Einerkoalitionen ist die Gleichung wegen Aufg. ?? richtig.
Aus Symmetriegründen können wir uns bei den Zweierkoalitionen auf {1, 2}
und {1, 3} beschränken:

v{12,13} ({1, 2}) = 1 = v{12} ({1, 2}) und

v{12,13} ({1, 3}) = v ({1, 3})
= 0

= v ({1}) + v ({3}) = v{12} ({1, 3}) .
Schließlich erhält man für die große Koalition

v{12,13} ({1, 2, 3}) = v ({1, 2, 3})
= 1

= v ({1, 2}) + v ({3}) = v{12} ({1, 2, 3}) .

10. Further exercises without solutions

Consider the coalition function v given by N = {1, 2, 3, 4} and

v (K) =





0, |K| ≤ 1

2, K ∈ {{1, 2} , {1, 3} , {1, 4}}
3 K ∈ {{2, 3} , {2, 4}}
5 K ∈ {{3, 4} , {1, 2, 3} , {1, 2, 4}}
7, K ∈ {{1, 3, 4} , {2, 3, 4} , N}

(1) Is v superadditive?
(2) Consider three networks La = {12, 14, 34} , Lb = {12, 14, 24, 34} ,

Lc = {12, 13, 24, 34} . Determine the three Myerson games associ-
ated with these networks. Determine the Shapley values of these
games.

(3) Comment!



CHAPTER XI

Permission and use values

1. Introduction

In this chapter, we introduce permission and use structures which can
be formalized as a special kind of directed network. Both model “subordi-
nation”, i.e., a superior-subordinate relationship. Permission means that a
subordinate player cannot act without the permission of his superior. Using
implies that the superior can automatically use the services supplied by his
subordinates.

To consider a concrete example, assume a game v on N = {1, 2, 3}.
Beginning with permission, let us assume that player 1 needs player 2’s
permission. We look at the six rank orders and determine the marginal
contributions that take this permission structure (1 needs 2’s permission)
into account. For the rank order (3, 1, 2), the marginal contributions are

• the standard one for player 3,
• no contribution for player 1 because player 2 is not present yet to
give his permission, and

• the aggregate contribution v ({1, 2, 3})−v ({3}) for player 2 because
he brings to bear both player 1’s and his own contribution.

We obtain the following table:

rank orders MC1 MC2 MC3
(1, 2, 3) - v ({1, 2})− v (∅) v ({1, 2, 3})− v ({1, 2})
(1, 3, 2) - v ({1, 2, 3})− v ({3}) v ({3})− v (∅)
(2, 1, 3) v ({1, 2})− v ({2}) v ({2})− v (∅) v ({1, 2, 3})− v ({1, 2})
(2, 3, 1) v ({1, 2, 3})− v ({2, 3}) v ({2})− v (∅) v ({2, 3})− v ({2})
(3, 1, 2) - v ({1, 2, 3})− v ({3}) v ({3})− v (∅)
(3, 2, 1) v ({1, 2, 3})− v ({2, 3}) v ({2, 3})− v ({3}) v ({3})− v (∅)

For the special case of the gloves game v = v{1},{2,3}, we find the permission
payoffs

(
1
2 ,
1
2 , 0

)
.

A different view is taken by the use-structure approach. If player 2 uses
player 1, player 2 brings along 1 whenever he, player 2, enters the scene. For
the rank order (3, 2, 1), the marginal contributions are

• the standard one for player 3,

171
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• the aggregate contribution v ({1, 2, 3})−v ({3}) for player 2 because
he uses both his own and also player 1’s productivity, and

• no contribution for player 1.

We obtain the following table

rank orders MC1 MC2 MC3
(1, 2, 3) v ({1})− v (∅) v ({1, 2})− v ({1}) v ({1, 2, 3})− v ({1, 2})
(1, 3, 2) v ({1})− v (∅) v ({1, 2, 3})− v ({1, 3}) v ({1, 3})− v ({1})
(2, 1, 3) - v ({1, 2})− v (∅) v ({1, 2, 3})− v ({1, 2})
(2, 3, 1) - v ({1, 2})− v (∅) v ({1, 2, 3})− v ({1, 2})
(3, 1, 2) v ({1, 3})− v ({3}) v ({1, 2, 3})− v ({1, 3}) v ({3})− v (∅)
(3, 2, 1) - v ({1, 2, 3})− v ({3}) v ({3})− v (∅)
and the use payoffs

(
1
6 ,
2
3 ,
1
6

)
for the gloves game v{1},{2,3}.

Thus, the permission structure leads to a different value than the use
structure although both can be represented by the same mathematical object
(subordination structure) that we will introduce in section 2.

The permission-value part of this chapter draws heavily on Gilles, Owen
& van den Brink (1992a), van den Brink & Gilles (1996b), and van den
Brink (1999).

Both the permission and the use value are Shapley values of appropri-
ately modified coalition functions (compare the procedure for the network
value). Section 4 introduces autonomous coalitions needed for the definition
of permission coalition functions while section 5 defines effective coalitions
that help to define use coalition functions. Section 6 presents important
axioms for permission and use values.

2. Subordination structures

“Needing permission” or “being used” is a relation on the set of players.
If player 1 gives permission to, or uses, player 2, we write 2 ∈ S (1), where
the calligraphic letter S is reminiscent of subordinate.

D�������
� XI.1 (subordination structure). Let N be a set (of players).
A function S : N → 2N obeying i /∈ S (i) for all i ∈ N is called a subor-

dination structure or a subordination relation. In case of j ∈ S (i) player

i is called player j’s superior and player j is called player i’s subordinate.

S−1 (j) = {i ∈ N : j ∈ S (i)} is the set of player j’s superiors. Depending
on the interpretation, we sometimes call subordination structures permission

structures or use structures.

The set of all subordination structures on N is denoted by SN . By S we

denote the set of subordination structures on any player set N . S1 is called
a sub-subordination structure of S2 if S1 (i) ⊆ S2 (i) for all players i ∈ N.

The full subordination structure S full on N is defined by S full (i) = N\ {i}
for all i ∈ N . A subordination structure SC gives rise to a clique C ⊆ N
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if SC is defined by SC (i) =

{
C\ {i} , i ∈ C

∅, i /∈ C
. The null subordination

structure S∅ is given by S∅ (i) = ∅ for all i ∈ N .

E������� XI.1. Define the subordination structure S on N = {1, 2, 3}
where player 1 is the superior of players 2 and 3 while player 3 is player 2’s

subordinate.

In most applications, we want to exclude a subordination structure where

j ∈ S (i) and i /∈ S (j)

hold for some player i, j ∈ N :

D�������
� XI.2 (asymmetric subordination structure). A subordina-
tion structure S is called asymmetric, if

j ∈ S (i) implies i /∈ S (j)

for all players i, j ∈ N.

We summarize out notation for partitions, networks, and subordination
structures:

partition P network L subordination structure S
set of partitions P set of networks L set of sub. structures S

i’s component P (i) i’s links L (i) i’s subordinates S (i)

A subordination structure S tells the direct subordinates. Assume that
1 is the boss of 2 and 2 the boss of 3. Then 1 is an indirect boss of 3. The
trails introduced in chapter X (p. 157) can be adapted to formalize this
idea:

D�������
� XI.3 (chain of command). Let S be a subordination struc-
ture on N. The tuple T (i→ j) = 〈i = i0, ..., j = ik〉 is called a trail in S
from i to j (a i− j trail) if iℓ+1 ∈ S (iℓ) holds for all ℓ = 0, . . . , k − 1. The

set of such trails is denoted by T (i→ j) .

The set of player i’s direct or indirect subordinates is denoted by

Ŝ (i) := {j ∈ N\ {i} : a trail T (i→ j) exists} .
The set of player j’s direct or indirect superiors is denoted by

Ŝ−1 (j) := {i ∈ N\ {j} : a trail T (i→ j) exists} .

The reader might note that an asymmetric subordination structure does
not exclude i ∈ Ŝ (i). Consider, for example, N = {1, 2, 3} and the subordi-
nation structure S given by S (1) = {2} , S (2) = {3}, and S (3) = {1}.
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The definitions of S, S−1, Ŝ, and Ŝ−1 can be applied to coalitions rather
than individual players in the obvious manner:

S (K) : = ∪i∈KS (i) ,

S−1 (K) : = ∪i∈KS−1 (i) ,
Ŝ (K) : = ∪i∈KŜ (i) ,

Ŝ−1 (K) : = ∪i∈KŜ−1 (i) .

D�������
� XI.4 (subordination game). For any player set N , every
coalition function v ∈ VN and any subordination structure S ∈ SN , (v,S)
is called a subordination game. The set of all subordination games on N is

denoted by VsubN and the set of all subordination games for all player sets N

by Vsub.

3. Hierarchies

Before pursuing with the definition of permission games and use games,
we have a look at a special class of subordination structures — at hierarchies.
We distinguish between hierarchies and unique hierarchies:

D�������
� XI.5 (hierarchy). A subordination structure S ∈ SN is

called a hierarchy on N if

• S is acyclic, i.e., if i /∈ Ŝ (i) holds, and

• S is connected, i.e., there exists a player i0 ∈ N with Ŝ (i0) =

N\ {i0} .
If, on top,

∣∣S−1 (j)
∣∣ = 1 for all j �= i0 holds, too, S is called a unique

hierarchy.

Thus, we have two requirements:

• Nobody commands himself, directly or indirectly, which is a stronger
requirement than just asymmetry. We exclude a subordination
structure S defined by S (1) = {2} , S (2) = {3}, S (3) = {1} .

• A big boss i0 is the direct or indirect superior of all other players.

By these two requirements, the boss i0 cannot have a superior. (Assume a
player k with i0 ∈ S (k). By connectedness, we have k ∈ Ŝ (i0) and hence
i0 ∈ Ŝ (i0), contradicting acyclicity.)

E������� XI.2. Look at the four subordination structures of fig. 1. Do
they obey acyclicity and/or connectedness? Can you find a unique hierarchy?

D�������
� XI.6 (hierarchy game). A subordination game (v,S) is called
a hierarchy game (a unique-hierarchy game) if S is a hierarchy (a unique
hierarchy). The set of all hierarchy games (unique-hierarchy games) on N

is denoted by VhN (V
uh
N ).
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F����� 1. Hierarchies? Unique hierarchies?

D�������
� XI.7 (domination). Let (v,S) be a hierarchy game with
some player i0 fulfilling S (i0) = N\ {i0}. A player i ∈ N dominates an-

other player j ∈ N , j �= i, if i is contained in every trail T (i0, j). By

S̄ (i) we denote the set of all players that player i dominates. S̄−1 (j) :={
i ∈ N : j ∈ S̄ (i)

}
is called the j’s set of dominating players.

E������� XI.3. If S is a unique hierarchy, domination of j by i can be
expressed by ... .

For the axiomatizations, we need to delete a directed link from a hierar-
chy. Starting with a hierarchy S and considering a player j with at least two
superiors (

∣∣S−1 (j)
∣∣ ≥ 2), the deletion of the directed link between players

h and j leads to the subordination structure S−(h,j) which is defined by

S−(h,j) (i) =
{

S (i) \ {j} , i = h

S (i) , i �= h

Do you see that S−(h,j) is a hierarchy if S is one? How about deleting links
from unique hierarchies?

4. Autonomous coalitions and the permission game

In this chapter, we simultaneously introduce the permission and the use
values. We indicated the definitions by way of marginal-contributions in the
introduction. An alternative approach proceeds in two steps, similar to the
network value. We first modify the given coalition function and then apply
the Shapley value to that modified coalition function.

For the permission value, we need to define autonomous coalitions (see
Gilles et al. 1992a, p. 281). An autonomous coalition contains all the



176 XI. PERMISSION AND USE VALUES

superiors of players within that coalition and also the superiors of these
superiors.

D�������
� XI.8 (autonomous coalition). Let S be a subordination struc-
ture on N. A coalition K ⊆ N is called autonomous if Ŝ−1 (K) ⊆ K holds.

E������� XI.4. Consider the subordination structure S on N = {1, ..., 5}
given by

S (1) = {3} ,
S (2) = ∅,
S (3) = {4} ,
S (4) = {1} ,
S (5) = {3} .

Find all the autonomous coalitions! How about the coalition {1, 3, 4}? How
about the empty set?

The empty set and the grand coalition are always autonomous. Can
you show that the union of two autonomous coalitions is autonomous? How
about the intersection?

What worth should we accord to a coalition where some players have
direct or indirect superiors outside? Gilles et al. (1992a, p. 280) distinguish
between the conjunctive and the disjunctive approach. Under the first, we
disregard players that have any direct or indirect superiors outside. Un-
der the second, we disregard only those players where all direct or indirect
superiors are outside.

In this chapter, we concentrate on the conjunctive approach:

D�������
� XI.9 (autonomous subset). Let v ∈ VN be a coalition func-
tion, let S ∈ SN be a subordination structure, and K ⊆ N be a coalition.

K’s autonomous subset aut (K) is defined by

aut (K) :=
⋃

A⊆K,
A autonomous

A.

Thus, a coalition’s autonomous subset (called sovereign part by Gilles
et al. 1992a, p. 281) is its largest autonomous subset.

D�������
� XI.10 (permission game). Let (v,S) be a subordination game.
The permission game based on this subordination game is the coalition func-

tion vS which is defined by

vS (K) = v (aut (K)) .

E������� XI.5. Let K be an autonomous coalition under the subordi-

nation structure S. Determine vS (K)!
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E������� XI.6. Determine the permission games uSa{1,2} and u
Sb
{1,2} for

N = {1, 2, 3} and
Sa (1) = {2} ,Sa (2) = {3} ,Sa (3) = ∅ and
Sb (1) = {2} ,Sb (2) = ∅,Sb (3) = {1} .

L���� XI.1. Let v and w be coalition functions on N. The permission
game (v +w)S equals the sum of the permission games vS +wS .

The proof is not difficult and follows from

(v +w)S (K) = (v +w) (aut (K)) (definition permission game)

= v (aut (K)) +w (aut (K)) (vector sum)

= vS (K) +wS (K) (definition permission game).

L���� XI.2. Let S be a subordination structure. If v is a monotonic
coalition function, so is the permission game vS.

Consider two coalitions E and F with E ⊆ F for a proof. Because of

aut (E) =
⋃

A⊆E,
A autonomous

A ⊆
⋃

A⊆F,
A autonomous

A = aut (F )

we have vS (E) = v (aut (E)) ≤ v (aut (F )) = vS (F ) .

D�������
� XI.11 (solution function for subordination games). A func-
tion σ that attributes, for each subordination game (v,S) , a payoff to each
of v’s players,

σ (v,S) ∈ R|N(v)|,
is called a solution function (on Vsub).

D�������
� XI.12 (permission value). The permission value is the so-
lution function Per given by

Peri (v,S) = Shi
(
vS

)
, i ∈ N (v)

where vS is the permission game based on S.
L���� XI.3. We have Per (v,S) = Sh (v) for the null subordination

structure S given by S (i) = ∅ for all i ∈ N .

E������� XI.7. Calculate the permission payoffs for N = {1, 2, 3} and
the subordination structure S given by S (1) = {2}, S (2) = ∅,S (3) = {1}
and the coalition functions

• u{1,2} and
• u{1,3}.

Clique-players obtain the same permission payoff:

L���� XI.4. Let C ⊆ N be a clique and let SC be the associated sub-
ordination structure. Then, we have Peri

(
v,SC

)
= Perj

(
v,SC

)
for all

i, j ∈ C.
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5. Effective coalitions and the use game

Paralleling the autonomous coalitions and the permission game, we now
introduce the concept of effective coalitions and the use game. Effective
coalitions are those that contain all the players that may be used by the
players in the game.

D�������
� XI.13 (effective coalition). Let S be a subordination struc-
ture on N . A coalition K ⊆ N is called effective if S (K) ⊆ K holds.

Do you see that a coalition K is effective if and only if Ŝ (K) ⊆ K holds?

E������� XI.8. Consider the subordination structure S on N = {1, ..., 5}
given by

S (1) = {3} ,
S (2) = ∅,
S (3) = {4} ,
S (4) = {1} ,
S (5) = {3} .

Find all the effective coalitions! How about the coalition {1, 3, 4}? How about
the empty set?

The empty set and the grand coalition are always autonomous.

• Can you show that the union of two autonomous coalitions is au-
tonomous.

• How about the intersection?

The worth to be attributed to a coalition seems obvious: for a coalition K

just form the union of K with Ŝ (K) :

D�������
� XI.14 (effective superset). Let v ∈ VN be a coalition func-
tion, let S ∈ SN be a subordination structure, and K ⊆ be a coalition. K’s
effective superset eff (K) is defined by

eff (K) := K∪Ŝ (K) .

Thus, a coalition’s effective superset ist its smallest effective superset.

D�������
� XI.15 (use game). Let (v,S) be a subordination game. The
use game based on this subordination game is the coalition function vS which
is defined by

vS (K) = v (eff (K)) .

E������� XI.9. Determine the use games uSa{1,2} and uSb{1,2} for N =

{1, 2, 3} and
Sa (1) = {2} ,Sa (2) = {3} ,Sa (3) = ∅ and
Sb (1) = {3} ,Sb (2) = ∅,Sb (3) = {1} .
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L���� XI.5. Let v and w be coalition functions on N . The use game

(v +w)S equals the sum of the use games vS +wS .

E������� XI.10. Can you prove the above lemma?

L���� XI.6. Let S be a subordination structure. If v is a monotonic
coalition function, so is the use game vS.

E������� XI.11. Show that monotonicity of v is passed on to vS .

D�������
� XI.16 (use value). The use value is the solution function
Use given by

Usei (v,S) = Shi
(
vS

)
, i ∈ N (v)

where vS is the use game based on S.
L���� XI.7. We have Use (v,S) = Sh (v) for the (null) subordination

structure S given by S (i) = ∅ for all i ∈ N .

E������� XI.12. Calculate the use payoffs for N = {1, 2, 3} and the
subordination structure S given by S (1) = {2}, S (2) = ∅,S (3) = {1} and
the coalition functions

• u{1,2} and
• u{1,3}.

L���� XI.8. Let C ⊆ N be a clique and let SC be the associated sub-
ordination structure. Then, we have Usei

(
v,SC

)
= Usej

(
v,SC

)
for all

i, j ∈ C.

The grand coalition as a special clique implies the full subordination
structure. Lemmata XI.4 and XI.8 imply equal payoffs for all players:

C
�
""��	 XI.1. For the full subordination structure Sfull : N → 2N

defined by S full (i) = N\ {i} for all i ∈ N, we have

Use
(
v,S full

)
= Per

(
v,S full

)
=

(
v (N)

n
, ...,

v (N)

n

)

for all coalition functions v ∈ VN .

6. Important axioms for permission and use values

Solution functions σ on Vsub might obey one or several of the following
axioms. The subordination structures may be hierarchies (as in van den
Brink 2003), but need not be.

D�������
� XI.17 (additivity axiom). A solution function σ on VhN is
said to obey the additivity axiom if we have

σ (v +w,S) = σ (v,S) + σ (w,S)
for any two coalition functions v, w ∈ V with N (v) = N (w) and any subor-

dination structure S ∈ SN(v).
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E������� XI.13. Does the additivity axiom hold for the permission value
and/or the use value? Hint: Consult the lemmata XI.1 and XI.5.

D�������
� XI.18 (null-player axiom). A solution function σ on VsubN
is said to obey the null-player axiom if we have

σi (v,S) = 0

for all subordination games (v,L) and for every null player i ∈ N.

The null-player axiom does not hold for the permission value (consider
the permission payoffs for the unanimity game u{1,2}, exercise XI.7). Neither
does the use value fulfill the null-player axiom (exercise XI.12).

D�������
� XI.19 (inessential player). Let (v,S) be a subordination
game. A player i ∈ N is called inessential (with respect to (v,S)) if

v (K) = v (K ∪ {j})
holds for all K ⊆ N and for all j ∈ {i}∪Ŝ (i) .

D�������
� XI.20 (inessential-player axiom). A solution function σ on
VsubN is said to obey the inessential-player axiom if

σi (v,S) = 0

holds for all subordination games (v,S) and for every inessential player i ∈
N.

An inessential player i ∈ N with respect to (v,S) is a null player with
respect to vS for both the permission-structure and the use-structure inter-
pretation. We begin with the permission value. Let K ⊆ N be any coalition
that does not contain i. The set ∆K := aut (K ∪ {i}) \aut (K) contains

• player i if i does not have any superiors outside and
• some players from K for whom i is a superior.

Thus, we find ∆K\ {i} = K ∩ Ŝ (i) and

vS (K ∪ {i})− vS (K)

= v (aut (K ∪ {i}))− v (aut (K))

=
∑

j∈∆K
MC

Kj

j (v) =
∑

j∈{i}∪(K∩Ŝ(i))

MC
Kj

j (v)

with suitably chosen Kj ⊆ N . Since i is inessential, all these marginal
contributions are zero so that i is indeed a null palyer with respect to vS .

E������� XI.14. Show that the use value obeys the inessential-player
axiom.

A player is necessary if the worth of any coalition that he does not belong
to is zero. Within in the framework of simple games, such a player would
be addressed as a veto player.
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D�������
� XI.21 (necessary player). Let (v,S) be a subordination game.
A player i ∈ N is called necessary (with respect to (v,S)) if

v (K) = 0

holds for all K ⊆ N\ {i} .

D�������
� XI.22 (necessary-player axiom). A solution function σ on

VsubN is said to obey the necessary-player axiom if

σi (v,S) ≥ σj (v,S)

holds for every monotionic coalition function v and for every necessary

player i ∈ N.

According to van den Brink & Gilles (1996b, p. 129), the permission
value fulfills the necessary player axiom. Indeed, a necessary player with
respect to v is also a necessary player with respect to vS . If a necessary
player i is not contained in some coalition K, it is also not contained in
aut (K) ⊆ K and we have vS (K) = v (aut (K)) = 0. We now compare
player i’s marginal contributions with those of any other player j:

• For a coalition E ⊆ N\ {i, j} we have vS (E∪{j}) = vS (E) = 0

because i is contained in neither E nor E∪{j}. By the monotion-
icity of v and hence of vS (see lemma XI.2), we have vS (E∪{i}) ≥
vS (E). Therefore, MCE

i ≥ MCE
j = 0 for all those coalitions E

that host neither i nor j.
• The previous point implies vS (E∪{i}) ≥ vS (E∪{j}) and hence

MC
E∪{i}
j

(
vS

)
= vS (E∪{i}∪{j})− vS (E∪{i})
≤ vS (E∪{j}∪{i})− vS (E∪{j})
= MC

E∪{i}
j

(
vS

)
.

Since the Shapley value is the average of the marginal contributions with
respect to all rank orders, the permission value fulfills the superior-player
axiom and hence the dominant-player axiom.

However, the use value does not fulfill the necessary-player axiom. The
reason is that the necessary player i (with respect to v!) need to be necessary
with respect to vS . Consider N = {1, 2, 3} , the unanimity game u{2,3}
and the subordination structure S given by S (1) = {2} and S (2) = 3.

The productive player 3 is a necessary player (as is player 2). But his
payoff is zero which you can see by a rank-order argument. If player 3

is first, the productive player 2 is still missing so that player 3’s marginal
contribution is 0. If players 1 or 2 are first, both their marginal contributions
are 1. Therefore, we find the use payoffs

(
1
2 ,
1
2 , 0

)
with Use3

(
u{2,3},S

)
<

Use1
(
u{2,3},S

)
.
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D�������
� XI.23 (efficiency axiom). A solution function σ on VsubN is

said to obey the efficiency axiom if
∑

i∈N
σi (v,S) = v (N)

holds for all subordination games (v,S).

E������� XI.15. Does the efficiency axiom hold for the permission value
and/or the use value?

D�������
� XI.24 (dominant player). A solution function σ on VhN (!)
is said to obey the dominant-player axiom if we have

σi (v,S) ≥ σj (v,S)
for every monotionic coalition function v whenever player i ∈ N dominates

player j �= i (see definition XI.7, p. 175).

D�������
� XI.25 (superior player). A solution function σ on VsubN is

said to obey the superior-player axiom if we have

σi (v,S) ≥ σj (v,S)
for every monotionic coalition function v and for every two players i, j ∈ N

with j ∈ S (i).

The superior-player axiom is stronger than the dominant-player axiom
because if i dominates j, i is also j’s superior. That is, if we can show that
a value fulfills the superior-player axiom, it also fulfills the dominant-player
axiom.

We show that both axioms are fulfilled by both the permission and the
use value. Beginning with the permission structure S, consider players i and
j with j ∈ S (i). We show that i’s marginal contributions are higher than
j’s ones.

• For a coalitionE ⊆ N\ {i, j} we have vS (E∪{j}) = vS (E) because
j does not have i’s permission. By the monotionicity of v and hence
of vS (see lemma XI.2), we have vS (E∪{i}) ≥ vS (E). Therefore,
MCE

i ≥MCE
j = 0 for all those coalitions E that host neither i nor

j.
• The previous point implies vS (E∪{i}) ≥ vS (E∪{j}) and hence

MC
E∪{i}
j

(
vS

)
= vS (E∪{i}∪{j})− vS (E∪{i})
≤ vS (E∪{j}∪{i})− vS (E∪{j})
= MC

E∪{i}
j

(
vS

)
.

Since the Shapley value is the average of the marginal contributions with
respect to all rank orders, the permission value fulfills the superior-player
axiom and hence the dominant-player axiom.
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E������� XI.16. Show that the use value also fulfills the superior-player
axiom (and hence the dominant-player axiom).

The last axiom to consider is a fairness axiom in the spirit of balanced
contributions known from chapters VI and X. Consider a player j with at
least two superiors h and g. If h ceases to be j’s superior, j and g are equally
affected.

D�������
� XI.26 (balanced contributions). A solution function σ on

VhN (!) is said to obey the balanced-contribution axiom if, for all players
h, j, g ∈ N with h �= g and j ∈ S (g) ∩ S (h), we have

σj (v,S)−σj
(
v,S−(h,j)

)
= σi (v,S)−σi

(
v,S−(h,j)

)
for all i ∈ {g}∪S̄−1 (g)

holds for all subordination games (v,S).

Note that the equality does not only apply to g himself but also to all
players that dominate g (the players from S̄−1 (g)).

We present two different axiomatizations. The first refers to hierarchies:

T �
��� XI.1 (axiomatization of the permission value). The permis-
sion value on hierarchies is axiomatized by the additivity axiom, the inessential-

player axiom, the necessary-player axiom, the efficiency axiom, the dominant-

player axiom, and the balanced-contribution axiom.

The second axiomatization refers to any subordination structures:

T �
��� XI.2 (axiomatization of the permission value). The permis-
sion value on subordination structures is axiomatized by the additivity ax-

iom, the inessential-player axiom, the necessary-player axiom, the efficiency

axiom, and the superior-player axiom.
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7. Topics and literature

The main topics in this chapter are

• outside-option values
• Casajus value
• Wiese value
• component efficiency
• splitting axiom

We introduce the following mathematical concepts and theorems:

• t

•
We recommend.

8. Solutions

Exercise XI.1
The subordination structure S on {1, 2, 3} is given by S (1) = {2, 3},

S (2) = {3}, and S (3) = ∅.
Exercise XI.2

Graph (a) obeys acyclicity, but violates connectedness. It is not a hier-
archy.

Graph (b) depicts a hierarchy with player 2 as the boss, but not a unique
one — player 3 has two superiors.

Graph (c) obeys connectedness where players 1, 2 and 3 are all big
bosses. The graph violates acyclicity. It is not a hierarchy.

Graph (d) is a unique hierarchy.
Exercise XI.3

If S is a unique hierarchy, domination of j by i can be expressed by
j ∈ Ŝ (i).
Exercise XI.4

The autonomous coalitions are

∅, {2} , {5} , {2, 5} , {1, 3, 4, 5} ,N.
Exercise XI.5

Since K is autonomous, we have

aut (K) =
⋃

A⊆K,
A autonomous

A

= K

and hence vS (K) = v (aut (K)) = v (K) .

Exercise XI.6
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We find uSa{1,2} = u{1,2} and uSb{1,2} = uN .
Exercise XI.7

We have uS{1,2} = uN and hence Per (v,S) = Sh (uN) =
(
1
3 ,
1
3 ,
1
3

)
. By

uS{1,3} = u{1,3} we obtain Per (v,S) =
(
1
2 , 0,

1
2

)
.

Exercise XI.8
The effective coalitions are

∅, {2} , {1, 3, 4} , {1, 2, 3, 4} , {1, 3, 4, 5} , {1, 2, 3, 4, 5}
Exercise XI.9

We find uSa{1,2} = u{1} and

uSb{1,2} (K) =

{
1, 1 ∈ K or 3 ∈ K

0, otherwise

Exercise XI.10
Just copy the proof of lemma XI.1 (p. 177). You find

(v +w)S (K) = (v +w) (eff (K)) (definition use game)

= v (eff (K)) +w (eff (K)) (vector sum)

= vS (K) +wS (K) (definition use game).

Exercise XI.11
Assume two coalitions E and F fulfilling E ⊆ F ⊆ N . First of all,

E ⊆ F implies

eff (E) = E∪Ŝ (E) ⊆ F∪Ŝ (F ) = eff (F ) .

By the monotionicity of v, we find vS (E) = v (eff (E)) ≤ v (eff (F )) =

vS (F ) .

Exercise XI.12
We find

uS{1,2} (K) =

{
1, 1 ∈ K or 3 ∈ K

0, otherwise

and hence Use
(
u{1,2}

)
=

(
1
2 , 0,

1
2

)
. By uS{1,3} = u{3} the use payoffs are

(0, 0, 1) for the second unanimity game.
Exercise XI.13

The Shapley value is additive so that we find

Sh
(
(v +w)S

)

= Sh
(
vS +wS

)

= Sh
(
vS

)
+ Sh

(
wS

)

for the permission value Per as well as for the use value Use.
Exercise XI.14

Let K ⊆ N be any coalition that does not contain i. The set ∆K :=

eff (K ∪ {i}) \eff (K) contains
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• player i if i does not have any superiors inside K and
• some players from outside K for whom i but not a player from K

is a superior.

Thus, we find ∆K\ {i} = Ŝ (i) \Ŝ (K)

vS (K ∪ {i})− vS (K)

= v (eff (K ∪ {i}))− v (eff (K))

=
∑

j∈∆K
MC

Kj

j (v) =
∑

j∈{i}∪Ŝ(i)\Ŝ(K)
MC

Kj

j (v)

with suitably chosen Kj ⊆ N . Since i is inessential, this sum of marginal
contributions is zero so that i is indeed a null palyer with respect to vS .
Exercise XI.15

Yes, the additivity axiom holds for both values because it holds for the
Shapley value.
Exercise XI.16

The proof is very similar to the one for the permission value: For a
coalition E ⊆ N\ {i, j} we have vS (E∪{j}) ≤ vS (E∪{i}) because vS is
monotionic (see lemma XI.6) and eff (E∪{j}) is a subset of eff (E∪{i})
by j ∈ S (i). Therefore, we find

MCE
j

(
vS

)
= vS (E∪{j})− vS (E)

≤ vS (E∪{i})− vS (E)

= MCE
i

(
vS

)
.

The rest of the proof is just a copy of the proof for the permission value.

9. Further exercises without solutions



CHAPTER XII

Hierarchies, wages, and allocation

1. Introduction

In this chapter (which is the joint output by André Casajus, Tobias
Hiller and Harald Wiese), we suggest a wage scheme that accounts for the
hierarchical structure of an enterprise. Besides results on how the hierarchy
affects wage differentials between levels of the hierarchy, we deal with the
allocation of employees to the different levels.

• Die Position innerhalb der Hierarchie eines Unternehmens spielt
eine entscheidende Rolle bei der Bestimmung der Entlohnung eines
Mitarbeiters. Explizit wird dies insbesondere bei Beschäftigten im
Strukturvertrieb deutlich.

• Im kürzlich erschienenen Aufsatz von van den Brink (2008) wird die
hierarchische Struktur eines Unternehmens mit Hilfe von Konzepten
der kooperativen Spieltheorie abgebildet. In seinem Ansatz sind
dabei die Beziehungen zwischen den Vorgesetzten und ihren direk-
ten Mitarbeitern über alle Beschäftigten gleich stark.

• Der vorliegende Aufsatz nutzt ebenfalls die kooperative Spielthe-
orie, um hierarchische Strukturen von Unternehmen abzubilden.
Er lässt dabei verschiedene Intensitäten der Beziehungen zwischen
Vorgesetzten und Mitarbeitern zu. Diese Intensität gibt dabei
Auskunft darüber, in welchem Ausmaß der Vorgesetzte am Erfolg
bzw. Misserfolg seines Mitarbeiters partizipiert.

• Für diese reichhaltigere hierarchische Struktur eines Unternehmens
wird ein Entlohnungsschema vorgestellt, das die Standardergeb-
nisse der Literatur repliziert.

• Damit wird ein Bezugsrahmen begründet, der zum einen die Ableitung
weiterer theoretischer Ergebnisse erlaubt und zudem empirische
Untersuchungen zum Themengebiet „Hierarchie und Entlohnung“
anleiten kann.

2. Einleitung

Die Lohnstruktur innerhalb von Unternehmen ist eines der Interessens-
gebiete personalwirtschaftlicher Untersuchungen. Eine wichtige Rolle bei
der Bestimmung der Löhne in Unternehmen spielt die Hierarchie des Un-
ternehmens. Hierarchien im Sinne dieses Aufsatzes sind dabei zunächst
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von Einkommensleitern (engl.: job ladder) abzugrenzen. Hierarchien sind
dadurch gekennzeichnet, dass durch sie eine klare Vorgesetzten-Mitarbeiter-
Struktur geschaffen wird. Jedem Mitarbeiter, bis auf jenem an der Spitze
des Unternehmens, kann genau ein direkter Vorgesetzter zugeordnet werden
(Radner 1992, Meagher 2001). Dieser Vorgesetzte kontrolliert seine direkten
Mitarbeiter und kann ihnen Anweisungen erteilen. Bei Einkommensleitern
hingegen dienen verschiedene Mitarbeiterebenen ausschließlich der Lohn-
differenzierung, d.h. den Mitarbeitern einer Ebene sind keine Mitarbeiter
der nächstniedrigeren Ebene zugewiesen (Lazear & Rosen 1981, Carmichael
1983, Prendergast 1993).

Explizit sind die Effekte einer Hierarchie auf Entlohnung und Allokation
von Mitarbeitern im Strukturvertrieb (auch: network marketing, multi-level
marketing), wie er beispielsweise bei Amway, der Deutschen Vermögensber-
atung, der HMI-Organisation oder AWD Anwendung findet (Frehrking &
Schöffski 1994), erkennbar. Zum einen hängt die Entlohnung der Mitar-
beiter von der eigenen Produktivität (Verkaufsleistung) ab. Zum anderen
profitieren sie von der Produktivität der Mitarbeiter in der bei ihnen begin-
nenden Subhierarchie.

Anhand der Festlegung des prozentualen Bonus’ bei Amway wird dies
deutlich. Amway liefert Produkte an so genannte Geschäftspartner. Diese
Produkte können zum einen dem Selbstverbrauch dienen, zum anderen je-
doch mit einer Handelsspanne von 30% weiterverkauft werden. Diese bei-
den Aktivitäten beschreiben die produktive Leistung der Geschäftspartner.
Daneben werben Geschäftspartner weitere Geschäftspartner, wodurch sich
eine Hierarchie aufbaut. Der Bonus steigt in Stufen und hängt von der
Umsatzsumme ab, die der Geschäftspartner selbst (eigene Produktivität)
und alle von ihm direkt oder indirekt geworbenen Geschäftspartner (Pro-
duktivität der Partner in der Subhierarchie) erwirtschaften. Daher ist der
prozentuale Bonus eines höher positionierten Geschäftspartners mindestens
so hoch wie der Bonus der ihm unterstellten Partner. Seinen beispielhaft
drei Partner — A, B und C — betrachtet, wobei B und C von A geworben
wurden. Sind B und C fleißige Käufer für den Eigenbedarf bzw. Verkäufer,
erhalten sie beispielsweise die Bonusstufen 3% (für B) bzw. 6% (für C). Der
dem Partner A zugerechnete Umsatz erlaubt daher mindestens Bonusstufe
6% für ihn, so dass er eine 6%ige (oder mehr, je nach seinem eigenen
Umsatz) Bonuszahlung auf den Umsatz seiner Gruppe erhält, von der die
Bonuszahlungen für B und C abgezogen werden. Die höhere Hierarchiestufe
bedeutet für ihn, dass er auch mit einer geringen persönlichen Produktivität
in den Genuss einer höheren Bonusstufe kommt.

Der Aufsatz lässt sich von dieser Wirkungsweise einer Hierarchie auf die
Entlohnung der Mitarbeiter inspirieren und basiert daher auf zwei Grundan-
nahmen,H undP. AnnahmeP besagt, dass die Entlohnung eines Beschäftigten
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eine Funktion der Produktivität ist. Dabei ist nicht nur die Grenzpro-
duktivität relevant, also der zusätzliche Output des Beschäftigten beim ak-
tuellen Beschäftigungsstand. Vielmehr ist auch die zusätzliche Produktiv-
ität in Bezug auf kleinere Teilgruppen der Mitarbeiter (marginale Beiträge
genannt) relevant für die Bezahlung. Dies ist plausibel, da die Produk-
tivität in Bezug auf andere Gruppen als die gesamten Beschäftigten Aus-
sagen darüber trifft, welche alternativen Verdienstmöglichkeiten ein Mitar-
beiter besitzt. Allerdings ist empirische Evidenz für diese Annahme schwer
beschaffbar, da die marginalen Beiträge (in Bezug auf alle Beschäftigten
oder in Bezug auf Teilgruppen) kaum messbar sein dürften.

Die zweite Annahme, Annahme H, erkennt die am Beispiel Amway
skizzierte Tatsache an, dass neben der Produktivität die hierarchische Stel-
lung des Mitarbeiters Auswirkung auf seine Entlohnung hat. Dabei geht es
nicht vordergründig darum, dass eine hohe Produktivität mit einer hohen
Hierarchiestufe belohnt wird. Dies kann der Fall sein (siehe auch den Liter-
aturüberblick) und später wird im Aufsatz eine Beziehung in gerade dieser
Hinsicht hergestellt. Zunächst jedoch soll argumentiert werden, dass bei
einer gegebenen Hierarchie die oberen Hierarchiestufen von den Leistungen
der unteren Hierarchiestufen profitieren oder für die Fehler unterer Hier-
archiestufen „geradestehen“ müssen. Genauer wird angenommen, dass ein
Vorgesetzter von den ihm direkt untergebenen Mitarbeitern profitiert. Da
diese jedoch ihrerseits an den Leistungen der wiederum niedrigeren Hierar-
chiestufen partizipieren, ergibt sich zudem eine indirekte, aber mit zunehmen-
dem Hierarchieabstand weniger wichtige Partizipation.

Natürlich existiert bei der modelltheoretischen Umsetzung der Annah-
men P und H einiger Spielraum. Im Aufsatz werden die diesbezüglichen
konkreteren Annahmen (Unterannahmen von P und H) in zweierlei Weise
explizit. Zunächst wird eine Formel präsentiert, die die Auszahlungen aller
Beschäftigten in Abhängigkeit von den Produktivitäten und in Abhängigkeit
von der Stellung in einer Hierarchie wiedergibt. Die Rechtfertigung des Ent-
lohnungsschemas erfolgt anschließend durch ein System von einfachen und
plausiblen Eigenschaften bzw. Axiomen, die ebenfalls eindeutig zu diesen
Auszahlungen führen. Mit Hilfe eines Axiomensystems kann zudem für
ein Entlohnungsschema leicht überprüft werden, ob es bestimmte geforderte
Kriterien erfüllt. Dies ist dann der Fall, wenn die Kriterien direkt zum Ax-
iomensystem gehören oder aus diesen Axiomen ableitbar sind. Die Methode
der Axiomatisierung erleichtert ferner den Vergleich verschiedener Entloh-
nungsschemata, da genau feststellbar ist, in welchen Eigenschaften sich diese
unterscheiden.

Die beiden Annahmen P und H werden mit Hilfe der kooperativen
Spieltheorie umgesetzt. Dazu wird die ökonomische Situation mit Hilfe
der Koalitionsfunktion modelliert. Diese ordnet jeder Koalition, d.h. jeder
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Teilmenge der Spielermenge, im Folgenden die Menge aller Beschäftigten,
einen Wert zu, der die Leistungsfähigkeit dieser Koalition widerspiegelt.
Aus diesen Werten generiert nun die Shapley-Lösung (Shapley 1953b), das
bekannteste Lösungskonzept der kooperativen Spieltheorie, Auszahlungen
als arithmetisches Mittel der marginalen Beiträge. Die Shapley-Lösung ist
somit eine konkrete Umsetzung von Annahme P.

Zur Formalisierung von Annahme H, muss die hierarchische Struktur in
die Bestimmung der Mitarbeiter-Auszahlungen einbezogen werden. Dieser
Aufsatz nutzt dazu, ähnlich wie van den Brink (2008), gerichtete Graphen
bzw. eine Kontrollstruktur (permission structure). Sind zwei Mitarbeiter in
einem solchen Graphen durch einen Pfeil verbunden, so ist derjenige, auf
den der Pfeil zeigt, der Vorgesetzte des anderen.

Die Modellierung von van den Brink (2008) besitzt dabei die Eigenschaft,
dass die einzelnen Dominanzbeziehungen, d.h. der Einfluss des Vorgesetzten
auf seine direkten Mitarbeiter, gleich stark sind. Allerdings ist es eine recht
plausible Vermutung, dass diese Beziehungen zwischen einem Vorgesetzten
und seinen direkten Mitarbeitern in Unternehmen unterschiedlich stark aus-
geprägt sein können. An anderer Stelle in der Literatur wurde diese Idee
unterschiedlich starker gerichteter Verbindungen zwischen Spielern beispiel-
sweise bei der Bestimmung der Macht von Spielern in Netzwerken durch
van den Brink & Gilles (2000) und Herings, van der Laan & Talman (2005)
aufgegriffen.

Diese unterschiedliche Stärke spielt in diesem Aufsatz eine zentrale Rolle
und ergänzt somit die in van den Brink (2008) entwickelte Abbildung von
Unternehmenshierarchien in die Welt der kooperativen Spieltheorie. Die
Hierarchie wird durch einen gewichteten gerichteten Graphen bzw. eine
gewichtete Kontrollstruktur modelliert. Die Idee des in diesem Aufsatz
entwickelten Lösungskonzepts für diese reichhaltigere Struktur lässt sich
dann wie folgt formulieren. Auf einer ersten Stufe erhalten die Mitar-
beiter zunächst auf Grundlage der Koalitionsfunktion ihre Auszahlungen
gemäß dem Shapley-Lösungskonzept. Anschließend wirkt die Hierarchie
umverteilend. Von der erhaltenden Auszahlung muss jeder Mitarbeiter,
außer jener an der Spitze des Unternehmens, einen gewissen Anteil an seinen
Vorgesetzten abführen. Dies korrespondiert damit, dass Vorgesetzte zu
einem Teil am Erfolg bzw. Misserfolg ihrer Mitarbeiter partizipieren, in
diesem Fall mit dem oben erwähnten Anteil. Die Höhe dieses Anteils kann
beispielsweise von der Führungspersönlichkeit bzw. dem Führungsstil des
Vorgesetzten, aber auch von der durch die Personalverantwortlichen fest-
gelegten Stärke des vertikalen Hierarchieunterschieds zwischen beiden Mitar-
beitern abhängen. Das so skizzierte Lösungskonzept kann als Entlohnungss-
chema, das die Hierarchie des Unternehmens berücksichtigt, interpretiert
werden.
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Im Rahmen dieser Wirkungsweise von Hierarchien auf die Entlohnung
kann u.a. gezeigt werden, dass in Unternehmen, die in einem bestimmten
Sinne symmetrisch sind, Mitarbeiter in höheren Hierarchieebenen besser ent-
lohnt werden als jene in niedrigeren. Zudem kann eine Erklärung dafür
geliefert werden, dass produktivere Mitarbeiter in höheren Hierarchieebe-
nen des Unternehmens anzutreffen sind — die Führungskraft an der Spitze
des Unternehmens erhält den größten relativen Anteil des Erfolgs von den
Mitarbeitern, die in der ihr direkt unterstellten Hierarchieebene tätig sind.
Entscheidet diese Führungskraft über die Allokation der Mitarbeiter, so wird
sie die produktivsten dieser Ebene zuordnen.

Die Stoßrichtung des Aufsatzes ist in der Hauptsache theoretisch und
methodisch. Wir stellen uns dem Problem, positive Aussagen über die
Wirkungen von Hierarchien auf die Entlohnung und Allokation von Mitar-
beitern zu treffen. Hierzu wird das Shapley-Lösungskonzept (Annahme P)
mit einem gewichteten gerichteten Graphen (AnnahmeH) angereichert. Al-
ternative Modellierungen der Wirkungsweise von Hierarchien sind möglich.
Der Ansatz öffnet sich der Kritik insofern, als sich diese direkt an den noch
vorzustellenden Unterannahmen vonP undH festmachen lässt. Das präsen-
tierte Entlohnungsschema bietet damit der empirischen und theoretischen
Hierarchieforschung einen neuen Ansatzpunkt. Effizienz- oder Anreizprob-
leme lassen sich, zumindest in der jetzigen Form, nicht mit dem präsentierten
Entlohnungsschema behandeln. Ursache dafür ist, dass in Übereinstimmung
mit dem Effizienz-Axiom der Shapley-Lösung vorausgesetzt wird, dass alle
Hierarchien zum gleichen Gesamtoutput führen.

Der Aufsatz ist folgendermaßen gegliedert. Der nächste Abschnitt bi-
etet einen Literaturüberblick, in dem zunächst verschiedene in der Literatur
diskutierte Ursachen für das Entstehen von Hierarchien dargestellt werden.
Anschließend folgt die Zusammenfassung der Ergebnisse bisheriger Mod-
elle zur Analyse der Auswirkungen der Hierarchie eines Unternehmens auf
dessen Lohnstruktur. Dabei wird u.a. auf den schon erwähnten Aufsatz
von van den Brink (2008) näher eingegangen. Abschließend werden weitere
bisherige Ansätze der kooperativen Spieltheorie kurz dargestellt, die sich
ebenfalls der Modellierung von Hierarchien bzw. Einkommensleitern wid-
men. Im Abschnitt ?? werden die grundlegenden Begriffe und Definitionen
der kooperativen Spieltheorie eingeführt. Dabei wird u.a. die hierarchische
Struktur eines Unternehmens in die Sprache der kooperativen Spieltheorie
übersetzt. In Abschnitt 4 schließt sich die Einführung und Axiomatisierung
des Lösungskonzepts/Entlohnungsschemas an. Personalwirtschaftliche Im-
plikationen hinsichtlich der vertikalen Lohndifferenzen zwischen den Hierar-
chieebenen werden in Abschnitt 5 und hinsichtlich der Allokation der Mi-
tarbeiter auf die Ebenen in Abschnitt 6 gezogen. Abschnitt 7 schließt den
Aufsatz mit einer Zusammenfassung.
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3. Literaturüberblick

In der Literatur werden verschiedene Ursachen für das Entstehen von
Hierarchien in Unternehmen angeführt. Zum einen soll durch sie für die
Mitarbeiter ein Anreiz gesetzt werden, ihren Arbeitseinsatz zu steigern, da
sie damit die Wahrscheinlichkeit erhöhen, auf eine Hierarchiestufe mit einer
besseren Entlohnung zu gelangen (Mirrlees 1976, Calvo & Wellisz 1979).
Bessere Informationsverarbeitung ist ein weiteres Motiv zur Schaffung von
Hierarchien. Zum einen können die durch ein Unternehmen zu bewälti-
genden Probleme durch eine Hierarchie in viele kleinere zerlegt werden,
deren Lösungen anschließend wieder zusammengesetzt werden. Zum an-
deren fallen die benötigten Informationen zur Lösung der Probleme häu-
fig dezentral an. Infolgedessen kann, durch eine dezentrale Erfassung und
anschließende Koordination der Informationen gemäß der hierarchischen
Struktur, der Informationsverarbeitungsprozess beschleunigt werden. Allerd-
ings steigen mit der Einführung zusätzlicher Positionen innerhalb der Hierar-
chie auch die Kosten der Informationsverarbeitung (Keren & Levhari 1979,
Geanakoplos & Milgrom 1991, Radner 1992, Radner 1993, Prat 1997, Bor-
land & Eichberger 1998, Meagher 2003). Ein weiterer und hier letztge-
nannter Grund für das Bestehen von Hierarchien sind die Kontrollaktiv-
itäten der Vorgesetzten gegenüber den Mitarbeitern. Sie können mit einer
gewissen Wahrscheinlichkeit den Arbeitseinsatz oder den Output der Mi-
tarbeiter feststellen. Je mehr Hierarchiestufen existieren bzw. je kleiner die
Kontrollspanne, desto höher ist die Wahrscheinlichkeit, den wahren Arbeit-
seinsatz festzustellen, und umso mehr agieren die Mitarbeiter im Sinne des
Unternehmens. Allerdings, und darin besteht der trade-off, steigen auch die
Kosten der Überwachung (Stiglitz 1975, Calvo & Wellisz 1979, Rosen 1982,
Qian 1994).

In den Modellen von Calvo & Wellisz (1979), Rosen (1982), Wald-
man (1984) und Qian (1994) spielen die Fähigkeiten der Mitarbeiter eine
entscheidende Rolle bei ihrer Allokation innerhalb der Hierarchie. Diese
Fähigkeit wird dabei in diesen Aufsätzen, bis auf Waldman (1984), als deren
Überwachungs- bzw. Kontrolltalent modelliert. Ein Resultat aller Aufsätze
ist die Allokation der fähigsten Mitarbeiter an die Spitze der Hierarchie,
da die dort getroffenen Entscheidungen (bzw. durchgeführten Kontrollak-
tivitäten) im Vergleich zu Entscheidungen auf niedrigeren Hierarchiestufen
einen größeren Einfluss auf den Unternehmensgewinn ausüben. Auf Grund
dieses höheren Einflusses werden die dort beschäftigten Mitarbeiter höher
entlohnt als Mitarbeiter in niedrigeren Ebenen. Zudem zeigen die Autoren
in ihren Modellen, dass der erwähnte Multiplikatoreffekt der höheren Hi-
erarchieebenen dazu führt, dass die Löhne stärker mit der Hierarchieebene
steigen, als die Fähigkeiten bzw. Produktivität der Mitarbeiter. Waldman
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(1984) und Qian (1994) deduzieren aus ihren Modellen ferner, dass die Mi-
tarbeiter an der Spitze von großen Unternehmen, gemessen an der Zahl
der Beschäftigten, ein höheres Entgelt erhalten als diejenigen bei kleinen
Unternehmen, da der genannte Multiplikatoreffekt bei diesen großen Un-
ternehmen stärker wirkt.

Der Aufsatz von van den Brink (2008) nutzt, wie bereits erwähnt, die
kooperative Spieltheorie, um die Auswirkungen der Unternehmenshierarchie
auf vertikale Lohndifferenzen im Unternehmen zu analysieren. Die Grun-
didee seiner Arbeit ist dabei, dass ein Mitarbeiter die Zustimmung aller
seiner Vorgesetzten benötigt, um eine Entscheidung treffen zu können bzw.
um produktiv zu sein (conjunctive approach). Einer Koalition wird demzu-
folge der Wert zugeordnet, den ihre autonome Teilmenge, d.h. die Menge der
Beschäftigten, deren Vorgesetzte ebenfalls in der betrachteten Koalition en-
thalten sind, erzielt. Anschließend wird auf Grundlage dieser restringierten
Koalitionsfunktion die Shapley-Auszahlung der Mitarbeiter ermittelt. Ein
erster Beitrag zu diesem Ansatz, in dem die Grundidee des Lösungskonzepts
skizziert wird, stammt von Gilles, Owen & van den Brink (1992b). Die Ax-
iomatisierung des Konzepts erfolgt durch van den Brink & Gilles (1996a).

Eine Prämisse von van den Brink (2008) ist dabei, dass ausschließlich
die Mitarbeiter ohne Unterstellte (Arbeiter) zur Wertschöpfung beitragen.
Aus seinem Modell kann er die folgenden Ergebnisse ableiten. Liegt dem
Spiel eine monotone Koalitionsfunktion zugrunde, d.h. kein Arbeiter senkt
durch seinen Beitritt den Wert einer Gruppe, so erhält ein Vorgesetzter
eine Entlohnung, die mindestens so hoch ist, wie die seines bestbezahlten
direkten Mitarbeiters. Ist die Koalitionsfunktion zudem konvex, d.h. der
Beitrag eines Arbeiters zu einer Gruppe steigt bei deren Erweiterung um
andere Arbeiter, ist die obere Lohngrenze eines Vorgesetzten die Lohnsumme
seiner direkten Mitarbeiter.

Neben diesem Ansatz entwickelt van den Brink (1997) ein Konzept, bei
dem ein Mitarbeiter nur die Zustimmung aller Mitarbeiter einer Befehls-
kette zwischen ihm und dem Vorgesetzten an der Spitze des Unternehmens
benötigt (disjunctive approach). Für den Fall, dass jeder Mitarbeiter, bis
auf jener an der Spitze des Unternehmens, nur einen direkten Vorgesetzten
besitzt, fällt dieser Ansatz mit dem erstgenannten zusammen. Allerdings
weist auch dieser Ansatz den Kritikpunkt auf, dass die Dominanzbeziehun-
gen zwischen den Mitarbeitern gleich stark sind.

Neben gerichteten Graphen können in der kooperativen Spieltheorie auch
ungerichtete Graphen für die Bestimmung der Auszahlung der Spieler Berück-
sichtigung finden. Die durch einen solchen Graphen verbundenen Spieler
sind symmetrisch in dieser Verbindung (Myerson 1977b), so dass mit diesen
Graphen keine Vorgesetzten-Mitarbeiter-Struktur bzw. Hierarchie abgebildet
werden kann.
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Ein weiterer Ansatz der kooperativen Spieltheorie zur Analyse von hi-
erarchischen Strukturen bzw. Einkommensleitern in Unternehmen stammt
von Kalai & Samet (1987a) und nutzt ein Gewichtungssystem mit Ebe-
nen. Die zugewiesenen Gewichte bzw. Ebenen lassen sich als Verantwor-
tung der Mitarbeiter interpretieren (Owen 1968). Allerdings erlaubt es
das Lösungskonzept nicht, einem Mitarbeiter in einer höheren Ebene di-
rekte Beschäftigte in der nächstniedrigeren zuzuordnen, so dass im Rahmen
dieses Ansatzes keine Hierarchien betrachtet werden können. Zudem ist die
vertikale Abstufung zwischen den Beschäftigten, die in unserem Konzept
eine zentrale Stellschraube ist, durch die Ebenenstruktur fest vorgegeben
und nur das Ausmaß der horizontalen Abstufung zwischen den Mitarbeitern
kann durch die Wahl der Gewichte feingesteuert werden.

3.1. Die Hierarchie eines Unternehmens. Dem Aufsatz von van
den Brink (2008) folgend und in Übereinstimmung mit der in Abschnitt 2
präsentierten Definition einer Unternehmenshierarchie wird die Hierarchie
eines Unternehmens durch eine Funktion S : N → 2N abgebildet, die jedem
Arbeitnehmer i ∈ N seine Untergebenen bzw. direkten Mitarbeiter zuord-
net. S kann dabei als ein gerichteter Graph aufgefasst werden (Bollobás
2002). S (i) bezeichnet die Menge der direkten Mitarbeiter von i. Dabei gilt
i /∈ S (i) . Die Mitarbeiter, die in der Menge S−1 (i) = {j ∈ N : i ∈ S (j)}
enthalten sind, werden als is direkte Vorgesetzte angespochen. Ein Pfad T

in N von i zu j ist eine Folge von Mitarbeitern T (i, j) = 〈r0, r1, . . . , rk−1, rk〉
mit i = r0, j = rk und rℓ+1 ∈ S (rℓ) für alle ℓ = 0, . . . , k− 1. Der Pfad kann
als „Befehlskette“ zwischen den Mitarbeitern i und j interpretiert werden,
wobei Mitarbeiter i ein direkter oder indirekter Vorgesetzter von Mitar-
beiter j ist. Der Pfad 〈i0, i0〉 wird als trivialer Pfad bezeichnet. Die Menge
aller Mitarbeiter, die einem Arbeitnehmer i direkt oder indirekt unterstehen,
wird mit Ŝ (i) := {j ∈ N\ {i} : es existiert ein Pfad von i zu j} bezeichnet.
Entsprechend wird die Menge von is direkten und indirekten Vorgesetzten
mit Ŝ−1 (i) := {j ∈ N\ {i} : es existiert ein Pfad von j zu i} angesprochen.

Wie in der Literatur üblich, wird für eine Unternehmenshierarchie eine
Baumstruktur angenommen (Radner 1992, Meagher 2001), d.h. es gibt genau
einen Mitarbeiter i0, der keinen Vorgesetzten besitzt, und jeder der anderen
Mitarbeiter hat genau einen direkten Vorgesetzten und kann dabei nicht sein
eigener indirekter Vorgesetzter sein. Formal notiert bedeutet dies that S is
a unique hierarchy:

• es existiert ein Arbeitnehmer i0 ∈ N , so dass S−1 (i0) = ∅ und
Ŝ (i0) = N\ {i0} gilt,

• für jeden Mitarbeiter i ∈ N\ {i0} ist
∣∣S−1 (i)

∣∣ = 1 erfüllt und

• es gilt i /∈ Ŝ (i) für alle i ∈ N .
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Neben der Unternehmenshierarchie S werden durch das in diesem Auf-
satz vorgestellte Entlohnungsschema auch verschiedene Stärken der Beziehung
zwischen einem Vorgesetzten und dessen direktenMitarbeiter berücksichtigt.
Der Vektor w : N → R ordnet jedem Mitarbeiter i ein Gewicht wi, 0 ≤ wi ≤
1, zu, das über die Stärke der Partizipation des Vorgesetzten an den Erfolgen
bzw. Misserfolgen seiner Mitarbeiter Auskunft gibt. Ein Mitarbeiter i muss
dabei den Anteil wi seines (Miss-)Erfolgs an den Vorgesetzten abtreten. Für
i0 gilt wi0 = 0. Die wi können z.B. durch den Führungsstil des Vorgesetzten
geprägt sein oder von den Personalverantwortlichen des Unternehmens be-
wusst gesetzt werden, um die Eigenständigkeit von Mitarbeitern zu steuern
oder die Lohnstruktur des Unternehmens zu bestimmen.

Weist ein Gewichtsvektor allen Mitarbeitern, außer i0, das gleiche Gewicht
w̄ zu, d.h. wi = wj = w̄ für alle i, j ∈ N\ {i0} , so wird der entsprechende
Vektor ebenfalls mit w̄ angesprochen. Für spätere Beweise ist es notwendig
den Gewichtsvektor w [K] für alle K ⊆ N zu definieren. Dieser weist allen
Beschäftigten i ∈ K das Gewicht null zu, w [K]i = 0. Alle übrigen Mitar-
beiter j ∈ N\K erhalten ihr ursprüngliches Gewicht zugeordnet, w [K]j =

wj .Beispielsweise ist der Vektor w [{i}] gegeben durch (w1, . . . , wi−1, 0, wi+1, . . . , wn) .
Vereinfachend wird häufig w [i, j, . . . ] anstelle von w [{i, j, . . . }] notiert.

D�������
� XII.1. Die hierarchische Struktur eines Unternehmens wird
durch die Hierarchie S sowie den Gewichtsvektor w dargestellt. Ein hierar-
chisches Spiel ist das Tupel (N, v,S, w).

Das folgende Beispiel soll die Notation verdeutlichen und wird später
bei der Berechnung der H-Auszahlungen nochmals aufgegriffen.

E���
"� XII.1. Ein Unternehmen beschäftigt fünf Mitarbeiter, N =

{1, 2, 3, 4, 5} . Die hierarchische Struktur ist gegeben durch S (3) = S (4) =

S (5) = ∅, S (2) = {3, 4} , S (1) = {2, 5} sowie den Gewichtsvektor w =

(w1, . . . , w5) =
(
0, 14 ,

2
3 ,
1
2 ,
1
4

)
(siehe Abbildung ??). In diesem Unternehmen

bestimmt sich beispielsweise die Menge aller (direkten und indirekten) Vorge-

setzten von Mitarbeiter 3 als Ŝ−1 (3) = {1, 2} und der Pfad zwischen Mitar-
beiter 1 und Mitarbeiter 3 ist gegeben durch: T (1→ 3) = 〈1, 2, 3〉.

4. Das H-Lösungskonzept

4.1. Definition. Die grundlegende Überlegung für das in diesem Ab-
schnitt vorgestellte Lösungskonzept für hierarchische Spiele bzw. das Entloh-
nungsschema für ein Unternehmen mit hierarchischer Struktur umfasst zwei
Elemente. Für die Erstellung des Unternehmensergebnisses arbeiten alle Mi-
tarbeiter (symmetrisch) zusammen (im Sinne von Alchian & Demsetz 1972),
d.h. die hierarchische Struktur hat auf die Zusammenarbeit der Mitarbeiter
keinen Einfluss. Das so erwirtschaftete Ergebnis wird zunächst gemäß dem
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4
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4

1
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1

3

2

1

2

5

43

F����� 1. Example of a hierarchical structure

Shapley-Lösungskonzept und somit leistungsbezogen auf Basis der individu-
ellen marginalen Beiträge auf die Beschäftigten verteilt. Im Anschluss wirkt
die hierarchische Struktur umverteilend von unteren Ebenen zu oberen. Ein
Mitarbeiter i auf der untersten Ebene, S (i) = ∅, muss von seiner Shapley-
Auszahlung den Anteil wi an seinen direkten Vorgesetzten j, S−1 (i) = {j} ,
abführen. Dieser wiederum muss von seinen insgesamt erhaltenen (Brutto-
)Zahlungen, seine Shapley-Auszahlung und die Zahlungen seiner direkten
Mitarbeiter an ihn, den Anteil wj an seinen direkten Vorgesetzten weiterre-
ichen etc.

Alle Mitarbeiter j, für die j ∈ Ŝ−1 (g) gilt bzw. die im Pfad T (i0 → g)

enthalten sind, erhalten einen Anteil der Shapley-Auszahlung des Mitarbeit-
ers g. Ein beliebiger Beschäftigter i ∈ N erhält von der Shapley-Auszahlung
des Mitarbeiters g den Anteil:

fi (S, w, g) =





[1−wi]
∏

l∈Ŝ(i),
l∈T (i0→g)

wl, i ∈ T (i0 → g) ,

0, sonst.

(XII.1)

Zwei Spezialfälle können für den Anteil fi (S, w, g) betrachtet werden. Gilt
beispielsweise g = i, so existiert kein l ∈ T (i0 → g) , der zugleich Mitarbeiter
von i ist. In diesem Fall muss der Mitarbeiter den Anteil wi seiner Shapley-
Auszahlung an seinen direkten Vorgesetzten abführen, der Anteil 1 − wi
verbleibt bei ihm. Gilt hingegen i = i0, so muss i nichts nach oben abführen
und er erhält den Anteil

∏
l∈S(i),l∈T (i0→g)wl. Sollte der Mitarbeiter i nicht im

Pfad T (i0 → g) enthalten sein, so erhält er den Anteil null von gs Shapley-
Auszahlung (letzte Formelzeile).

Mit Hilfe dieser Anteile kann jetzt die Auszahlung Hi (N, v,S, w), die
ein Mitarbeiter i ∈ N auf Grund des Entlohnungsschemas erwarten kann,
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bestimmt werden als:

Hi (N, v,S, w) =
n∑

j=1

fi (S, w, j) · Shj (N, v) . (XII.2)

Zusammenmit Formelzeile XII.1 kann die Beziehung zwischen der Netto-
und der Brutto-Entlohnung eines Mitarbeiters i betrachtet werden:

Hi (N, v,S, w) = (1−wi) ·Hi (N, v,S, w [i]) . (XII.3)

Die Brutto-Entlohnung Hi (N, v,S, w [i]) ist jener Betrag, den i erhalten
würde, wenn er nichts an seinen direkten Vorgesetzten abführen muss. Wird
dieser Betrag mit (1−wi)multipliziert, so ergibt sich die Netto-Auszahlung,
d.h. die H-Auszahlung des Beschäftigten. Die Brutto-Auszahlung des Mi-
tarbeiters i kann dabei aus den Brutto-Auszahlungen seiner direkten Mitar-
beiter bestimmt werden über:

Hi (N, v,S, w [i]) = Shi (N, v) +
∑

j∈S(i)
wj ·Hj (N, v,S, w [j]) . (XII.4)

R����& XII.1. Die Gleichungen XII.3 und XII.4 definieren Hi induk-

tiv, da Hi (N, v,S, w [i]) = Shi (N, v) falls S (i) = ∅.

E���
"� XII.2. Sei zusätzlich zur Hierarchie S und dem Gewichtsvek-
tor w aus Beispiel XII.1 die Leistungsfähigkeit der einzelnen Koalitionen

K ⊆ N durch folgende Koalitionsfunktion gegeben:

v (K) =





0, |K| ≤ 1

10, |K| = 2

20, |K| = 3

40, |K| = 4

60, K = N.

Die Mitarbeiter sind im Spiel (N, v) symmetrisch, so dass für ihre Shapley-

Auszahlungen Shi (N, v) = 12, i = 1, . . . , 5, resultiert. Die H-Auszahlungen

ergeben sich als:

H1 (N, v,S, w) = 12︸︷︷︸
Sh1(N,v)

+
1

4
· 26︸︷︷︸
H2(N,v,S,w[2])

+
1

4
· 12︸︷︷︸
H5(N,v,S,w[5])

= 21, 5

H2 (N, v,S, w) =

(
1− 1

4

)

︸ ︷︷ ︸
1−w2

·


 12︸︷︷︸
Sh2(N,v)

+
2

3
· 12︸︷︷︸
H3(N,v,S,w[3])

+
1

2
· 12︸︷︷︸
H4(N,v,S,w[4])




︸ ︷︷ ︸
H2(N,v,S,w[2])

= 19, 5
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H3 (N, v,S, w) =

(
1− 2

3

)

︸ ︷︷ ︸
1−w3

· 12︸︷︷︸
Sh3(N,v)

= 4

H4 (N, v,S, w) =

(
1− 1

2

)

︸ ︷︷ ︸
1−w4

· 12︸︷︷︸
Sh4(N,v)

= 6

H5 (N, v,S, w) =

(
1− 1

4

)

︸ ︷︷ ︸
1−w5

· 12︸︷︷︸
Sh5(N,v)

= 9.

Die Wirkung der hierarchischen Struktur zeigt sich beispielsweise beim
Vergleich der Auszahlungen H3 (N, v,S, w) und H4 (N, v,S, w) . Beide Mi-
tarbeiter sind im Produktionsprozess symmetrisch. Auf Grund der unter-
schiedlichen Stärke der Verbindung zu ihren gemeinsamen direkten Vorgeset-
zten, erhält Mitarbeiter 4 eine höhere H-Auszahlung als Mitarbeiter 3. Ein
Blick auf die Auszahlungen der Mitarbeiter 2 und 5 gibt weiteren Aufschluss
über die Auswirkungen der hierarchischen Struktur. Beide Beschäftigte sind
im Produktionsprozess symmetrisch und müssen den gleichen Anteil ihrer
Brutto-Auszahlungen an ihren Vorgesetzten abführen. Allerdings erhält Mi-
tarbeiter 2 einen Teil der Brutto-Auszahlungen seiner direkten Mitarbeiter,
so dass seine H-Auszahlung über der von Mitarbeiter 5 liegt.

4.2. Axiomatisierung. Die zur Charakterisierung desH-Entlohnungsschemas
verwendeten Axiome lassen sich in zwei Gruppen einteilen. Die erste Gruppe
stellt dabei sicher, dass, wenn alle Gewichte null sind, für dieH-Auszahlungen
der Mitarbeiter deren Shapley-Auszahlungen resultieren. Die zweite Gruppe
der Axiome bewirkt dann die gewünschte Umverteilungswirkung der hierar-
chischen Struktur.

Die erste Axiomengruppe (Annahme P) beinhaltet eine Abwandlung
der vier „klassischen“ Eigenschaften zur Charakterisierung des Shapley-
Lösungskonzepts. Die erste wird alsEffizienz-Axiom bzw.Budget-Neutralität
bezeichnet. Ein Entlohnungsschema ϕ, das diese Eigenschaft erfüllt, schüt-
tet nur jene Lohnsumme an alle Mitarbeiter aus, die von diesen auch er-
wirtschaftet wurde, d.h.

∑
i∈N ϕi (N, v,S, w) = v (N) . Das zweite Axiom ist

dasAdditivitäts-Axiom. Es besagt, dass ϕi (N, v + v′,S, w) = ϕi (N, v,S, w)
+ϕi (N, v

′,S, w) für zwei Koalitionsfunktionen v und v′ für alle Mitarbeiter
i ∈ N gilt. Für die Auszahlung der Mitarbeiter soll es demnach keine Rolle
spielen, ob die Auszahlungen der Spiele (N, v,S, w) und (N, v′,S, w) ad-
diert werden oder zunächst die Koalitionsfunktionen addiert werden und
anschließend für das so gewonnene Spiel (N, v + v′,S, w) die Auszahlung
bestimmt wird. Das dritte Axiom, das schwache Nullspieler-Axiom,
verlangt von einem Entlohnungsschema ϕ, dass einem Mitarbeiter i, der
zu keiner Koalition etwas beiträgt, d.h. v (K) = v (K ∪ {i}) für alle K ⊆
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N, beim Gewichtsvektor w [N ] (alle Gewichte sind auf null gesetzt) eine
Auszahlung null zugewiesen wird, ϕi (N, v,S, w [N ]) = 0. Das letzte Ax-
iom dieser Axiomengruppe ist das schwache Symmetrie-Axiom. Sind
zwei Mitarbeiter i und j aus N im Spiel (N, v) symmetrisch, d.h. es gilt
v (K ∪ {j}) = v (K ∪ {i}) für alle K ⊆ N\ {i, j} , so sollen beide gleich ent-
lohnt werden, wenn der Gewichtsvektor w [N ] lautet, ϕi (N, v,S, w [N ]) =

ϕj (N, v,S, w [N ]) .

Die zweite Axiomengruppe (Annahme H) beinhaltet ebenfalls vier Ax-
iome. Das erste wirdBrutto-Netto-Axiom genannt und ist bereits in Gle-
ichung XII.3 notiert und erläutert. Das zweite Axiomwird alsAbspaltungs-
Axiom bezeichnet. Wird das Gewicht einer Verbindung zweier Mitarbeiter
auf null gesetzt, so verliert der Vorgesetzte dadurch brutto jenen Betrag, den
der direkte Mitarbeiter bei seiner Netto-Auszahlung hinzubekommt. Wenn i
der direkte Vorgesetzte von j ist, j ∈ S (i) , so verlangt das Axiom demnach,
dass

ϕi (N, v,S, w [i])− ϕi (N, v,S, w [i, j]) = ϕj (N, v,S, w [j])− ϕj (N, v,S, w)

erfüllt ist. Das dritte zur Axiomatisierung des H-Entlohnungsschemas ver-
wendete Axiom ist das Isolations-Axiom. Wird bei einem Mitarbeiter
sowohl das Gewicht der Verbindung zu seinem direkten Vorgesetzten, als
auch die Gewichte zu seinen direkten Mitarbeitern auf null gesetzt, so er-
hält dieser seine Shapley-Auszahlung, d.h. jene Auszahlung die resultiert,
wenn alle Gewichte des hierarchischen Spiels auf null gesetzt sind,

ϕi (N, v,S, w [{i} ∪ S (i)]) = ϕi (N, v,S, w [N ]) .

Das letzte zur Axiomatisierung benötigte Axiom ist dasUnabhängigkeits-
Axiom. Nimmt ein Mitarbeiter i ∈ N an zwei hierarchischen Spielen
(N, v,S, w) und (N, v,S, w′) teil, deren Gewichtsvektoren w und w′ für i und
seine ihm unterstellten Mitarbeiter identisch (aber nicht notwendig für an-
dere) sind, d.h. wj = w′j , wenn j ∈ Ŝ (i)∪{i} , so erhält dieser Spieler in bei-
den Spielen die gleiche Entlohnung zugewiesen, ϕi (N, v,S, w) = ϕi (N, v,S, w′) .

T �
��� XII.1. Das H-Entlohnungsschema ist das einzige Lösungskonzept,
welches das Effizienz-Axiom, das Additivitäts-Axiom, das schwache Nullspieler-

Axiom, das schwache Symmetrie-Axiom, das Brutto-Netto-Axiom, das Ab-

spaltungs-Axiom, das Isolations-Axiom und das Unabhängigkeits-Axiom er-

füllt.

Der Beweis dieses Theorems ist in Anhang A dargestellt.

5. Personalwirtschaftliche Implikationen: Entlohnung

In diesem Abschnitt werden die sich für ein Unternehmen mit hierarchis-
cher Struktur (S, w) ergebenden Implikationen hinsichtlich der Entlohnung



200 XII. HIERARCHIES, WAGES, AND ALLOCATION

der Mitarbeiter gezogen, wenn die Löhne gemäß dem H-Entlohnungsschema
festgelegt werden.

D�������
� XII.2. Ein Mitarbeiter wird als unwesentlich bezeichnet,
wenn sowohl er als auch seine direkten und indirekten Mitarbeiter zu allen

Koalitionen den marginalen Beitrag null leisten. Formal notiert heißt dies,

dass i ∈ N ein unwesentlicher Mitarbeiter in (N, v,S, w) ist, wenn v (K) =

v (K\ {j}) mit j ∈ Ŝ (i) ∪ {i} für jede Koalition K ⊆ N erfüllt ist.

L���� XII.1. Ein unwesentlicher Mitarbeiter erhält vomH-Entlohnungsschema

eine Auszahlung null zugewiesen.

Diese Eigenschaft folgt direkt aus den Gleichungen XII.1 und XII.2. Sie
ist plausibel, da sowohl durch i als auch seine Abteilung kein Beitrag zum
Ergebnis des Unternehmens erfolgt. Somit erhalten alle betroffenen Mitar-
beiter zunächst die Shapley-Auszahlung null zugewiesen. Die anschließende
Umverteilung von unten nach oben gemäß der Hierarchie S und demGewichtsvek-
tor w bleibt folgenlos.

D�������
� XII.3. Ein einflussloser unproduktiver Mitarbeiter i ist
dadurch gekennzeichnet, dass er zu allen Koalitionen den marginalen Beitrag

null leistet und zudem von seinen direkten Mitarbeitern jeweils den Anteil

null ihrer Brutto-Auszahlungen erhält. In formaler Schreibweise bedeutet

dies, dass v (K) = v (K\ {i}) für jede Koalition K ⊆ N und zugleich wj = 0

für alle j ∈ S (i) erfüllt ist.

L���� XII.2. Einem einflusslosen unproduktiven Mitarbeiter wird

vom H-Entlohnungsschema ebenfalls die Auszahlung null zugewiesen.

Auch diese Eigenschaft ist plausibel und folgt direkt aus den Gleichungen
XII.1 und XII.2.

Aus diesen beiden Eigenschaften kann zudem auf die Entlohnung eines
Mitarbeiters i geschlossen werden, der zu allen Koalitionen den marginalen
Beitrag null beiträgt und der über keine ihm folgenden Mitarbeiter verfügt,
d.h. v (K) = v (K\ {i}) ist für jede Koalition K ⊆ N erfüllt und zugleich
gilt S (i) = ∅.

L���� XII.3. Einem unproduktiven Mitarbeiter, dem keine weiteren di-
rekten Mitarbeiter zugewiesen werden, wird eine Auszahlung null zugeordnet,

d.h. Hi (N, v,S, w) = 0.

DasH-Entlohnungsschema sorgt nicht automatisch dafür, dass ein Vorge-
setzter eine höhere Entlohnung erhält als seine direkten Mitarbeiter. Dies
mag man als einen Vorteil unseres Lösungskonzepts werten. Einem Mi-
tarbeiter mit sehr seltenen und wichtigen Fähigkeiten ist bisweilen ein so
hohes Gehalt zu zahlen, dass er mehr bekommt als einige seiner Vorgeset-
zten. Ein theoretischer Grenzfall, in dem der Vorgesetzte in jedem Fall
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weniger erhält, ist leicht zu konstruieren. Ist dieser Vorgesetzte beispiel-
sweise ein einflussloser unproduktiver Mitarbeiter und seine direkten Mitar-
beiter erzielen positive Auszahlungen für das Spiel (N, v), so erhalten sie
eine höhere H-Auszahlung als ihr direkter Vorgesetzter. Allerdings kön-
nen die Gewichte so gewählt werden, dass das Entgelt des Vorgesetzten
jenes der direkten Mitarbeiter übersteigt. Ist beispielsweise ein Mitarbeiter
i ein einflussloser unproduktiver Mitarbeiter und seine direkten Mitarbeiter
j ∈ S (i) erhalten im Spiel (N, v) positive Shapley-Auszahlungen, so führen
z.B. die Gewichte wj > 0, 5 und wi = 0 zu einem höheren Lohn für i,

Hi (N, v,S, w) > Hj (N, v,S, w) .

T �
��� XII.2. Wird in einem Unternehmen für alle Beziehungen

zwischen Vorgesetzten und Mitarbeitern i ∈ N\ {i0} ein einheitliches Gewicht
w̄ verwendet, 0 < w̄ < 1, und alle Mitarbeiter erzielen eine positive Shapley-

Auszahlung, Shi (N, v) > 0, dann existiert ein w̄ so, dass für alle Mitarbeiter

i, j ∈ N mit j ∈ S (i) Hj (N, v,S, w̄) < Hi (N, v,S, w̄) erfüllt ist.

Der Beweis dieser Aussage findet sich in Anhang B. Für den Fall, dass
die Gewichte von den Personalverantwortlichen des Unternehmens festgelegt
werden, zeigt sich hier die Bedeutung dieser Entscheidung und ihrer Auswirkung
auf die vertikale Lohnstruktur des Unternehmens.

Für die folgende Aussage zur vertikalen Lohnstruktur eines Unternehmens
ist zunächst die Definition von Hierarchieleveln bzw. -ebenen sowie von sym-
metrischen Unternehmen notwendig. Die Definition von Hierarchieebenen
ist dabei an Gilles et al. (1992b) angelehnt:

D�������
� XII.4. Die Hierarchie S bestimmt eine Partition bzw. Lev-
eleinteilung L = (L0, .., LM) der Spielermenge N mit

• L0 = {i0} und
• Lk =

{
i ∈ N\

k−1⋃
u=0

Lu

∣∣∣∣S−1 (i) ⊆ Lk−1

}
, 1 ≤ k ≤ M, LM �= ∅ und

LM+1 = ∅.

Das Level LM ist die niedrigste Hierarchieebene des Unternehmens. Bei
dieser Definition von Hierarchieebenen ist der Abstand zum Vorgesetzten i0
entscheidend für die Zuordnung zu einem Level, sie kann daher als top-
down-Hierarchie bezeichnet werden. Eine andere, hier nicht verwendete
Definition für Hierarchieebenen, bestimmt die Levelzugehörigkeit an Hand
des Abstands zu den Beschäftigten ohne direkte Mitarbeiter (bottom-up-
Hierarchie) (Gilles et al. 1992b). Im Beispiel XII.1 führt die top-down-
Leveldefinition zur Leveleinteilung L0 = {1} , L1 = {2, 5} und L2 = {3, 4} .
Die Mitarbeiter 2 und 5 besitzen den gleichen Abstand zu Mitarbeiter 1, so
dass sie der gleichen Ebene zugeordnet werden. In der bottom-up-Leveldefinition
würde sich folgende Leveleinteilung ergeben: L0 = {1} , L1 = {2} und
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L2 = {3, 4, 5} ; die Mitarbeiter 3, 4 und 5 besitzen keine direkten Mitar-
beiter und sind deshalb der niedrigsten Ebene zugeordnet.

D�������
� XII.5. Ein Unternehmen wird als symmetrisch bezeichnet,
wenn

• Shi (N, v) =: Sh (N, v) für alle i ∈ N gilt,

• wi = w̄, 0 < w̄ < 1, für alle i ∈ N\ {i0} erfüllt ist sowie
• |S (i)| = s ≥ 1 für alle i ∈ N\LM eingehalten wird.

Dabei bezeichnet |S (i)| die Anzahl der direkten Mitarbeiter von i bzw.
seine Kontrollspanne. Diese ist in einem symmetrischen Unternehmen für
jeden Mitarbeiter, außer jenen auf dem niedrigsten Hierarchielevel, gleich
groß. Damit fallen beide Leveldefinitionen zusammen. Zudem müssen alle
Beschäftigten, bis auf i0, den gleichen Anteil ihrer Brutto-Auszahlungen an
ihren direkten Vorgesetzten abführen. Bei der Erstellung des Unternehmensergeb-
nisses sind die Mitarbeiter ferner symmetrisch. Es kann dann gezeigt wer-
den:

T �
��� XII.3. In einem symmetrischen Unternehmen mit monotoner
Koalitionsfunktion v und v (N) > 0 erhalten die Mitarbeiter in höheren

Hierarchieebenen eine bessere Entlohnung als jene in niedrigeren. Formal

kann demnach gezeigt werden, dass Hi (N, v,S, w) ≥ Hj (N, v,S, w) für alle
i ∈ Lk, j ∈ Lk+1, 0 ≤ k ≤M − 1, erfüllt ist.

Der Beweis dieses Theorems findet sich wiederum im Anhang B. Für
symmetrische Unternehmen mit monotoner Koalitionsfunktion kann somit
das Standardergebnis der Literatur, dass die Mitarbeiter auf höheren Ebe-
nen besser entlohnt werden als jene auf niedrigeren, auch mit dem H-
Entlohnungsschema repliziert werden.

6. Personalwirtschaftliche Implikationen: Allokation

Bisher wurde im Aufsatz eine feste Zuordnung der Mitarbeiter auf die
durch die Hierarchie geschaffenen Positionen angenommen. Im Folgenden
wird diese Annahme aufgehoben und die Allokation der Mitarbeiter auf die
verschiedenen Hierarchieebenen thematisiert. Hierfür muss zunächst eine
abstrakte hierarchische Struktur eingeführt werden, die ausschließlich die
Hierarchie und ihre Gewichte ohne die Zuordnung der Mitarbeiter zu den
Positionen beinhaltet. Mit P wird dabei die Menge aller Positionen beze-
ichnet. Die Funktion T legt die Beziehung zwischen den Positionen fest,
T : P → 2P . Dies geschieht in Analogie zur Funktion S, die die Beziehung
zwischen den Mitarbeitern festlegt. Die Funktion T erfüllt dabei die gle-
ichen Anforderungen wie die Funktion S (siehe Abschnitt 3.1). Es gilt also
beispielsweise, dass zu jeder Position, bis auf jene an der Spitze des Un-
ternehmens, o, genau eine vorgesetzte Position existiert,

∣∣T−1 (x)
∣∣ = 1 für
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alle x ∈ P\ {o}. Die Gewichte sind ebenfalls an die Positionen gebunden.
Der Vektor mit den positionsbezogenen Gewichten wird mit m bezeichnet
und ordnet jeder Position den relativen Anteil zu, den ein Mitarbeiter auf
dieser Position an den direkten Vorgesetzten abgeben muss, m : P → [0, 1] .

Dabei gilt in Analogie zum Gewichtsvektor w, dass das der Position o zuge-
ordnete Gewicht null beträgt, mo = 0.

D�������
� XII.6. Eine abstrakte hierarchische Struktur wird durch das
Tupel (P, T,m) beschrieben.

Neben der abstrakten hierarchischen Struktur existiert ein kooperatives
Spiel (N, v) . Die Verbindung zwischen beiden stellt die Besetzungsfunktion
β her. Diese bijektive Funktion ordnet die Mitarbeiter den einzelnen Posi-
tionen zu, β : N → P. Die Menge aller Zuordnungen wird mit B (T,N) beze-
ichnet. Zu jedem β gibt es die Hierarchie Sβ und den Gewichtsvektor wβ, die
wie folgt bestimmt werden. Für die Menge der direkten Beschäftigten von
Mitarbeiter i ∈ N unter der Zuordnung β ergibt sich Sβ (i) := β−1 (T (β (i))) .

Dabei bezeichnet β (i) zunächst die Position von i unter β.Mit T (β (i)) sind
dann die Positionen angesprochen, die der Position β (i) direkt unterstellt
sind. Der Ausdruck β−1 (T (β (i))) liefert schließlich die Menge der Mitar-
beiter, die diese Positionen einnehmen. Analog kann die durch β festgelegte
Menge der direkten und indirekten Mitarbeiter sowie die der direkten und
indirekten Vorgesetzten von Mitarbeiter i definiert werden.

Das Gewicht eines Mitarbeiters i ∈ N wird ermittelt über wβ
i := m (β (i)) .

Dabei bezeichnet β (i) wiederum die Position von i unter β und m (β (i))

somit das Gewicht der von i eingenommenen Position.
Auch für die abstrakte hierarchische Struktur lässt sich in Analogie zur

Definition XII.4 eine Leveleinteilung definieren.

D�������
� XII.7. Die Funktion T bestimmt eine Partition bzw. Lev-

eleinteilung LP =
(
LP0 , .., L

P
M

)
der Positionen P mit

• LP0 = {o} und
• LPk =

{
x ∈ P\

k−1⋃
u=0

LPu

∣∣∣∣T−1 (x) ⊆ LPk−1

}
, 1 ≤ k ≤M, LPM �= ∅ und

LPM+1 = ∅.

Aus der Leveldefinition für die Positionen und der Zuordnung β kann
wiederum die Leveleinteilung der Mitarbeiter gewonnen werden. Es gilt
dabei Lβk := β−1

(
LPk

)
.

Für die Aussage bezüglich der Allokation der Beschäftigten auf die einzel-
nen Positionen der Unternehmenshierarchie ist zudem eine weitere Symmetrie-
Definition erforderlich.
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D�������
� XII.8. Eine abstrakte hierarchische Struktur eines Unternehmens
wird als symmetrisch hinsichtlich ihrer Gewichte bezeichnet, wenn für alle

x ∈ LPk , mit k = 0, . . . ,M, mx =: mLPk
erfüllt ist.

Die Anforderungen sind somit geringer als bei der Definition symmetrischer
Unternehmen, bei denen zudem Symmetrie im Produktionsprozess, gleiche
Kontrollspannen sowie über alle Level konstante Gewichte w̄ gefordert wur-
den.

T �
��� XII.4. Sei ein Unternehmen mit symmetrischer abstrakter
hierarchischer Struktur (P, T,m) , mit 0 < mx < 1 für alle x ∈ P\ {o} ,
sowie dem Tupel (N, v) , mit |N | = |P | , gegeben. Mitarbeiter i0, welcher
bereits der Position o zugeordnet wurde, β−1 (o) = i0, entscheidet über die

weitere Ausgestaltung der Funktion β. Er wählt dabei jene Zuordnung βopt,

die seine Auszahlung maximiert:

βopt ∈ argmax
β∈B(T,N),β(o)=i0

Hi0

(
N, v,wβ,Sβ

)
.

Resultat ist eine Zuordnung der Mitarbeiter auf die verschiedenen Positio-

nen, so dass aus i ∈ Lβk und j ∈ Lβl , mit 1 ≤ k ≤ l ≤ M , Shi (N, v) ≥
Shj (N, v) folgt. Mitarbeiter i0 wird somit die produktivsten Mitarbeiter,

gemessen an ihren Shapley-Auszahlungen, in die ihm direkt unterstellte Ebene

zuordnen.

Der Beweis ist im Anhang B gegeben. Aus diesem Theorem folgt un-
mittelbar das nächste Korollar.

C
�
""��	 XII.1. Hat Mitarbeiter i0 die übrigen Beschäftigten entsprechend
ihrer Produktivität den einzelnen Ebenen zugeordnet, so hat kein Mitarbeiter

aus N\ {i0} einen Anreiz, in dem bei ihm beginnenden Teil der Hierarchie
die Zuordnung der Mitarbeiter zu den einzelnen Positionen abzuändern.

Auch unser Ansatz kann somit, ähnlich wie Calvo & Wellisz (1979),
Rosen (1982), Waldman (1984) und Qian (1994), eine Erklärung dafür liefern,
dass produktive Mitarbeiter in höhere Hierarchieebenen befördert werden.
Die Koalitionsfunktion, und somit auch das Gesamtergebnis des Unternehmens,
v (N) , bleibt durch diese Allokation allerdings unverändert.

7. Zusammenfassung

Im vorliegenden Aufsatz wurde mit Hilfe der kooperativen Spieltheorie
die hierarchische Struktur eines Unternehmens durch die Hierarchie S und
den Gewichtsvektor w abgebildet. Zusammen mit dem Wissen um die Spiel-
ermenge N und die Koalitionsfunktion v kann damit jedem Mitarbeiter des
Unternehmens eine Auszahlung bzw. Entlohnung zugeordnet werden. Diese
berücksichtigt zum einen die Leistung der Mitarbeiter, da in die Berechnung
der Entlohnung deren jeweilige Shapley-Auszahlung einfließt. Zum anderen
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findet die Hierarchie mit ihrer umverteilenden Wirkung bei der Festlegung
der Mitarbeiter-Entlohnung Berücksichtigung. Damit wird die Idee aufge-
griffen, dass Vorgesetzte am (Miss-)Erfolg ihrer Mitarbeiter partizipieren.

Es ist dabei nicht ohne weitere Annahmen sichergestellt, dass Vorgeset-
zte eine höhere Entlohnung erhalten als ihre direkten Mitarbeiter. Es kann
jedoch gezeigt werden, dass es für jedes Unternehmen, in dem kein Mitar-
beiter unproduktiv ist, ein einheitliches w̄, 0 < w̄ < 1, gibt, so dass die
Mitarbeiter in höheren Hierarchieebenen besser entlohnt werden als jene in
niedrigeren. Damit wird die Bedeutung der personalpolitischen Entschei-
dung über den Gewichtsvektor w für die vertikalen Lohndifferenzen des Un-
ternehmens hervorgehoben. Für einen Spezialfall, den des symmetrischen
Unternehmens, kann gezeigt werden, dass jeder Vorgesetzte unabhängig vom
gewählten Gewichtsvektor w̄, mit 0 < w̄ < 1, eine höhere Entlohnung erhält
als die ihm zugeordneten Mitarbeiter. Das Resultat der besseren Entlohnung
auf höheren Hierarchiestufen ist zugleich ein Ergebnis in den Modellen von
Calvo &Wellisz (1979), Rosen (1982), Waldman (1984) und Qian (1994), das
somit für den Spezialfall symmetrischer Unternehmen Bestätigung findet.

Des Weiteren kann der hier vorgestellte Ansatz eine Erklärung dafür
liefern, dass produktivere Mitarbeiter höheren Hierarchieebenen zugeordnet
werden. Diese Allokation liegt im Interesse des Mitarbeiters an der Spitze
des Unternehmens, i0. Ist dieser für die Zuordnung der übrigen Mitarbeiter
verantwortlich, so wird er die produktivsten von ihnen der ihm direkt unter-
stellten Hierarchieebene zuordnen. Auch hiermit werden die Ergebnisse der
Modelle von Calvo & Wellisz (1979), Rosen (1982), Waldman (1984) und
Qian (1994) repliziert.

In Bezug zum Aufsatz von van den Brink (2008) (in der Folge mit vdB
abgekürzt) kann festgestellt werden, dass kein Faktor α so existiert, dass
durch Multiplikation mit diesem die H-Auszahlungen aus den entsprechen-
den vdB-Auszahlungen gewonnen werden können. Beispielhaft kann zur
Verdeutlichung ein Unternehmen mit drei Beschäftigten, N = {1, 2, 3}, der
Hierarchie S mit S (1) = {2, 3} und S (2) = S (3) = ∅, dem Gewichtsvektor
w und der Koalitionsfunktion v betrachtet werden. Für den Fall, dass die
marginalen Beiträge gemäß dem Shapley-Lösungskonzept gewichtet werden,
erhält Mitarbeiter 2 die vdB-Auszahlung θSh2 (N, v,S) = 1

3 ·12 ·[v ({1, 2})− v ({1})]
+ 1
3 · [v (N)− v ({1, 3})] . Eine andere Gewichtung der marginalen Beiträge,

wie sie bei van den Brink (2008) möglich ist, ändert nichts am Umstand,
dass der Wert v ({2}) nicht in die Berechnung der vdB-Auszahlung von Mi-
tarbeiter 2 einfließt. Die H-Auszahlung für diesen Mitarbeiter bestimmt
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sich dagegen als

H2 (N, v,S, w) = (1−w2) ·
(
1

3
· v ({2}) + 1

6
[v ({1, 2})− v ({1})]

+
1

6
[v ({2, 3})− v ({3})] + 1

3
[v (N)− v ({1, 3})]

)
.

Wird nun die Koalitionsfunktion v geeignet verändert, in dem beispielsweise
v ({2}) variiert wird, so verändert sich die H-Auszahlung des Mitarbeiters
2, seine vdB-Auszahlung bleibt jedoch konstant, d.h. es gibt keinen kon-
stanten Faktor α, mit dem vor und nach der Variation von v ({2}) durch
Multiplikation aus der vdB-Auszahlung die H-Auszahlung von Mitarbeiter
2 bestimmt werden kann.

Ein Ergebnis des vdB-Aufsatzes, in dem ausschließlich die Mitarbeiter
auf der untersten Ebene gemäß bottom-up-Hierarchie produktiv sind, lautet,
dass θi (N, v,S) ≥ θj (N, v,S) für alle j ∈ S (i) gilt, sofern dem Spiel eine
monotone Koalitionsfunktion zu Grunde liegt. Hierbei wird θi verwendet,
um anzudeuten, dass die Gewichtung der marginalen Beiträge nicht unbe-
dingt der im Shapley-Lösungskonzept folgen muss. In dieser allgemeinen
Form gilt dies für den hier entwickelten Ansatz nicht, wie die Theoreme
XII.2 und XII.3 zeigen. Allerdings lassen sich auch für den Spezialfall,
dass ausschließlich die Beschäftigten des untersten Hierarchielevels produk-
tiv sind, Gewichte finden, die sicherstellen, dass Mitarbeiter in höheren
Ebenen besser entlohnt werden als jene in niedrigeren. Ist die dem Spiel
zu Grunde liegende Koalitionsfunktion zudem konvex, so resultiert im vdB-
Aufsatz eine obere Lohngrenze eines Vorgesetzten in Höhe der Lohnsumme
seiner direkten Mitarbeiter. Eine solch allgemeine Aussage lässt sich für das
H-Entlohnungsschema nicht treffen.

Für zukünftige Forschungsarbeit ergeben sich aus dem in diesem Auf-
satz vorgestellten Ansatz zwei Ausgangspunkte. Zum einen wurden bisher
die Auswirkungen der Hierarchie auf den Produktionsprozess nicht berück-
sichtigt; alle Mitarbeiter arbeiten symmetrisch zusammen. Allerdings ist
die Koordination der Mitarbeiter eine Funktion von Führungskräften, die in
einer Weiterentwicklung des H-Entlohnungsschemas berücksichtigt werden
sollte. Zum anderen wurde das vom Unternehmen bzw. einzelnen Koali-
tionen erwirtschaftete Ergebnis bisher nicht von der Hierarchie und dem
Gewichtsvektor beeinflusst. Somit ist es bisher nicht möglich, für Unternehmen,
die entsprechend dem H-Entlohnungsschema die Löhne der Mitarbeiter fes-
tlegen, eine optimale das Ergebnis maximierende Hierarchie zu bestimmen.
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Anhang A

Axiomatisierung beinhaltet zweierlei. Zum einen haben wir zu zeigen,
dass das H-Entlohnungsschema die in Satz XII.1 genannten Axiome er-
füllt. Zum anderen müssen wir beweisen, dass jedes Entlohnungsschema,
das diesen Axiomen gehorcht, bereits das H-Entlohnungsschema ist.

Wir beginnen mit der Überprüfung des Effizienz-Axioms

n∑

i=1

Hi (N, v,S, w) =
n∑

i=1

n∑

j=1

fi (S, w, j) · Shj (N, v) . (XII.5)

Es ist zu zeigen, dass
∑n

i=1 fi (S, w, j) = 1 für alle j ∈ N gilt. Für den Fall,
dass wj = 0 ist, folgt dies direkt aus Formelzeile XII.1; fi (S, w, j) ist genau
dann eins, wenn i = j gilt. Für i0 folgt demnach sofort

∑n
i=1 fi (S, w, i0) = 1,

da ausschließlich Mitarbeiter i0, auf Grund von w0 = 0, den Anteil eins
erhält, alle anderen Beschäftigten erhalten den Anteil null. Für i ∈ L1
resultiert für die Summe der Anteile an is Shapley-Auszahlung (siehe Gl.
XII.1)

∑

g∈T (i0,i)
[1−wg]

∏
l∈Ŝ(g), l∈T (i0,i)

wl

= [1−w0] ·wi + [1−wi] = 1.

Es folgt nun der Beweis mit Hilfe der Induktion. Angenommen
∑n

i=1 fi (S, w, j)
= 1 gilt für alle j ∈ Ld, d ≥ 1. Es wird jetzt ein r aus dem nächstniedrigeren
Level Ld+1 zusätzlich in den Pfad aufgenommen, dessen direkter Vorgeset-
zter in Ld der Beschäftige t ist, d.h. t = S−1 (r) . Es resultiert:

n∑

i=1

fi (S, w, r) =
∑

i∈T (i0,r)
fi (S, w, r)

=
∑

i∈T (i0,r)
[1−wi]

∏
l∈Ŝ(i), l∈T (i0,r)

wl

=
∑

i∈T (i0,j)
[1−wi]

∏
l∈Ŝ(i), l∈T (i0,r)

wl + [1−wr]
∏

l∈Ŝ(r), l∈T (i0,r)

wl

=
∑

i∈T (i0,j)
wr · [1−wi]

∏
l∈Ŝ(i), l∈T (i0,j)

wl + [1−wr]
∏

l∈Ŝ(r), l∈T (i0,r)

wl

= wr ·
n∑

i=1

fi (S, w, j) + [1−wr]
∏

l∈Ŝ(r), l∈T (i0,r)

wl

= wr · 1 + [1−wr] = 1.

Dies schließt den Beweis, dass
∑n

i=1 fi (S, w, j) = 1 gilt. Formelzeile XII.5
kann jetzt als

n∑

i=1

Hi (N, v,S, w) =
n∑

j=1

1 · Shj (N, v) .



208 XII. HIERARCHIES, WAGES, AND ALLOCATION

notiert werden. Da das Shapley-Lösungskonzept Effizienz erfüllt,
∑n

j=1 Shj (N, v)

= v (N) , weist auch das H-Entlohnungsschema diese Eigenschaft auf.
Die Additivitätseigenschaft überträgt sich ebenfalls vom Shapley-Lösungs-

konzept auf das H-Entlohnungsschema, wie bereits aus Gleichung XII.2 er-
sichtlich ist. Auf Grund der Tatsache, dass das Shapley-Lösungskonzept dem
Symmetrie-Axiom und demNullspieler-Axiom genügt undHi (N, v,S, w [N ]) =

Shi (N, v) für einen beliebigen Mitarbeiter i ∈ N gilt, sind durch das H-
Entlohnungsschema das schwache Symmetrie-Axiom und das schwache Nullspieler-
Axiom erfüllt.

Die Erfüllung des Unabhängigkeits-Axioms folgt direkt aus den Gle-
ichungen XII.1 und XII.2. Die Formelzeile XII.3 zeigt, dass H dem Brutto-
Netto-Axiom ebenfalls gerecht wird. Aus der Gleichung XII.4 folgt

Hi (N, v,S, w [{i} ∪ S (i)]) = Shi (N, v) = Hi (N, v,S, w [N ]) ,

d.h. das Isolations-Axiom. Unter Nutzung von Gleichung XII.4 resultiert
zudem

Hi (N, v,S, w [i])−Hi (N, v,S, w [i, j]) = wj ·Hj (N, v,S, w [j])

= Hj (N, v,S, w [j])−Hj (N, v,S, w)

für alle j ∈ S (i) , wobei bei der Umformung zur zweiten Zeile Gleichung
XII.3 genutzt wurde, d.h. dasH-Entlohnungsschema erfüllt das Abspaltungs-
Axiom. Somit ist bewiesen, dass alle genannten Axiome erfüllt werden.

Der zweite Teil der Axiomatisierung verlangt, dass bei Anwendung der
Axiome auf hierarchische Spiele (N, v,S, w) zur Ermittlung der Mitarbeiter-
Auszahlungen genau jene Entlohnung resultiert, die dasH-Entlohnungssche-
ma vorsieht.

Angenommen ein Entlohnungsschema ϕ erfüllt das Effizienz-Axiom, das
Additivitäts-Axiom, das schwache Nullspieler-Axiom, das schwache Symme-
trie-Axiom, das Brutto-Netto-Axiom, das Abspaltungs-Axiom, das Isolations-
Axiom und das Unabhängigkeits-Axiom. Mit den ersten vier Axiomen wird
für den Gewichtsvektor w [N ] die Shapley-Auszahlung axiomatisiert, d.h.
ϕi (N, v,S, w [N ]) = Shi (N, v) . Für die Brutto-Auszahlung eines Mitarbeit-
ers i auf der niedrigsten Hierarchieebene, S (i) = ∅, folgt dann

ϕi (N, v,S, w [i]) = ϕi (N, v,S, w [{i} ∪ S (i)])

Isolation
= ϕi (N, v,S, w [N ]) = Shi (N, v) ,

und damit für seine Netto-Auszahlung

ϕi (N, v,S, w)
Brutto-Netto

= (1−wi) · Shi (N, v) .
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Sei S (i) = {j1, j2, . . . , js} , so resultiert

ϕi (N, v,S, w [i])− ϕi (N, v,S, w [{i} ∪ S (i)])

=
s∑

ℓ=1

ϕi (N, v,S, w [{i} ∪ {j1, j2, . . . , jℓ−1}])

−ϕi (N, v,S, w [{i} ∪ {j1, j2, . . . , jℓ}])
Abspaltung

=
s∑

ℓ=1

ϕjℓ (N, v,S, w [{j1, j2, . . . , jℓ}])

−ϕjℓ (N, v,S, w [{j1, j2, . . . , jℓ−1}])
Unabhängigkeit

=
s∑

ℓ=1

ϕjℓ (N, v,S, w [jℓ])− ϕjℓ (N, v,S, w)

Brutto-Netto
=

∑

j∈S(i)
wj · ϕj (N, v,S, w [j]) .

Es wird die Differenz ermittelt, zwischen der Brutto-Auszahlung von Mi-
tarbeiter i und seiner Auszahlung, wenn zudem die Stärke der Verbindun-
gen zu seinen direkten Mitarbeitern auf null gesetzt sind. Dabei können die
Gewichte mit einem Schlag oder einzeln auf null reduziert werden (Übergang
Zeile 1 zu 2). Den Betrag, den i brutto verliert, erhalten seine direkten Mi-
tarbeiter jeweils netto hinzu (Zeile 2 zu 3). Dabei ist für einen einzelnen di-
rekten Mitarbeiter nur der „Moment“ relevant, wenn die eigene Verbindung
zum Vorgesetzten angetastet wird (Zeile 3 zu 4). Beim Übergang zur let-
zten Zeile wird dann mit Hilfe des Brutto-Netto-Axioms nochmals leicht
umformuliert.

Da

ϕi (N, v,S, w [{i} ∪ S (i)])
Isolation

= ϕi (N, v,S, w [N ]) = Shi (N, v)

gilt, resultiert für die Brutto-Auszahlung eines Mitarbeiters i

ϕi (N, v,S, w [i]) = Shi (N, v) +
∑

j∈S(i)
wj · ϕj (N, v,S, w [j]) .

Zusammen mit dem Brutto-Netto-Axiom ist H somit induktiv bestimmt,
d.h. ϕ ist eindeutig.

Anhang B

Beweis zu Theorem XII.2
Auf Grund der positiven Shapley-Auszahlungen und des Intervalls für

das einheitliche Gewicht w̄, 0 < w̄ < 1, für alle i ∈ N\ {i0} , resultiert
Hj (N, v,S, w̄) > 0 für alle j ∈ N . Für den Mitarbeiter i0 resultiert zudem
auf Grund der Gleichungen XII.3 und XII.4

Hi0 (N, v,S, w̄) = Shi0 (N, v) +
∑

j∈S(i0)

w̄

1− w̄
Hj (N, v,S, w̄) .
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Da Shi0 (N, v) > 0 gilt, resultiert Hi0 (N, v,S, w̄) > Hj (N, v,S, w̄) bereits
für den Fall, dass i0 nur einen direkten Mitarbeiter besitzt, j ∈ S (i0) , sobald
w̄ ≥ 1

2 erfüllt ist.
Für alle Mitarbeiter i ∈ N\ {i0} , mit S (i) �= ∅, folgt
Hi (N, v,S, w̄ [i]) = Shi (N, v) +

∑

j∈S(i)
w̄ ·Hj (N, v,S, w̄ [j]) (XII.6)

aus den Gleichungen XII.2 und XII.4. Es wird jetzt gezeigt, dass es für
jeden Mitarbeiter k ∈ S (i) ein wk < 1 so gibt, dass Hi (N, v,S, w̄ [i]) >

Hk (N, v,S, w̄ [k]) für alle w̄ ≥ wk erfüllt ist. Angenommen, dies gilt nicht.
Dann gibt es eine Folge von Gewichten (w̄n)n∈N , w̄n < 1, w̄n → 1 die zu

Hk (N, v,S, w̄n [k]) ≥ Hi (N, v,S, w̄n [i]) (XII.7)

führt. Wird diese Gleichung mit Gleichung XII.6 zusammengefügt so resul-
tiert

Hk (N, v,S, w̄n [k]) ≥ Shi (N, v) +
∑

j∈S(i)
w̄n ·Hj (N, v,S, w̄n [j])

und damit

(1− w̄n)·Hk (N, v,S, w̄n [k]) ≥ Shi (N, v)+
∑

j∈S(i)\{k}
w̄n ·Hj (N, v,S, w̄n [j]) .

Während die linke Seite der Gleichung für n → ∞ gegen null konvergiert
(Hk (N, v,S, w̄n [k]) ist auf Grund von Gleichung XII.2 endlich), konvergiert
die rechte Gleichungsseite gegen eine echt positive Zahl, d.h. einWiderspruch
konnte gezeigt werden. Wird nun w∗ := max

(
1
2 ,maxi∈N\{i0},k∈S(i)wk

)

gesetzt für alle Mitarbeiter i ∈ N\ {i0} und j ∈ S (i) , so ergibt sich

Hi (N, v,S, w̄) = (1− w̄) ·Hi (N, v,S, w̄ [i]) >

(1− w̄) ·Hj (N, v,S, w̄ [j]) = Hj (N, v,S, w̄)
für alle w∗ < w̄ < 1. Zusammen mit dem Ergebnis zu Mitarbeiter i0 schließt
dies den Beweis.
Beweis zu Theorem XII.3

Es wird allgemein ein Unternehmen mit M Ebenen angenommen, das
die geforderten Eigenschaften hinsichtlich der hierarchischen Struktur und
der Koalitionsfunktion erfüllt. In drei Schritten wird gezeigt,

• dass die Mitarbeiter der untersten Ebene weniger verdienen als jene
in der zweitniedrigsten,

• dass bei zwei beliebigen Ebenen unterhalb der höchsten, die Mitar-
beiter in der höheren besser entlohnt werden als diejenigen in der
niedrigeren und schließlich

• dass die (der) Mitarbeiter in höchsten Ebene eine bessere Ent-
lohnung erhält als ein beliebiger Mitarbeiter in der zweithöchsten
Ebene.
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Die Auszahlung für je einen Mitarbeiter auf der niedrigsten Ebene LM
und der zweitniedrigsten LM−1 bestimmt sich durch:

HM̄ (N, v,S, w̄) = (1− w̄) · Sh
HM−1 (N, v,S, w̄) = (1− w̄) ·

[
Sh + s · w̄ · Sh

]
.

Dabei bezeichnet HM̄ (N, v,S, w̄) die Entlohnung, die die Mitarbeiter im
Level LM erhalten, HM̄ (N, v,S, w̄) := Hi (N, v,S, w̄) für i ∈ LM . Es folgt
unmittelbar:

HM−1 (N, v,S, w̄)−HM̄ (N, v,S, w̄) = (1− w̄) · s · w̄ · Sh > 0.

Für den zweiten Teil des Beweises werden ausschließlich die Brutto-Aus-
zahlungen der Mitarbeiter verglichen. Da ein einheitliches w̄ und somit
auch (1− w̄) für alle Mitarbeiter existiert, können die Ergebnisse auf die
Netto-Entlohnungen übertragen werden. Der Beweis erfolgt durch Induk-
tion. Für alle Ebenen LM , LM−1, . . . , Lt, Lr wurde bereits gezeigt, dass
Hr̄ (N, v,S, w̄ [r̄]) > Ht̄ (N, v,S, w̄ [t̄]) gilt. Dabei istHr̄ (N, v,S, w̄ [r̄]) definiert
durch Hr̄ (N, v,S, w̄ [r̄]) := Hi (N, v,S, w̄ [i]) für i ∈ Lr. Wird nun eine
Ebene Ls mit s = r−1, s �= 0, betrachtet, so folgt für die Brutto-Auszahlung
der Mitarbeiter in Ls

Hs̄ (N, v,S, w̄ [s̄]) = Sh + s · w̄ ·Hr̄ (N, v,S, w̄ [r̄]) .

Der Vergleich mit der Brutto-Auszahlung der Ebene Lr ergibt:

Sh + s · w̄ ·Hr̄ (N, v,S, w̄ [r̄])−Hr̄ (N, v,S, w̄ [r̄])

= s · w̄ ·Hr̄ (N, v,S, w̄ [r̄]) + Sh−Hr̄ (N, v,S, w̄ [r̄])

= s · w̄ ·Hr̄ (N, v,S, w̄ [r̄])− s · w̄ ·Ht̄ (N, v,S, w̄ [t̄])

= s · w̄ · (Hr̄ (N, v,S, w̄ [r̄])−Ht̄ (N, v,S, w̄ [t̄]))︸ ︷︷ ︸
>0

> 0,

womit die Induktion geschlossen ist.
Es folgt nun im letzten Schritt der Vergleich der Entlohnung für den

Mitarbeiter auf der höchsten Ebene, L0, mit derjenigen auf der nächst-
niedrigeren. Aus dem zweiten Teil des Beweises folgt, dass Hi (N, v,S, w̄) >
Hj (N, v,S, w̄) für alle i ∈ Lk, j ∈ Lk+1, 1 ≤ k ≤ M − 1, erfüllt ist. Die
Netto-Auszahlung für i0 bestimmt sich durch:

H0̄ (N, v,S, w̄) = Sh + s · w̄ ·H1̄ (N, v,S, w̄ [1̄]) .

Diese Netto-Entlohnung wird jetzt mit der Brutto-Entlohnung eines Mitar-
beiters auf Ebene L1 verglichen. Sollte bereits die Netto-Entlohnung des
Mitarbeiters i0 höher liegen als der Brutto-Lohn seiner direkten Mitarbeiter
in Ebene L1, so gilt dies auch für deren Netto-Löhne, da diese durch Multip-
likation mit dem Faktor (1− w̄) < 1 aus deren Brutto-Entlohnung gewonnen
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werden:

H0̄ (N, v,S, w̄)−H1̄ (N, v,S, w̄ [1̄])

= Sh + s · w̄ ·H1̄ (N, v,S, w̄ [1̄])−H1̄ (N, v,S, w̄ [1̄])

= s · w̄ ·H1̄ (N, v,S, w̄ [1̄])− s · w̄ ·H2̄ (N, v,S, w̄ [2̄])

= s · w̄ · (H1̄ (N, v,S, w̄ [1̄])−H2̄ (N, v,S, w̄ [2̄]))︸ ︷︷ ︸
>0

> 0

und damit: H0̄ (N, v,S, w̄) > H1̄ (N, v,S, w̄ [1̄]) > H1̄ (N, v,S, w̄) .
Beweis zu Theorem XII.4
Der Beweis erfolgt über einen Widerspruch. Würde i0 eine Zuordnung

β̌ ∈ B (T,N) der übrigen Mitarbeiter so wählen, dass die Mitarbeiter i, j ∈
N, mit Shi (N, v) > Shj (N, v) , den Leveln wie folgt zugewiesen werden:

i ∈ Lβ̌k und j ∈ Lβ̌k−1, mit 2 ≤ k ≤ M, so gibt es ein β̂ ∈ B (T,N),
das die Entlohnung des Mitarbeiters i0 steigert. Es ist klar, dass hier die
Betrachtung der Ebenen k und k − 1 anstelle allgemein von Ebenen k und
l, l < k ausreicht. Diese Zuordnung β̂ legt β̂ (j) = β̌ (i) und β̂ (i) = β̌ (j)

fest, d.h. die Mitarbeiter i und j tauschen ihre Positionen. Alle übrigen
Mitarbeiter l ∈ N\ {i, j} werden unter beiden Zuordnungen den gleichen

Positionen zugewiesen, d.h. β̂
−1

(l) = β̌
−1

(l) .

Es wird nun die Differenz der Auszahlungen des Mitarbeiters i0 unter
beiden Zuordnungen bestimmt und gezeigt, dass die Auszahlung unter β̂
höher ist als unter β̌

Hi0

(
N, v,S β̌, wβ̌

)
−Hi0

(
N, v,S β̂, wβ̂

)

= fi0

(
S β̌, wβ̌, i

)
· Shi (N, v) + fi0

(
S β̌, wβ̌, j

)
· Shj (N, v)

−
[
fi0

(
S β̂, wβ̂, i

)
· Shi (N, v) + fi0

(
S β̂, wβ̂, j

)
· Shj (N, v)

]

= fi0

(
S β̌, wβ̌, i

)
· Shi (N, v) + fi0

(
S β̌, wβ̌, j

)
· Shj (N, v)

−
[
fi0

(
S β̌, wβ̌, j

)
· Shi (N, v) + fi0

(
S β̌, wβ̌ , i

)
· Shj (N, v)

]

= [Shi (N, v)− Shj (N, v)]︸ ︷︷ ︸
>0

·
[
fi0

(
S β̌, wβ̌, i

)
− fi0

(
S β̌, wβ̌, j

)]

︸ ︷︷ ︸
<0

< 0.

Der Umformung von der ersten zur zweiten Formelzeile liegt zu Grunde, dass
die Zahlungen, die i0 von allen anderen Mitarbeitern l ∈ N\ {i, j} erhält, un-
verändert sind, da diese in ihren Positionen verbleiben (siehe Gl. XII.1) und
zudem die Shapley-Auszahlungen aller Mitarbeiter nicht verändert werden.
Somit ist es ausreichend, den gesamten absoluten Betrag, den i0 von i und j
unter beiden Zuordnungen erhält, zu vergleichen. Beim Übergang zu näch-
sten Formelzeile wird berücksichtigt, dass gemäß der Gleichung XII.1, der
Leveldefinition XII.7 sowie der Annahme über die abstrakte Hierarchie (siehe
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Definition XII.8) gilt fi0

(
S β̂, wβ̂, i

)
= fi0

(
S β̌, wβ̌, j

)
, fi0

(
S β̂, wβ̂, j

)
=

fi0

(
S β̌, wβ̌, i

)
. In der letzten Formelzeile wird dann annahmegemäß Shi (N, v) >

Shj (N, v) verwendet. Zudem folgt aus Gleichung XII.1, der Leveldefinition
XII.7 sowie der Annahme über die abstrakte Hierarchie (siehe Definition

XII.8) fi0
(
S β̌, wβ̌, i

)
= fi0

(
S β̌, wβ̌, j

)
·wβ̌

i < fi0

(
S β̌, wβ̌, j

)
.

Mit Hilfe dieser Überlegungen wurde gezeigt, dass für zwei benachbarte
Ebenen gilt, dass i0 eine Zuordnung wählt, die den produktiveren Mitar-
beiter der höheren Ebenen zuordnet. Damit folgt schließlich, dass aus i ∈ Lβk
und j ∈ Lβl , mit 1 ≤ k ≤ · · · ≤ l ≤M , Shi (N, v) ≥ Shj (N, v) resultiert.

Extensions and exogenous payoffs





Part E

Extensions and exogenous payoffs



Methodogically, we approach two new ideas. First of all, we allow for the
possibility that players in a coalition do not contribute their maximum. In
chapter XIII, we have players who work part-time in one firm and the rest of
their time in another. Chapter XIV considers shirking civil servants who also
do not work as much as they could possibly do. Both cases necessitate an
extension of the coalition function that we introduce in the following chapter
XIII. In terms of application, this chapter gives a cooperative answer to the
question of how to determine the boundaries of the firm.

The second new idea refers to exogenous payments. We present two dif-
ferent values for exogenous payments which come together with interesting
applications. Chapter XIV deals with the boundaries of the civil service
in an economy while chapter XV considers a real-estate market and the
realtor’s pricing policy.



CHAPTER XIII

Firms and markets

1. Introduction

One of the central problems for economic theory concerns the boundaries
of the firms: What kind of economic activity is conducted through markets
and what kind is conducted through firms? The relevant literature goes back
to Ronald Coase (1937) (Nobel prize winner 1991) and has been pursued by
Oliver Williamson (1975) (Nobel prize winner 2009) and many others. In
this paper, we will try to apply cooperative game theory to the boundaries-
of-the-firm problem.

The basic idea of this paper is to model firms by way of an employment
relation between players. Every player has an endowment of 100% of his
time. He may choose to give away part of his time to other players. He may
then be termed a worker while the other player becomes an employer. A
player can be both a worker (who spends part of his time in another player’s
firm) and an employer (who uses other players’ time in his own firm). We
will formally introduce the employment relation in section 3.1. In section
3.2, we will work the employment relation into coalition functions. Here,
one can proceed via Owen’s multilinear extension defined in Owen (1972)
or via Lovasz’ minimum extension defined in Lovasz (1983). We will argue
that for our purposes, the minimum extension makes more sense.

It should have become obvious that we will make use of cooperative
game theory from the viewpoint of positive economics. It seems to us that
Pareto efficiency (as embodied in most solution concepts of cooperative game
theory) is troublesome from a positive perspective. After all, the microeco-
nomics of markets and firms teaches us a number of reasons why efficiency
might fail. Most of these reasons have to do with informational deficits of
one sort or another.

We will distinguish two types of inefficiencies, market inefficiency and
organizational inefficiency. We first turn to market inefficiency. In markets,
gains from trade may remain unexploited because the economic agents do
not know each other or do not trust each other. Principal-agent problems of
the hidden-information variety (lemons) contribute to this inefficiency, the
seminal papers being Akerlof (1970) and Spence (1973). Another source of
inefficiency is uncertainty about the reservation prices. If the prospective
seller’s reservation price is lower than the prospective buyer’s willingness to
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pay, the bargain may still fail because the seller takes the risk to demand a
relatively high ask price, and/or the buyer takes the risk to offer a relatively
small bid price as shown by Myerson & Satterthwaite (1983).

A special case of market inefficiency concerns the bargaining between
workers and employers. These bargaining processes define the employment
relation. For reasons of tractability, we will disregard this special type of
market inefficiency.

Within our cooperative-game-theory model, market inefficiencies (apart
from wage bargaining) are reflected by partitions on the player set. We
let chance decide which partition will form. For the components within
the stochastic partitions, we assume component efficiency (as do Aumann
and Drèze) which will in general violate overall efficiency. In contrast, the
Shapley value assumes the effective formation of the grand coalition (all
players together).

We model two kinds of organizational inefficiency. First, an entrepre-
neur who employs at least one worker has fixed costs of setting up the
appropriate organization. Second, organizational inefficiencies concern the
principal-agent problems of hidden actions (Holmstrom (1979) and Milgrom
& Roberts (1992)) and the team-production problems (Holmstrom (1982)).
Here, we simply assume that the time put to productive use in a firm is less
than the time given to the firm. I.e. if a worker is employed for five hours,
he is productive only four hours, say. We will address this inefficiency by
”team-production inefficiency”. Outside game theory, organizational theory
provides another justification for these costs. Crozier & Friedberg (1980,
47) address the ”difficulties men must overcome in order to form and main-
tain” an organization. Our fixed costs refer to the forming problem and the
team-production costs to the maintaining aspect.

This paper is not the first one to use cooperative game theory in order
to theorize about the boundaries of the firm. Hart & Moore (1990) propose
a model where players may or may not own crucial factors of production.
Players with ownership rights are called employers, players without, em-
ployees. Ownership rights feed into the incentives of players to undertake
specific human-capital investments. Hart and Moore’s paper can be seen
as a generalization of Williamson’s analysis, a generalization of considerable
scope as any reader of this beautiful paper will realize.

For Hart and Moore, an employer is defined by his ownership of assets.
Ownership of assets confers control over players not owning assets (employ-
ees). Intimately related to Hart and Moore’s approach is the work by Rajan
& Zingales (1998). These authors argue that access to resources rather than
allocation of ownership rights are crucial to our understanding of firms and
crucial to the incentives to specialize. Another important, but more dis-
tant work using the control of access is Rajan & Zingales (2001). While
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we find that these approaches yield important insights, we venture into a
more traditional direction and choose to model the employment relationship
directly. This approach, we argue, is closer to the intuitive understanding
of what employment entails.

Hart & Moore (1990, p. 1150) suggest that some nonhuman assets are

”an important ingredient of any theory of the firm. The
reason is that in the absence of any nonhuman assets, it is
unclear what authority or control means. Authority over
what? Control over what? Surely integration does not
give a boss direct control over workers’ human capital, in
the absence of slavery.”

While we think that Hart and Moore’s approach (using assets to define
employment) does make sense, their above argument goes to far. It seems
natural to us that bosses do indeed control their employees while the employ-
ees may have some leeway not to do as told (team-production inefficiency,
in our model). Still, employees are not slaves. After all, players can decide
to terminate an employment relationship. The way we model employment
is close to the view expressed by Batt (1929, p. 6) and endorsed by Coase
(1937):

”The master must have the right to control the servant’s
work ... . It is this right of control, of being entitled to tell
the servant when to work (within the hours of service) ...
and what work to do and how to do it (within the terms of
such service) which is the dominant characteristic in this
relation and marks off the servant from an independent
contractor ...”

While our agents are not slaves, we still do not model wage forma-
tion. Instead, we assume employment relations that maximize welfare. In
fact, this is precisely our method to endogenize employment relations. This
amounts to assuming that wage bargaining does not lead to labour mar-
ket inefficiencies. In this respect, our model is similar to that by Hart and
Moore. They do not address the problem of how agents bargain over assets
but look for control structures that maximize welfare, given that control
structures influence specific investments.

Fig. 1 presents a comparison of Hart and Moore’s model with ours.
While their model combines cooperative and noncooperative game theory,
we stay within the confines of cooperative game theory.

We now turn to a specific example. Assume a baker (B) and a chocolate
maker (C). In isolation, they produce and sell bread and chocolate, respec-
tively. Together, they produce and sell chocolate bread. The consumers like
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sequence: control                investment payoff
structure by agents

solution: welfare Nash Shapley
maximization equilibrium

sequence: employment  
relation

solution: welfare
maximization

Hart and Moore, 1990

this paper

F����� 1. Comparing Hart and Moore’s model with ours

chocolate bread a lot, hence the coalition function v is given by

v (B) = 80,

v (C) = 40,

v (B,C) = 200.

We would certainly like answers to the following questions:

• Will the two agents produce separately and buy or sell chocolate
or bread on the market?

• If a firm turns out to be optimal, will the baker employ the choco-
late maker or vice versa?

• Can an economic situation be imagined where both agents found
firms, i.e. where the baker employs the chocolate maker and the
chocolate maker employs the baker?

The paper is organized as follows. The next section presents coalition
functions and the two most famous extensions of coalition functions. We
will give an intuitive explanation for the Lovasz extension and argue that
it is better suited than the Owen extension for the purposes of this paper.
Section 3 presents a formal account of the employment relation and defines
a coalition function on the basis of this relation. It also defines welfare in
case of market and organizational inefficiencies. In section 4, the model is
then applied to any superadditive two-player game. Section 4 concludes the
paper.
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2. Extensions of coalition functions

Taking up the baker and chocolate maker example from the introduction,
we are interested in defining the worth the baker and the chocolate maker
can produce if they work together (in a firm, say). We assume that the
baker spends 1

2 of his time and the chocolate maker 1
3 of his time.

(
1
2 ,
1
3

)

is an example of a part-time coalition. Formally, a part-time coalition is a
function

N → [0, 1] .

Player i ∈ N gives part of his time si, 0 ≤ si ≤ 1, to some coalition. In case
of s ∈ {0, 1}N , we identify s with

K (s) := {i ∈ N : si = 1} .

D�������
� XIII.1. An extension of a coalition function v on N is a

function

vext : RN+ → R

obeying

vext (s) = v (K (s)) , s ∈ {0, 1}N .

Note that while part-time coalitions are vectors with components be-
tween 0 and 1, we have Rn+ := {x ∈ Rn : x ≥ 0} (rather than [0, 1]n) as the
extension’s domain (this is the usual way to define extensions). (By x ≥ 0,

we mean xi ≥ 0 for all i = 1, ..., n. )
Following Owen (1972), the so-called multilinear extension (MLE) is

defined by

vMLE (s) :=
∑

T∈2N\{∅}
dv (T ) ·

∏

i∈T
si (XIII.1)

while the Lovasz extension is given by

vℓ (s) :=
∑

T∈2N\{∅}
dv (T ) ·min

i∈T
si. (XIII.2)

In particular, we have

uMLE
T (s) :=

∏

i∈T
si, T ⊆ N,T �= ∅

and

uℓT (s) := min
i∈T

si, T ⊆ N,T �= ∅



222 XIII. FIRMS AND MARKETS

v extv
extension

coalition
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configuration
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F����� 2. A coalition function and its extension

E���
"� XIII.1. Assuming s2 ≤ s3 ≤ s4 without loss of generality and

using equation ?? and example ??, the apex game’s Lovasz extension is

hℓ (s) = − min
i∈{1,2,3}

si − min
i∈{1,2,4}

si − min
i∈{1,3,4}

si + min
i∈{2,3,4}

si

+ min
i∈{1,2}

si + min
i∈{1,3}

si + min
i∈{1,4}

si

=





−3s1 + s2 + 3s1, s1 ≤ s2 ≤ s3 ≤ s4
−2s2 − s1 + s2 + s2 + 2s1, s2 ≤ s1 ≤ s3 ≤ s4
−2s2 − s3 + s2 + s2 + s3 + s1, s2 ≤ s3 ≤ s1 ≤ s4
2s2 − s3 + s2 + s2 + s3 + s4, s2 ≤ s3 ≤ s4 ≤ s1

=





s2, s1 ≤ s2 ≤ s3 ≤ s4
s1, s2 ≤ s1 ≤ s3 ≤ s4
s1, s2 ≤ s3 ≤ s1 ≤ s4
s4, s2 ≤ s3 ≤ s4 ≤ s1

This result also makes intuitive sense. In case of s1 ≤ s2 ≤ s3 ≤ s4 (first

line) the maximal value mini∈{2,3,4} si is achieved if the three small players
cooperate. Player 1 cooperates with players 3 or 4 in the second line and with

player 4 in the third line and fourth line. In each case, the scarce player’s

size defines the worth.

Raus Anfang??
We will now introduce an alternative characterization of the Lovasz (or

minimum) extension. Let s be a vector from Rn+ and let x = (x1, ..., xk) ∈
Rk+, k ≤ n, be a strict ordering of s such that

{xj : j = 1, ..., k} = {si : i = 1, ..., n}
and

0 ≤ x1 < x2 < ... < xk.
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Also, let x0 := 0. Of course, we have strict inequality k < n if there are
players i, j ∈ N, i �= j, such that si = sj . We now define

Kj := {i ∈ N : si ≥ xj} , j = 1, ..., k

and

fs (K) :=

{
xj − xj−1, K = Kj for one j ∈ {1, ..., k}
0, otherwise

fs attributes xj − xj−1 to a coalition K if K consists of all players i with
si ≥ xj. Note Kj+1 ⊂ Kj for all j = 1, ..., k − 1. Also, K1 = N. By the
ordering of x, fs (K) ≥ 0 for all s ∈ Rn+ and all K ⊆ N .

According to Lovasz (1983) and Algaba, Bilbao, Fernandez & Jimenez
(2004), the Lovasz extension is given by

vmin (s) =
∑

T∈2N\{∅}
mv (T ) ·min

i∈T
si (XIII.3)

=
∑

T∈2N\{∅}
fs (T ) v (T ) (XIII.4)

and obeys the following properties:

• (p.i) vmin is positively homogeneous, i.e., vmin (λs) = λvmin (s) for
all λ ≥ 0.

• (p.ii) (v +w)min = vmin +wmin.

• (p.iii) (λv)min = λvmin for all λ ∈ R.
• (p.iv) v is supermodular iff vmin is concave.

Concavity of vmin means: For any α ∈ [0, 1] and any s, s′ ∈ Rn+, we have
αvmin (s) + (1− α) vmin

(
s′
)
≤ vmin

(
αs+ (1− α)

(
s′
))

Now, it is not difficult to show the following lemma:

L���� XIII.1. Let v be a (monotonic and non-trivial) coalition func-
tion. We obtain

• (c.i) s ≤ s′ ⇒ vmin (s) ≤ vmin (s′) for all s, s′ ∈ Rn+.
• (c.ii) If v is convex (supermodular), then

vmin
(
s+ s′

)
≥ vmin (s) + vmin

(
s′
)

for all s, s′ ∈ Rn+.
• (c.iii) If v is additive, then

vmin
(
s+ s′

)
= vmin (s) + vmin

(
s′
)

for all s, s′ ∈ Rn+.

For the proof of this lemma, see the appendix.
We now have two extension candidates, the multilinear extension and the

minimum extension. We would like to argue that properties (p.i) through
(p.iv) and (c.i) through (c.iii) are plausible enough and do not constitute a
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case against the minimum extension. In order to argue for the minimum and
against the multilinear extension, we reason as follows: The multilinear ex-
tension, vMLE, has a probabilistic interpretation (as noted by Owen (1972,
p. 64)): Inside a firm, the players work together only if their time sched-
ules happen to coincide. For the above part-time coalition

(
1
2 ,
1
3

)
, chocolate

bread will be produced for 12 · 13 time units, only. Of course, from an organi-
zational point of view, this interpretation can easily be criticized. After all,
the two agents could show up at the same time. Also, it may be possible
that the baker bakes his bread which is coated by chocolate later. Because of
these interpretational difficulties, we will work with the minimum extension
although it is less tractable.

The minimum extension, vℓ, allows a very different interpretation. In
case of

(
1
2 ,
1
3

)
chocolate bread will be produced for min

(
1
2 ,
1
3

)
time units.

That is, the baker and the chocolate maker’s time are perfect complements
in the production of chocolate bread. However, the baker has some time left,
1
2 −min

(
1
2 ,
1
3

)
, and will spend this time producing bread. Since chocolate

bread is more valuable than bread (or chocolate) it is efficient to allocate
min

(
1
2 ,
1
3

)
time units to chocolate-bread production and to use the remain-

der for bread.
In the general case,

vmin (s) =
∑

T∈2N\{∅}
fs (T ) v (T )

is constructed similarly. v (N) is to be multiplied by

fs (N) = f (K1) = x1 − x0 = x1 = min
i∈N

si.

Players j ∈ N who put all their time sj into the production of v (N)

(i.e. sj = mini∈N si) cannot contribute to coalitions K �= N . We have
J := {j ∈ N : sj = mini∈N si} and K2 = N\J. Given that the players from
J cannot contribute anymore, v (K2) is multiplied with the maximal time
budget possible:

f (K2) = x2 − x1 = min
i∈K2

si −min
i∈N

si.

For us, these interpretations show that the Lovasz extension makes intuitive
sense for our purposes.

Raus Ende eher nicht??

3. The model

3.1. The employment relation. Let us consider a quadratic n × n-
matrix:

A : N2 → [0, 1] .
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A (i, j) represents the time spent by agent j in agent i’s firm. A (i, ·) is
the i’s row in A and stands for the players employed by player i. A (·, j)
is the j’s column in A and represents the agents player j works for. We
normalize the time budgets of players to one (and obtain what is also called
a stochastic matrix, in the theory of random processes).

D�������
� XIII.2. A : N2 → [0, 1] is called an employment matrix or

an employment relation if
n∑

i=1

A (i, j) = 1 for any j = 1, ..., n

holds.

An example is provided by

A =




1 3
8 1

0 0 0

0 5
8 0




Here player 1 uses all his time in his own firm. This means that he is not
a worker. Since he employs players 2 and 3, with shares of time 3

8 and 1,
respectively, he is an employer. Player 2 spends his time in the firms of
player 1 (38) and player 3 (58) but he does not employ other players (the
second row contains three zeros). Player 3 is both a worker (he spends all
his time in player 1’s firm) and an employer (he uses 5

8 of player 2’s time).
If nobody employs any other, all players spend all their time in their own

one-man firm. Then, we have an employment relationA obeyingA (i, i) = 1,
i ∈ N. For three players, this relation is given by the unit matrix

A =




1 0 0

0 1 0

0 0 1




3.2. The employment coalition function. On the basis of the em-
ployment relation A, we define a part-time coalition

sAK :=

(
∑

i∈K
A (i, 1) , ...,

∑

i∈K
A (i, n)

)
.

Given an employment relation A and a coalition K, we sum the time spent
by agent 1 (agent 2, ...) in any of the firms owned by players from K. For
the unit matrix A, we have K =K

(
sAK

)
.

We can now construct the employment coalition function vAext by

vAext (K) := vext
(
sAK

)
.

An employment coalition function is a coalition function defined for any
given extension (Owen, or Lovasz extension) and for any given employment
relation. Take a coalition K. The players from K employ themselves and/or
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other players within and outside K. These players are summarized in the
part-time coalition sAK . The worth of K is then the worth of this part-time
coalition under the given extension.

Note that for A representing the market, we have vAext (K) = v (K) .

From now on, we will write v (s) instead of vℓ (s) and vA (K) instead of
vAmin (K) .

3.3. Inefficiency.
3.3.1. Organizational inefficiency. We now consider organizational inef-

ficiencies. Firms do not obtain efficient solutions for two different kinds of
organizational costs:

• quasi-fixed cost for employing players other then oneself,
• variable costs of surmounting team-production problems, principal-
agent problems and the like.

We build the fixed costs, f (f ≥ 0), and the team production costs, t
(0 ≤ t ≤ 1), into the employment coalition function as follows. For K ⊆ N ,
we define

sK : =


(1− t)

∑

i∈K,i�=1
A (i, 1) +A (1, 1) ·

{
1, 1 ∈ K

0, 1 /∈ K
,

..., (1− t)
∑

i∈K,i�=n
A (i, n) +A (n, n) ·

{
1, n ∈ K

0, n /∈ K




and

vA,t,f (K) := v
(
sK

)
− f ·

∑

i∈K

{
1, A (i, j) > 0 for some j ∈ N, j �= i

0, otherwise

First, players who employ at least one other player have to pay the fixed
costs of organization, f . Second, employing players other than oneself is re-
flected by the factor 1−t. A player j working for another player i contributes
effective time (1− t)A (i, j). Our measure of welfare that incorporates or-
ganizational inefficiencies is given by

vA,t,f (N) .
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In our two-player case, we obtain

vA,t,f (B) = v (B,C)︸ ︷︷ ︸
worth of

chocolate bread

min




A (B,B)︸ ︷︷ ︸
time spent by B
in his own firm

, (1− t)A (B,C)︸ ︷︷ ︸
effective time spent by C

in B’s firm




︸ ︷︷ ︸
effective time use of both players
for chocolate-bread production

+ v (B)︸ ︷︷ ︸
worth of
bread

[A (B,B)−min (A (B,B) , (1− t)A (B,C))]︸ ︷︷ ︸
time spent by B in his own firm

not used for chocolate-bread production

+ v (C)︸ ︷︷ ︸
worth of
chocolate




(1− t)

(
A (B,C)− 1

1− t
min (A (B,B) , (1− t)A (B,C))

)

︸ ︷︷ ︸
time spent by C in B’s firm

not used for chocolate-bread production




−f ·
{

1, A (B,C) > 0

0, otherwise

for the baker. The baker can, if he employs the chocolate maker (A (B,C) >

0), produce chocolate bread. The effective employment time by the choco-
late maker is (1− t)A (B,C) and the quantity of chocolate bread pro-
duced is min (A (B,B) , (1− t)A (B,C)). This term also describes the time
used for chocolate-bread production by the baker. He might have some
time left over (A (B,B)−min (A (B,B) , (1− t)A (B,C)) ≥ 0) to produce
bread. The chocolate maker’s effective time for chocolate bread production is
min (A (B,B) , (1− t)A (B,C)) and he uses up 1

1−t min (A (B,B) , (1− t)A (B,C))

of his employment time. Hence, A (B,C) minus this employment time can
be used for chocolate production which he can put to effective use only by
a factor of (1− t).

Before turning to the worth for both players, vA,t (B,C) , we define the
effective production time, TCB, spent by the players for production of choco-
late bread:
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TCB : = min




A (B,B)︸ ︷︷ ︸
time spent by B
in his own firm

+ (1− t)A (C,B)︸ ︷︷ ︸
effective time spent by B

in C’s firm

,

A (C,C)︸ ︷︷ ︸
time spent by C
in his own firm

+ (1− t)A (B,C)︸ ︷︷ ︸
effective time spent by C

in B’s firm




= min




1− tA (C,B)︸ ︷︷ ︸
time spoiled by B

in C’s firm

, 1− tA (B,C)︸ ︷︷ ︸
time spoiled by C

in B’s firm




Now, the baker is effective TCB time units contributing to chocolate bread.
He spoils tA (C,B) time units. Therefore, he will produce

TB = 1− tA (C,B)− TCB

units of bread. Similarly, the chocolate maker will produce

TC = 1− tA (B,C)− TCB



3. THE MODEL 229

units of chocolate. Summarizing, we obtain

vA,t,f (B,C) = v (B,C)︸ ︷︷ ︸
worth of

chocolate bread

TCB

+ v (B)︸ ︷︷ ︸
worth of

simple bread

TB︸︷︷︸
effective time spent by B
producing simple bread

+ v (C)︸ ︷︷ ︸
worth of
chocolate

TC︸︷︷︸
effective time spent by C

producing chocolate

−f ·





2, A (B,C) > 0 and A (C,B) > 0,

1, A (B,C) > 0 and A (C,B) = 0,

1, A (B,C) = 0 and A (C,B) > 0,

0, A (B,C) = 0 and A (C,B) = 0

3.3.2. Market inefficiency. We formalize market inefficiency through par-
titions on N . The underlying idea is this: If we have partition {N} , all
players know each other and trust each other. Therefore, they can realize
any gains from trade without employing each other. We will say that the
market, defined by A (i, i) = 1, i ∈ N , is efficient. Taking the other extreme,
partition {{1} , {2} , ..., {n}} indicates that players do not know or do not
trust each other. Then, the market is highly inefficient.

We will assume a probability distribution on the set of partitions on N .
Denoting this set by P and denoting the probability of a partition P by
prob (P) , we define welfare by

∑

P∈P
prob (P)

∑

C∈P
vA (C) .

For any given partition P, we sum the worths vA (C) where C is a component
in P.

It is certainly helpful to have a one-parameter measure for inefficiency.
We will now construct such a measure. Inspired by the rank-order formula-
tion of the Shapley value, we consider a rank order

ρ = (ρ1, ρ2, ..., ρn) .

A coalition K is called cohesive in ρ, if K =
{
ρl, ..., ρj−1, ρj

}
for some

l and j, 1 ≤ l ≤ j ≤ n. In order to split vectors ρ into subvectors, we
introduce vectors (b0, b1, ..., bn) ∈ {0, 1}n+1 obeying b0 = bn = 1. If bj
(j = 1, ..., n− 1) is equal to 1, we say that there is a break after player ρj.
b0 = 1 (bn = 1) signifies a ”break” before player ρ1 (after player ρn). A
cohesive coalition K =

{
ρl, ..., ρj−1, ρj

}
is called effective if bl−1 = 1 = bj
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and bl = ... = bj−1 = 0. For every ρ, a vector (b1, ..., bn−1) specifies a
partition of the players,

P := {C1, ..., Cm} ,
into effective coalitions.

We assume a constant probability p for the bj (j = 1, ..., n − 1) being
equal to 0. As shown in Wiese (2005a) and in the appendix (section 8), P ′s
probability under p, prob (P, p) , is given by

prob (P, p) = 1

n!
·
m∏

j=1

zj ! ·m! · (1− p)m−1 · pn−m

where zj denotes the cardinality of Cj , j = 1, ...,m.
For example, for two and three players we obtain

prob ({{1, 2}} , p) = p,

prob ({{1} , {2}} , p) = 1− p

and

prob ({{1, 2, 3}} , p) =
1

6
· 6 · 1 · 1 · p2 = p2,

prob ({{1} , {2, 3}} , p) =
1

6
· 2 · 2 · (1− p) · p =

2

3
(1− p) p,

prob ({{1} , {2} , {3}} , p) =
1

6
· 1 · 6 · (1− p)2 · 1 = (1− p)2 .

In general, the higher p, the more likely components with many players.
Thus, p is a measure of the market’s efficiency.

3.3.3. Putting market and organizational ineffiencies together. In the
obvious manner, we can now define a welfare measure that takes both market
and organizational inefficiencies into account:

π :=
∑

P∈P
prob (P)

∑

C∈P
vA,t,f (C) .

If A represents the market, we obtain

π =
∑

P∈P
prob (P)

∑

C∈P
v (C)

{
≤ v (N) , v superadditive,
= v (N) , v additive.

For general employment relations and for additive (inessential) coalition
functions, we have

π =
∑

P∈P
prob (P)

∑

C∈P

(
∑

i∈C
v ({i}) · sCi − f ·

∑

i∈C

{
1, A (i, j) > 0 for some j ∈ N, j �= i

0, otherwise

)

=
∑

P∈P
prob (P)

∑

i∈N
v ({i}) · sCi − f ·

∑

i∈N

{
1, A (i, j) > 0 for some j ∈ N, j �= i

0, otherwise
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If we have only two players (baker and chocolate maker), we obtain

π = prob ({{B} , {C}})
[
vA,t,f (B) + vA,t,f (C)

]

+prob ({{B,C}}) vA,t,f (B,C) .

3.4. Welfare maximization. We assume that employers and workers
will agree on wages that exploit all welfare potential while organizational
and market inefficiencies persist. That is, we look for

argmax
A

∑

P∈P
prob (P)

∑

C∈P
vA,t,f (C) .

4. The two-player case

We now consider a generalization of the baker-chocolate maker game
presented in the introduction which is also a special case of the general
setup developed in sections ?? and 3. We keep on denoting the players by
B and C. The coalition function is assumed to obey superadditivity:

u := v (B,C)− v (B)− v (C) ≥ 0.

Without loss of generality, we assume v (B) ≥ v (C). By way of tedious
calculations (supported by Mathematica), we arrive at the following results:

P�


����
� XIII.1. In the two player case without fixed costs of orga-
nization (f = 0), we get the following results:

• Total cross employment (A (B,C) = 1 = A (C,B)) is never the

unique best outcome.

• If v is inessential (i.e. u = 0), the market outcome (A (B,B) = 1,

A (B,C) = 0) is the unique best solution for t > 0, and v (C) > 0.

• If the market is efficient (i.e., p = 1), the market outcome (A (B,B) =

1, A (B,C) = 0) is the unique best solution for t > 0, and one of

the following conditions:

— v (C) > 0,

— u > 0.

• If there are no team-production inefficiencies (t = 0), and if both

p < 1 and u > 0 hold, the set of best solutions is the continuum

defined by

A (B,B) = A (B,C) .

• If we have both market and team-production efficiency (i.e., p = 1

and t = 0), every employment matrix is optimal.

• If we have both team-production efficiency (i.e. t = 0) and an

inessential game (i.e., u = 0), every employment matrix is optimal.

• If v is essential (i.e. u > 0) and we have some market and team-

production inefficiency (i.e., p < 1 and t > 0), we need to distin-

guish two cases. Either, we have v (B,C) ≤ 2v (B) . Then (see fig.
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p

t
1

1
( ) ( )

t
u

BvCBv −− ,
1

 market outcome 

baker employs 
chocolate maker 

( )
( ) ( )BvCBv

Cv

−
−

,
1

F����� 3. Market or firm

3), the market is the unique optimal outcome for sufficiently high

values of p and t. Otherwise, the baker employs the chocolate maker

(note that u > 0 and v (B,C) ≤ 2v (B) imply v (B) > v (C)). If,

however, we have v (B,C) > 2v (B) , fig. 4 applies. In that case,

partial cross-employment at A (B,B) = 1−t
2−t and A (B,C) = 1

2−t
is the unique optimal outcome for p < 1 − tv(B,C)

u(2−t) and 0 < t <

1 − v(B)
v(B,C)−v(B) . Otherwise, fig. 4 looks like fig. 3. However, in

case of v (B) = v (C) , both A (B,B) = 1 and A (B,C) = 1, and

A (B,B) = 0 and A (B,C) = 0, are optimal.

Some comments are in order. The middle point in fig. 4 is given by
A (B,B) = 1−t

2−t and A (B,C) = 1
2−t . For this employment matrix, we have

• A (B,B)︸ ︷︷ ︸
time spent by B
in his own firm

= (1− t)A (B,C)︸ ︷︷ ︸
effective time spent by C

in B’s firm

,

• 1−A (B,C)︸ ︷︷ ︸
time spent by C
in his own firm

= (1− t) (1−A (B,B))︸ ︷︷ ︸
effective time spent by B

in C’s firm

and

• A (B,B)︸ ︷︷ ︸
time spent by B
in his own firm

+ (1− t) (1−A (B,B))︸ ︷︷ ︸
effective time spent by B

in C’s firm
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p

t
1

1
( ) ( )

t
u

BvCBv −− ,
1

( )
( ) t

tu

CBv

−
−

2

,
1

 market outcome 

baker employs 
chocolate maker 

( )
( ) ( )BvCBv

Bv

−
−

,
1

middle
point 

( )
( ) ( )BvCBv

Cv

−
−

,
1( )CBvu

u

,

2

+

F����� 4

= 1−A (B,C)︸ ︷︷ ︸
time spent by C
in his own firm

+ (1− t)A (B,C)︸ ︷︷ ︸
effective time spent by C

in B’s firm

so that neither bread nor chocolate, but chocolate bread only, is pro-
duced by

• the one-player coalition B,
• the one-player coalition C, and
• the grand coalition {B,C} .

Therefore, this employment matrix is as good as the one given byA (B,B) =

1 and A (B,C) = 1 if there are not team-production inefficiencies and no
fixed costs of organization.

If we have both market and organizational inefficiencies the middle point
may also be optimal. The reason is this: For the production of chocolate
bread one needs both the baker’s and the chocolate maker’s effective time.
By concentrating production in the baker’s firm (A (B,B) = 1 = A (B,C))
there is a relative shortage of chocolate production time. Similarly, if the
chocolate maker employs the baker, there is a shortage of baking time. The
middle point avoids these shortages thus ensuring that chocolate bread is
produced.

5. Conclusions

Cooperative game theory has its obvious weaknesses. It does not model
actions, beliefs, or preferences. Instead, it directly heads for payoffs. On the
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positive side, cooperative game theory can be useful for situations where an
analysis by way of noncooperative game theory would need many specific
assumptions. This is one of the reasons why bargaining problems are more
often dealt with in terms of cooperative than noncooperative game theory.
We like to argue that cooperative game theory will see more interesting
applications in the near future. In this paper, we presented one area where
cooperative game theory can be put to use. It would indeed by a huge
challenge to seriously attack the boundaries-of-the-firm problem without
elements from cooperative game theory.

While we got concrete results for the two-player case only, it is surely
tempting to conjecture about the general case:

• More productive agents tend to employ less productive agents rather
than the other way around.
Because of organizational inefficiencies, the opportunity costs of
employing a productive agent are higher than the opportunity costs
of employing an unproductive one.

• Cross employment can happen, but tends towards zero under repli-
cation.
In a large economy, the fixed costs of cross employment can be
avoided by still guaranteeing a fit of workers.

• Part-time employment can happen, but tends towards zero under
replication.
Part-time employment results in high fixed costs of employment.
Again, in a large economy this effect should be eliminated.

• Inessential agents will not be employed.
There is no reason to incur costs for agents without productive use.

• If v is inessential and there are some organizational inefficiencies,
the market outcome obtains.
For an inessential v, cooperation yields no benefits.

In this paper, we interpret A as an employment matrix. More generally,
one could consider A an availability relation. For example, a woman can
avail of her spouse and young children can avail of their parents. Slaves do
not avail of themselves. A love relation may said to exist if both partners
avail of each other. Thus, the availability approach may be useful in very
different applications.

Finally, while we did not actually use the Shapley value or other com-
mon concepts from cooperative game theory, it is obvious how to define
their availability variants. For example, given a coalition function v and an
availability relation A, the Shapley-availability value should be defined by
ϕ (v,A) := ϕ

(
vA

)
.
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6. Appendix

7. Proof of the lemma

For the proof of corollary (c.i) we consider a vector s ∈ Rn+ and its strict
ordering x,

0 ≤ x1 < x2 < ... < xk.

We now consider one player i and distinguish the four cases:

• {xj} = {si}, j = 1, ..., k − 1,

• {xk} = {si} ,
• {xj} = {si, ...}, j = 1, ..., k − 1, and
• {xk} = {si, ...} .

The transition from s to s′ can be constructed as a finite sequence of
steps involving some players i ∈ N. In the first case, we consider s′′i obeying
si < s′′i := min (xj+1, s

′
i) . (If such an s′′i does not exist, we are done with

player i.) Also, we let s′′j = sj , j �= i. We then have a vector s′′ > s.
vmin (s

′′) ≥ vmin (s) can now be shown by applying definition XIII.4. In
order to compare vmin (s′′) and vmin (s), we can restrict attention to v (Kj)

and v (Kj+1). By monotonicity of v we have

v (Kj+1) ≤ v (Kj)

and the proof is now affected by showing

v (Kj)
(
s′′i − xj−1

)
+ v (Kj+1)

(
xj+1 − s′′i

)

= v (Kj) (si − xj−1) + v (Kj+1) (xj+1 − si)

+ [v (Kj)− v (Kj+1)]
(
s′′i − si

)

≥ v (Kj) (si − xj−1) + v (Kj+1) (xj+1 − si) .

The other cases can be treated in a similar fashion. At each step, we get an
increase in vmin (s

′′) until we arrive at s′.
In order to show (c.ii), we consider a convex coalition function v and

s, s′ ∈ Rn+. We obtain

vmin
(
s+ s′

)

= 2vmin

(
1

2
s+

1

2
s′
)

(positive homogeneity, p.i)

≥ 2

(
1

2
vmin (s) +

1

2
vmin

(
s′
))

(convexity of v, p.iv)

= vmin (s) + vmin
(
s′
)
(positive homogeneity, p.i).
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Finally, if v is additive, have

vmin
(
s+ s′

)
=

∑

T∈2N\{∅}
mv (T ) ·min

i∈T

(
si + s′i

)

=
∑

i∈N
v ({i}) ·

(
si + s′i

)

=
∑

i∈N
v ({i}) · si +

∑

i∈N
v ({i}) · s′i

=
∑

T∈2N\{∅}
mv (T ) ·min

i∈T
si +

∑

T∈2N\{∅}
mv (T ) ·min

i∈T
s′i

= vmin (s) + vmin
(
s′
)
.

8. The probability of a given partition

The probability of
P := {C1, ..., Cm}

to be made up of effective coalitions is equal to

prob (P, p)

=
1

n!
z1! · ... · zm!m!pz1−1 · (1− p) · pz2−1 · (1− p) · ... · pzm−1−1 · (1− p) · pzm−1.

zj! is the number of permutations of the players in Cj , m! is the number
of permutations of the coalitions C1, ..., Cm. Therefore

z1! · ... · zm!m!

n!
is the probability that ρ fromR partitionsN into cohesive coalitionsC1, ..., Cm.
For the Cj to be effective, we need m − 1 breaks between the coalitions
(probability (1− p)m−1) and no breaks within coalitions (probability pzj−1

for coaliton Cj).
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9. Topics and literature

The main topics in this chapter are

• production set
• production function
• no-free-lunch property

•
We recommend the textbook by Wiese (2005c).

10. Solutions

Exercise VIII.3
For the first partition, we obtain P (2) = {2} , P ({2, 3}) = {{2} , {3, 4}} ,

P ({2}) = {{2}} and P (N\ {2, 3}) = {{1} , {3, 4}}, the second partition
yields P (2) = {2, 3} , P ({2, 3}) = {{2, 3}} , P ({2}) = {{2, 3}} andP (N\ {2, 3}) =
{{1} , {4}}. P ({2, 3}) , P ({2}) and P (N\ {2, 3}) are subsets of the parti-
tions and partitions in their own right, albeit of different sets.
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11. Further exercises without solutions



CHAPTER XIV

The Size of Government

1. Introduction

Most economies are mixed economies, with a private sector and a pub-
lic sector. There are many reasons, good ones and bad ones, for the use
of civil servants working in the public sector. Arguably, judges and police-
men should be civil servants with no profit interest attached to their duties.
However, in most economies, public servants are also employed in sectors
alongside, or instead, of private firms (e.g., in education, transport, energy,
and water supply) although exclusively private activity may well be more
efficient. In general, the services provided by the public sector benefit some
private actors more than others while all of them pay taxes which, by def-
inition, do not need to be in line with the benefit obtained. Thus, private
actors can be expected to disagree on the optimal extent of the public sec-
tor. Of course, the very same disagreement pertains to cash redistributions
(social welfare, tax exemptions etc.).

The very influential paper by Meltzer & Richard (1981, p. 916) discusses
a rational theory of the size of government where

• voters know that governmental redistribution or services have to
be paid for by taxes (now or in the future),

• the public-good argument for publicly provided services is neglected.

The median voter in Meltzer & Richard’s (1981) approach determines the
size of government in his own interest. Indeed, the rent-seeking approach
to the size-of-government question has also been pursued in the empirical
papers by Mueller & Murrell (1986) and Becker & Mulligan (2003). This
paper also explores the possibility that the institution of a public sector is
a rent-seeking device. We show that civil servants may be employed even if
they are less productive than private-sector employees. Our main question
concerns the extension of the public sector, or, differently put: Are there
limits to government?

To the best of our knowledge, this paper is the first to use cooperative
game theory to elucidate the boundaries of the public sector. In particular,
we consider a game in coalition-function form (the economy) and a group
C of agents (the civil servants). We assume that these agents obtain a
prespecified payoff. The other agents — the private sector — have to pay these

239
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payoffs but can also benefit from the services rendered by the C-group. We
call this the pay-and-use setup.

Our model has two parts. First, we axiomatize a value for a given set
of civil servants and given payments π to these agents. The tuple (C, π) is
called the public-service vector. In particular, we modify the most famous
concept of cooperative game theory, the Shapley value so as to incorporate
(C,π). This is a somewhat complicated endeavor because we also want to
allow for "lazy" civil servants.

In the second part, we prefix a noncooperative game to the pay-and-
use Shapley value. Mixing cooperative and noncooperative games in this
manner has been dubbed biform games by Brandenburger & Stuart (2007)
(who use the core rather than the Shapley value). In our game, the players
determine the public-service vector. An equilibrium public-service vector
(C∗, π∗) obeys several conditions. First, in the spirit of Tiebout’s (1956)
voting by feet, every (private or public) agent is free to go abroad if he
prefers. Second, there is a majority of agents that prefer (C∗, π∗) over a
purely private economy. Third, every civil servant has a salary not below
the payoff he would get in the private sector (or abroad).

We introduce private-sector and mixed-sector coalition functions in sec-
tion 2 and show how to incorporate lazy civil servants in section 3. The
pay-and-use value is axiomaized in section 4. This concludes the first part
of the paper. We then endogenize the public-service vectors. Section 5 is
devoted to the definition of a suitable equilibrium concept and section 6
works out a simple example. Section 4 concludes the paper.

2. Private-sector and mixed-economy coalition functions

In this section, we assume that the civil servants work as hard as the
private agents. A TU game (N, v) is our model of an economy which can be
enriched by a public sector:

D�������
� XIV.1. An economy with a public sector is a tuple (N, v,C, π)
where

• v ∈ VN is a TU game (the economy),
• C is a proper subset of N , and

• π = (πc)c∈C is a vector specifying an exogenous payoff for every
member of C.

(C,π) is called the public-service vector.

The reason for C � N is that a purely-public economy is hard to imagine.
In our setting, the payments for the civil servants are exogenous and budget
balancing requires the existence of a private sector.
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On the basis of (N, v,C, π), we define a mixed-economy game where both
private and public officials are present, and an equivalent private-sector game
where the players consist of private agents, only.

D�������
� XIV.2. Given an economy with a public sector (N, v, C, π),
a mixed-economy game is a TU game

(
N,mv,C,π

)
given by mv,C,π : 2N → R

and

mv,C,π (K) =

{
(v (K ∪C)− πC) +

∑
c∈K∩C πc, K\C �= ∅∑

c∈K∩C πc, K\C = ∅

=

{
v (K ∪C)−∑

c∈C\K πc, K\C �= ∅∑
c∈K πc, K\C = ∅

A private-sector game is a TU game
(
N\C, pv,C,π

)
given by pv,C,π : 2N\C →

R and

pv,C,π (S) =

{
v (S ∪C)− πC , S �= ∅
0, S = ∅

Both the mixed-economy coalition function and the private-sector coalition
function incorporate the idea that the private sector (the players from N\C)
has to pay πC while at the same time benefitting from the C-players. As a
matter of consistency, we have

mv,C,π (K) = pv,C,π (K\C) +
∑

c∈K∩C
πc,K ⊆ N (XIV.1)

and C = ∅ implies mv,C,π = pv,C,π = v.

p is close to coalition functions defined in Aumann & Drèze (1974) and
in Peleg (1986). The most important difference is that these authors assume
that players from S can choose the players from C they want to use and
pay for. However, since all people have to pay taxes irrespective of whether
they do actually use the services, we opted for the above, simpler, coalition
functions.

Our aim is to define a Shapley-like value for economies with a public
sector. Before introducing inefficient civil servants and before dealing with
the axiomatization of the new value, we offer a lemma whose proof which
can be found in the appendix. The lemma confirms that pv,C,π and mv,C,π

are basically equivalent.

L���� XIV.1. Every player c ∈ C is a dummy player in
(
N,mv,C,π

)
.

For all players i ∈ N\C, we have Shi
(
mv,C,π

)
= Shi

(
pv,C,π

)
.

See the appendix for a proof.

3. Introducing inefficiency

Taking up the civil-service example, we are interested in defining the
worth of a coalition consisting of private and public agents. We assume that
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public agents are less hard working than private ones. Let t, 0 ≤ t ≤ 1,

be the work effort exercised by a typical civil servant who belongs to the
coalition under consideration. Formally, a mixed workforce is a function

s : N → [0, 1]

obeying s (i) ∈ {0, 1} for all i /∈ C and s (i) ∈ {0, t} for all i ∈ C. Private or
public agents that do not belong to the coalition at hand obey s (i) = 0. We
now apply the extensions known from chapter XIII. We remind the reader
of the multi-linear extension which is defined by

uMLE
T (s) :=

∏

i∈T
si, T ⊆ N,T �= ∅

for unanimity games uT and

vMLE (s) :=
∑

T∈2N\{∅}
hv (T ) ·

∏

i∈T
si

for any games v ∈ VN .
Thus, for usual coalitions, where s ∈ {0, 1}N can be identified withK (s),

the multilinear extension of vMLE coincides with v. When effort levels are
between 0 and 1, the multilinear extension, vMLE, has a probabilistic inter-
pretation (as noted by Owen (1972, p. 64)). For example, two productive
players in the unanimity game u{1,2} with T = N = {1, 2} and s =

(
1
2 ,
1
3

)

can produce 1
2 · 13 , only.

We now extend the definitions from section 2 to take care of the efficiency
parameter t :

D�������
� XIV.3. An economy with lazy public servants is a tuple
(N, v,C, π, t) where (N, v,C, π) is an economy with a public sector and t is

the efficiency parameter for the civil servants obeying 0 ≤ t ≤ 1.

D�������
� XIV.4. Given an economy with lazy public servants (N, v,C, π, t) ,
a private-sector game is a TU game

(
N\C, pv,C,π,t

)
given by pv,C,π,t : 2N\C →

R and

pv,C,π,t (S) =

{ ∑
T∈2S∪C\{∅} hv (T ) t

|C∩T | − πC , S �= ∅
0, S = ∅

The mixed mixed-economy coalition function is obtained by the obvious ap-

plication of eq. XIV.1.

Again, the proof of the next lemma can be found in the appendix.

L���� XIV.2. For γ ∈ R, we have
pγuT ,C,π,t (N\C) = γt|C∩T | − πC . (XIV.2)

For any game v, the marginal contribution of a null player i /∈ C is

MCS
i

(
pv,C,π,t

)
=

{ ∑
T∈2C\{∅} hv (T ) · t|C∩T | − πC , S = ∅

0, S �= ∅
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4. The pay-and-use value: definition and axiomatization

A ps-value (public-service value) ϕ assigns a payoff vector to every econ-
omy with lazy public servants (N, v, C, π, t) , ϕ (N, v, C, π, t) ∈ Rn. Values
ϕ may obey the following axioms (or families of axioms):

Axiom X (exogenous payments): For all i ∈ C, we have

ϕi (N, v,C, π, t) = πi.

Axiom N (Null player): For any player i ∈ N\C that is a null player
in (N, v) ,

ϕi (N, v,C, π, t) =

vMLE


 t, ..., t︸ ︷︷ ︸

civil servants

, 0, ..., 0︸ ︷︷ ︸
private agents


− πC

|N\C| .

Axiom E (efficiency): We have

ϕN (N, v,C, π, t) = v (N)

Axiom S (symmetry): For all symmetric players i, j ∈ N\C,

ϕi (N, v, C, π, t) = ϕj (N, v,C, π, t) .

Axiom A (additivity): For any coalition functions v′, v′′ ∈ VN , any
payments π′, π′′ ∈ R|C| and any player i from N,

ϕi
(
N, v′ + v′′, C, π′ + π′′, t

)
= ϕi

(
N, v′, C, π′, t

)
+ ϕi

(
N, v′′, C, π′′, t

)
.

Axioms E, S, and N for C = ∅ are the efficiency, symmetry, and null-
player axioms due to Shapley. A null player is better off under N than under
the usual null-player axiom if the C-players’ worth is higher than their ag-
gregate fixed payment. Axiom X imposes the exogenous payments π for the
players in C. Note that the additivity axiom adds both the coalition func-
tions and the civil-service payments on the left-hand side of the equation.

We now provide the axiomatization of our PU -value; the proof can be
found in the appendix.

T �
��� XIV.1. There exists one and only one ps-value that satisfies
the axioms X, N, E, S, and A. It is called PU-value and is given by

PUi (N, v,C, π, t) =

{
πi, i ∈ C

Shi
(
N\C, pv,C,π,t

)
, i /∈ C

An interpretation in terms of rank orders can be given. Consider the
private-sector game

(
N\C, pv,C,π

)
. The players from C are gathered in a

room. They are able to produce v (C) but demand payment πC =
∑

c∈C πc.
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Now, the players from N\C enter the room, one after the other. The first
player j from N\C to join the C-players obtains the marginal contribution

pv,C,π,t (j)− 0 = vMLE


 t, ..., t︸ ︷︷ ︸

civil servants

, 0, ..., 0︸ ︷︷ ︸
private agents


 .

He pays the civil servants. The following players, all from N\C, obtain the
marginal contributions with respect to vMLE (the πC-term always cancels).
Since every private agent has the same chance of being the first to enter, the
"tax" payable by each private-sector player is equitable and equal to πC

|N\C| .

L���� XIV.3. Let (N, v, C, π, t) be an economy. For every i ∈ N\C
and every c ∈ C, we have

∂
PUi (N, v,C, π, t)

∂πc
=

1

|N\C| .

5. Suggesting public-service vectors: a noncooperative game

The PU -value rests on a given public-service vector which we are now to
endogenize. Basically, we employ three conditions. First, every civil servant
is free to join the private sector; this is the no-slavery condition. Second, an
equilibrium public-service vector has to survive a majority test. Third, all
agents are free to emigrate and earn a foreign reservation payoff. Of course,
we cannot "allow" all private agents to emigrate:

D�������
� XIV.5. The tuple
(
N, v, (ri)i∈N

)
is called an economy (with

emigration) where ri ∈ R is the foreign reservation payoff for agent i ∈ N.

An outcome for an economy is a tuple (C∗, π∗, E∗) where (C∗, π∗) is a public-
service vector and E∗ � N\C∗ the set of emigrants.

In rough terms, we define a five-stage game:

• Nature picks an agenda setter ı̂ from the set N with equal chance
1
n for each player.

• The chosen player ı̂ suggests a public-service vector (C, π) .
• All agents i ∈ N consider to emigrate or to stay, e (i) ∈ {s, g} with
s for "stay", i.e., not emigrate and g for "go", i.e., emigrate. Let
E := {i ∈ N : e (i) = g} . In case of C = ∅, E∩C �= ∅, or E = N\C
the game is over and C∗ := ∅ (together with any π∗) and E∗ := E

the outcome.
• If C �= ∅ and E � N\C (this last condition is equivalent to E∩C =

∅ and E �= N\C), all agents i ∈ N\E cast a vote, yes or no, with
respect to (C,π) , a (i) ∈ {yes, no} . If more than 50% vote "yes",
the proposal (C,π) is adopted, otherwise, the game is over and
C∗ := ∅ (together with any π∗) and E∗ := E is the outcome.
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• If C �= ∅, E � N\C, and more than 50% of the players from N\E
have voted "yes", the agents from C decide whether or not to ac-

cept, p (c) ∈ {acc, dec} .The outcome is C∗ :=

{
C, p (c) = acc for all i ∈ C

∅, otherwise
together with π∗ := π and E∗ := E.

If several players are to move within a stage, they decide simultaneously.
We assume that an agenda setter will propose a public-service vector (C,π)
such that

• no prospective civil servant emigrates,
• more than 50% of the non-emigrants vote "yes", and
• no prospective civil servant declines.

We also assume that indifferent agents say "yes" and "accept" at stages 4,
and 5, respectively. Also, the emigration decisions follow the suggestion of
the proposer unless the agents strictly prefer otherwise. An agenda setter
proposes C = ∅ unless a set of civil servants C �= ∅ exists which is strictly
better for him. If an agenda setter is indifferent between several public-
service vectors with C �= ∅ surviving stages 3, 4 and 5, he chooses any of
these with equal probability.

Our definition of an equilibrium is somewhat similar to the ones found
in principal-agent theory. The proposer chooses an outcome subject to cer-
tain constraints. Along with the public-service vector (C∗, π∗) the principal
chooses the emigrating agents E∗ (in case of (C∗, π∗) , with C∗ �= ∅) and E∅

(in case of C∗ = ∅).

D�������
� XIV.6. Let
(
N, v, (ri)i∈N

)
be an economy and let ı̂ ∈ N be

the proposer chosen at stage 1.
(
E∗, C∗, π∗, E∅∗

)
constitutes an equilibrium

if this vector is from

arg max
(E,C,π,E∅),
C�N\E

PUı̂

(
N\E, v|N\E , C, π

)

subject to the consistency requirement C∗ = ∅ ⇒ E∗ = E∅∗ and subject to

(1) the strict-preference constraint S:

C∗ �= ∅ and ı̂ /∈ E∗

⇒ PUı̂

(
N\E∗, v|N\E∗ , C∗, π∗

)
>

{
PUı̂

(
N\E∅∗, v|N\E∅∗ , ∅, ·

)
, ı̂ /∈ E∅∗

ri, ı̂ ∈ E∅∗

(2) the emigration constraints E:

i /∈ E∗ ⇒ PUi
(
N\E∗, v|N\E∗ , C∗, π∗

)
≥ ri and

i ∈ E∗ ⇒ PUi
(
(N\E∗)∪{i} , v|(N\E∗)∪{i} , C∗, π∗

)
≤ ri
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and

i /∈ E∅∗ ⇒ PUi
(
N\E∅∗, v|N\E∅∗ , ∅, ·

)
≥ ri and

i ∈ E∅∗ ⇒ PUi
((

N\E∅∗
)
∪{i} , v|(N\E∅∗)∪{i} , ∅, ·

)
≤ ri

(3) the majority constraint M: For all i ∈ N\E∗, we have

a (i) =

{
yes, PUi

(
N\E∗, v|N\E∗ , C∗, π∗

)
≥ PUi

(
N\E∗, v|N\E∗ , ∅, ·

)

no, otherwise

together with

|{i ∈ N\E∗ : a (i) = yes}| > |{i ∈ N\E∗ : a (i) = no}| ,

(4) the civil-service participation constraint P: For every c ∈ C∗, we
obtain c �= E∗ and

πc ≥ PUc
(
N\E∗, v|N\E∗ , ∅, ·

)
.

Note that constaints M and P rest on a comparison with PUc
(
N\E∗, v|N\E∗ , ∅, ·

)
.

This is a reflection of the sequence given above where the emigration decision
precedes the voting and participation decions.

6. A simple three-player example

6.1. Payoffs. We consider N = {1, 2, 3} , the unanimity game u{1,2}
with the two productive players 1 and 2. If no player emigrates, we need to
distinguish seven cases:

• A: no civil servants:

PU
(
{1, 2, 3} , u{1,2}, ∅, π, t

)
=

(
1

2
,
1

2
, 0

)
.

• B: productive player 1 is civil servant:

PU
(
{1, 2, 3} , u{1,2}, {1} , π, t

)
=

(
π1, t−

π1
2
,−π1

2

)
.

• C: productive player 2 is civil servant:

PU
(
{1, 2, 3} , u{1,2}, {2} , π, t

)
=

(
t− π2

2
, π2,−

π2
2

)
.

• D: unproductive player 3 is civil servant:

PU
(
{1, 2, 3} , u{1,2}, {3} , π, t

)
=

(
1

2
− π3

2
,
1

2
− π3

2
, π3

)
.

• E: two productive players 1 and 2 are civil servants:

PU
(
{1, 2, 3} , u{1,2}, {1, 2} , π, t

)
=

(
π1, π2, t

2 − π1 − π2
)
.

• F: productive player 1 and unproductive player 3 are civil servants:

PU
(
{1, 2, 3} , u{1,2}, {1, 3} , π, t

)
= (π1, t− π1 − π3, π3) .
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• G: productive player 2 and unproductive player 3 are civil servants:

PU
(
{1, 2, 3} , u{1,2}, {2, 3} , π, t

)
= (t− π2 − π3, π2, , π3) .

Note

PU
(
{1, 2} , u{1,2}

∣∣
{1,2} , ∅, π, t

)
=

(
1

2
,
1

2

)
,

PU
(
{1, 3} , u{1,2}

∣∣
{1,3} , ∅, π, t

)
= (0, 0) , and

PU
(
{i} , u{1,2}

∣∣
{i} , ∅, π, t

)
= 0.

6.2. A special case. To show the workings of our model, we report
some results in a special case:

L���� XIV.4. Assume that player 1 is the agenda setter (proposer)

and let r1 = 1
6 , r2 = 7

12 , and r3 = −1
3 be the foreign reservation payoffs.

Then, we obtain E∅∗ = {1, 2} as the only emigration set fulfilling constraint
E∅. Depending on the efficiency parameter t, we obtain the best proposals
given by table 1 or figure 1 (where the numbers on the axes are correct in an

ordinal sense, only).

parameter t proposal
(
E∗, C∗, π∗, E∅∗

)
payoff

t < 19
24 ({1, 2} , ∅, ·, {1, 2}) r1 =

1
6

19
24 ≤ t < 7

8

(
∅, {2} , 712 , {1, 2}

)
t− 7

24
7
8 ≤ t < 11

12

(
∅, {1} , 2t− 7

6 , {1, 2}
)

2t− 7
6

11
12 ≤ t <

√
11
12

(
∅, {1} , 23 , {1, 2}

)
2
3√

11
12 ≤ t ≤ 1

(
∅, {1, 2} ,

(
π∗1 = t2 − 1

4 , π
∗
2 =

7
12

)
, {1, 2}

)
t2 − 1

4

Table 1: Best proposals and maximal proposer payoffs

Figure 1: Best proposals and maximal proposer payoffs

The proof of this lemma is given in the appendix. For t ≤ 19
24 (public

servants are very or somewhat inefficient), all the productive members of
the economy emigrate, leaving the economy in a desperate state.

Note, also, the discontinuity in the proposer’s payoff at t = 19
24 . For

t-values below this treshold, the proposer’s payoff drops to the foreign reser-
vation payoff 1

6 . This is due to the time structure of the model. For small
t-values the proposer cannot guarantee himself a payoff of at least 1

2 . Of
course, given his low foreign reservation payoff 1

6 < 1
2 , he would be happy

to accept less than 1
2 at the proposing stage. However, at the voting stage,

the emigration decision has already been made and voter 1 (the former pro-
poser) rejects any offer of less than 1/2. In a subgame-perfect equilibrium,
the proposer cannot bind himself as a voter or as a prospective civil servant.
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t

servants

 civil

2 and 1

 Agents

10
24

19
8
7

12
11

12
11

servant

 civil

1Agent 

servant

 civil

1Agent 

servant

 civil

2Agent 

emigrate

2 and 1

Agents

payoff

s1'agent 

4

3

3
2

12

7

2

1

6

1








 −
3

1
,

12

7
,

6

1
  payoffs nreservatio foreign setter, agenda 1 Agent

F����� 1

The proof of the lemma also shows that the proposer overcomes the ma-
jority constraint with the help of player 2. Therefore, if no player emigrates
(at stage 3), player 1 and 2 expect a payoff of at least 1

2 .

In the t-interval defined by 19
24 ≤ t < 7

8 , player 1 proposes player 2 as
the civil servant who is to obtain a payment (at least) equal to his foreign
reservation payoff of 7

12 . The taxes are borne equally by players 1 and 3 so

that null player 3 obtains −π2
2 = −

7
12
2 = − 7

24 > −1
3 = r3. Player 1 obtains

t− π2
2 = t− 7

24 .

For 78 ≤ t <
√

11
12 , player 1 proposes himself as a civil servant who obtains

payoff π1. By player 3’s emigration constraint, we have −π1
2 ≥ r3 and hence

π1 ≤ 2
3 . Indeed, π1 = 2

3 is the payoff achievable for 11
12 ≤ t <

√
11
12 . In the

other subinterval (78 ≤ t < 11
12), player 2’s emigration constraint t− π1

2 ≥ r2
(which is equivalent to π1 ≤ 2t− 7

6) is binding.

In the last interval, given by
√

11
12 ≤ t ≤ 1, player 1 proposes both

himself and player 2 as civil servants. The inefficiency resulting from two
civil servants with overall product t2 rather than just one civil servant with
product t (if there is no civil servant, we see both players 1 and 2 emigrate)
is less severe for high t-values. Player 1 can fix both π1 and π2. Respecting
the two emigration constraints, the payments have to obey π2 ≥ 7

12 and
t2− π1 − π2 ≥ −1

3 . Therefore, player 1 can propose π1 = t2− 1
4 for himself.
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7. Conclusions

Microeconomic analysis of the limits of government, the limits of the
firm or other economic institutions is well established. This paper is part
of an ongoing research program where similar analyses are done by way of
cooperative game theory. The size-of-government question is a companion
problem to the famous boundaries-of-the-firm question posed by Ronald
Coase (1937): What kind of economic activity is conducted through markets
and what kind is conducted through firms? Wiese (2005b) is an attempt to
approach that question with cooperative means.

The discussion of our special case makes clear that the model bears out
meaningful and interpretable results. A major drawback of the analysis
(as done so far) is, of course, that there are no general results. Also, the
sequence of events in our non-cooperative model is up to criticism. After
all, it is responsible for the inability of the proposer to commit himself to
voting for his own proposal. Alternatively, the emigration decisions could
be the last to be made, after voting and after the civil servants participation
decision. However, in that case, the voters may vote for a constellation that
is partly or totally made obsolete by the emigration decisions to follow. For
this reason, we opted for the sequence as presented in the paper.

Finally, our model suffers from a basic asymmetry. While the agents are
free to emigrate, immigration has no role to play. Indeed, in order to close
the model with respect to immigration, we would need to build a total model
comprising a home and a foreign country. The methodology presented in
this paper gives a clear indication of how this can be achieved.
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8. Appendix

Proof of lemma XIV.1
Note that c ∈ C implies S\C = (S\c) \C and S ∪ C = (S\c) ∪ C. For

any S ⊆ N with c ∈ C ∩ S we have

MCS
c

(
mv,C,π

)

= mv,C,π (S)−mv,C,π (S\c)

=

{
v (S ∪C)−∑

d∈C\S πd, S\C �= ∅∑
d∈S πd, S\C = ∅

−
{

v ((S\c) ∪C)−∑
d∈C\(S\c) πd, (S\c) \C �= ∅∑

d∈(S\c) πd, (S\c) \C = ∅

=

{
v (S ∪C)−∑

d∈C\S πd, S\C �= ∅∑
d∈S πd, S\C = ∅

−
{

v (S ∪C)−∑
d∈C\(S\c) πd, S\C �= ∅∑

d∈S\c πd, S\C = ∅
= πc

so that c is a dummy player in
(
N,mv,C,π

)
.

Let i be from N\C. Then

Shi
(
mv,C,π

)

=
1

n!

∑

ρ∈RO(N)
MC

Ki(ρ)
i

(
mv,C,π

)
(definition Shapley value)

=
1

n!

∑

ρ∈RO(N)

[
mv,C,π (Ki (ρ))−mv,C,π (Ki (ρ) \i)

]
(definition marginal contribution)

=
1

n!

∑

ρ∈RO(N)


pv,C,π (Ki (ρ) \C) +

∑

c∈Ki(ρ)∩C
πc −


pv,C,π ((Ki (ρ) \i) \C) +

∑

c∈(Ki(ρ)\i)∩C
πc







(equation XIV.1)

=
1

n!

∑

ρ∈RO(N)

[
pv,C,π (Ki (ρ) \C)− pv,C,π ((Ki (ρ) \i) \C)

]
(i /∈ C)

=
1

n!

n!

(n− |C|)!
∑

ρ∈RO(N\C)

[
pv,C,π (Ki (ρ) \C)− pv,C,π ((Ki (ρ) \i) \C)

]
(*)

=
1

(n− |C|)!
∑

ρ∈RO(N\C)

[
pv,C,π (Ki (ρ))− pv,C,π (Ki (ρ) \i)

]
(Ki (ρ) \C = Ki (ρ) )

=
1

(n− |C|)!
∑

ρ∈RO(N\C)
MC

Ki(ρ)
i

(
pv,C,π

)
(definition marginal contribution)

= Shi
(
pv,C,π

)
(definition Shapley value)
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where the main step, at (*), consists of putting together all those rank orders
from ρ ∈ RO (N) that leave the order of the players from N\C intact. We
have n!

(n−|C|)! such orders.



252 XIV. THE SIZE OF GOVERNMENT

Proof of lemma XIV.2
For i /∈ S, we find

∑

T∈2S∪i∪C\{∅},
i∈T

hv (T ) · t|C∩T |

=
∑

T∈2S∪i∪C\{∅},
i∈T

∑

K∈2T \{∅}
(−1)|T |−|K| v (K) · t|C∩T |

=
∑

T∈2S∪i∪C\{∅},
i∈T

∑

K∈2T \{∅},
i/∈K

[
(−1)|T |−|K| v (K) + (−1)|T |−|K∪{i}| v (K∪{i})

]

︸ ︷︷ ︸
0

· t|C∩T |

= 0.

Therefore, S �= ∅ with i /∈ S implies

pv,C,π,t (S∪i)− pv,C,π,t (S)

=
∑

T∈2S∪i∪C\{∅}
hv (T ) · t|C∩T | −

∑

T∈2S∪C\{∅}
hv (T ) · t|C∩T |

=
∑

T∈2S∪i∪C\{∅},
i∈T

hv (T ) · t|C∩T | +
∑

T∈2S∪i∪C\{∅},
i/∈T

hv (T ) · t|C∩T | −
∑

T∈2S∪C\{∅}
hv (T ) · t|C∩T |

=
∑

T∈2S∪i∪C\{∅},
i∈T

hv (T ) · t|C∩T |

= 0

while S = ∅ leads to

pv,C,π,t (i)− pv,C,π,t (∅)
=

∑

T∈2i∪C\{∅}
hv (T ) · t|C∩T | − πC

=
∑

T∈2i∪C\{∅},
i∈T

hv (T ) · t|C∩T | +
∑

T∈2i∪C\{∅},
i/∈T

hv (T ) · t|C∩T | − πC

=
∑

T∈2i∪C\{∅},
i/∈T

hv (T ) · t|C∩T | − πC

=
∑

T∈2C\{∅}
hv (T ) · t|C∩T | − πC .
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Proof of theorem XIV.1
We follow the proof outlined by Aumann (1989, pp. 30). In order to

show uniqueness, let ϕ be any ps-value satisfying the axioms mentioned in
the theorem. The reader is reminded of two facts concerning the unanimity
games uT , T �= ∅, T ⊆ N. First, they form a basis of the vector space
VN . Eq. ?? shows that the Harsanyi dividends are the coefficients. Second,
players from N\T are null players in γuT , γ ∈ R. Hence, for any γ ∈ R, any
T ⊆ N, T �= ∅, any C �= N and any πT ∈ R|C|, we find

γt|C∩T | = pγuT ,C,π
T ,t (N\C) + πTC (eq. XIV.2)

= ϕN
(
N, γuT , C, π

T , t
)
(axiom E)

=
∑

i∈C
ϕi

(
N,γuT , C, π

T , t
)
+

∑

i∈T\C
ϕi

(
N, γuT , C, π

T , t
)

+
∑

i∈N\(T∪C)
ϕi

(
N, γuT , C, π

T , t
)

= πTC +
∑

i∈T\C
ϕi

(
N,γuT , C, π

T , t
)

+
∑

i∈N\(T∪C)

∑
T∈2C\{∅} hv (T ) · t|C∩T | − πC

|N\C| (axioms X, N)

Axiom S now implies

ϕi
(
N, γuT , C, π

T , t
)
=





πTi , i ∈ C

γt|C∩T |−πTC−
∑

i∈N\(T∪C)

∑
T∈2C\{∅}

hv(T )·t
|C∩T |−πC

|N\C|

|T\C| , i ∈ T\C
∑

T∈2C\{∅}
hv(T )·t|C∩T |−πC
|N\C| , i ∈ N\ (T∪C)

Letting

πT :=

{
π, T = N

0, otherwise

and using ??, axiom A yields

ϕi (N, v,C, π, t) = ϕi


N,

∑

T∈2N\{∅}
hv (T )uT , C, π

T , t




=
∑

T∈2N\{∅}\N
ϕi (N,hv (T )uT , C, 0, t) + ϕi (N,γuN , C, π, t)

Thus, the axioms determine the payoffs.
It is not difficult to show that the PU -value satisfies all the axioms.

Axiom X is obviously fulfilled. Axiom N follows from lemma XIV.2 and the
fact that every player i ∈ N\C has a chance of 1 over |N\C| of being "the
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first player to enter". Efficiency follows from

∑

i∈N
PUi (N, v,C, π, t) =

∑

i∈C
PUi (N, v, C, π, t) +

∑

i∈N\C
PUi (N, v,C, π, t)

= πC +
∑

i∈N\C
Shi

(
pv,C,π,t

)
(definition of PU)

= πC + pv,C,π,t (N\C) (efficiency of Shapley value)

=
∑

T∈2N\{∅}
hv (T ) t

|C∩T | (definition of pv,C,π,t)

= vMLE


 t, ..., t︸ ︷︷ ︸

civil servants

, 1, ..., 1︸ ︷︷ ︸
private agents


 .

Axiom S is true for PU because the payments for players outside C are not
affected by PU.

We now turn to axiom A. Additivity obviously holds for i ∈ C. Assume
i /∈ C. Consider any coalition functions v′, v′′ ∈ VN and any payments
π′, π′′ ∈ R|C|. Then, additivity follows from the additivity of the Harsanyi
dividend (eq. ??):

PUi
(
N, v′ + v′′, C, π′ + π′′, t

)

= Shi
(
N\C, pv′+v′′,C,π′+π′′,t

)

=
1

(n− |C|)!




∑

ρ∈RO(N\C),
Ki(ρ)\i�=∅

[
pv

′+v′′,C,π′+π′′,t (Ki (ρ))− pv
′+v′′,C,π′+π′′,t (Ki (ρ) \i)

]

+
∑

ρ∈RO(N\C),
Ki(ρ)\i=∅

[
pv

′+v′′,C,π′+π′′,t (Ki (ρ))− pv
′+v′′,C,π′+π′′,t (Ki (ρ) \i)

]



=
1

(n− |C|)!




∑

ρ∈RO(N\C),
Ki(ρ)\i�=∅


 ∑

T∈2Ki(ρ)∪C\{∅}
hv′+v′′ (T ) t

|C∩T | − π′C − π′′C

−


 ∑

T∈2Ki(ρ)\i∪C\{∅}
hv′+v′′ (T ) t

|C∩T | − π′C − π′′C







+
∑

ρ∈RO(N\C),
Ki(ρ)\i=∅


 ∑

T∈2{i}∪C\{∅}
hv′+v′′ (T ) t

|C∩T | − π′C − π′′C − 0






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=
1

(n− |C|)!




∑

ρ∈RO(N\C),
Ki(ρ)\i�=∅


 ∑

T∈2Ki(ρ)∪C\{∅}
hv′ (T ) t

|C∩T | − π′C

−


 ∑

T∈2Ki(ρ)\i∪C\{∅}
hv′ (T ) t

|C∩T | − π′C







+
∑

ρ∈RO(N\C),
Ki(ρ)\i=∅


 ∑

T∈2{i}∪C\{∅}
hv′ (T ) t

|C∩T | − π′C − 0




+
∑

ρ∈RO(N\C),
Ki(ρ)\i�=∅


 ∑

T∈2Ki(ρ)∪C\{∅}
hv′′ (T ) t

|C∩T | − π′′C −


 ∑

T∈2Ki(ρ)\i∪C\{∅}
hv′′ (T ) t

|C∩T | − π′′C







+
∑

ρ∈RO(N\C),
Ki(ρ)\i=∅


 ∑

T∈2{i}∪C\{∅}
hv′′ (T ) t

|C∩T | − π′′C − 0







= Shi

(
N\C, pv′,C,π′,t

)
+ Shi

(
N\C, pv′′,C,π′′,t

)

= PUi
(
N, v′, C, π′, t

)
+ PUi

(
N, v′′, C, π′′, t

)
(definition of PU)

Thus, the PU -value fulfills all the axioms mentioned in the theorem and is
the only value to do so.
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Proof of lemma XIV.4
For E∗ = ∅, tables A1 and A2 help to find the equilibria. In the left-

most column of both tables, we see the proposal made by 1 together with
the payoffs in terms of π. The status quo A is not listed. If another pro-
posal is successful, it needs to fulfill the constraints S (strict preference),
E (emigration), M (majority), and P (civil-service participation). Player 1
now needs to check which of these proposals (if any) is best. Tables A1 and
A2 report the constraints depending on whether player 1 enlists player 2 to
ensure a majority (table A1) or player 3 (table A2).



8. APPENDIX 257

{1, 2} :
(
1
2 ,
1
2

)

B

PU
(
{1, 2, 3} , u{1,2}, {1} , π, t

)

=
(
π1, t− π1

2 ,−π1
2

)

S: π1 >

{
PU1

(
N\E∅, v|N\E∅ , ∅, ·

)
, 1 /∈ E∅

r1, 1 ∈ E∅

E: π1 ≥ r1, t− π1
2 ≥ r2

−π1
2 ≥ r3

M: π1 ≥ 1
2 , t− π1

2 ≥ 1
2

P: π1 ≥ 1
2

C

PU
(
{1, 2, 3} , u{1,2}, {2} , π, t

)

=
(
t− π2

2 , π2,−π2
2

)

S: t− π2
2 >

{
PU1

(
N\E∅, v|N\E∅ , ∅, ·

)
, 1 /∈ E∅

r1, 1 ∈ E∅

E: t− π2
2 ≥ r1, π2 ≥ r2
−π2

2 ≥ r3
M: t− π2

2 ≥ 1
2 , π2 ≥ 1

2

P: π2 ≥ 1
2

D

PU
(
{1, 2, 3} , u{1,2}, {3} , π, t

)

=
(
1
2 − π3

2 ,
1
2 − π3

2 , π3
)

S: 12 − π3
2 >

{
PU1

(
N\E∅, v|N\E∅ , ∅, ·

)
, 1 /∈ E∅

r1, 1 ∈ E∅

E: 12 − π3
2 ≥ r1,

1
2 − π3

2 ≥ r2
π3 ≥ r3

M: 12 − π3
2 ≥ 1

2 ,
1
2 − π3

2 ≥ 1
2

P: π3 ≥ 0

E

PU
(
{1, 2, 3} , u{1,2}, {1, 2} , π, t

)

=
(
π1, π2, t2 − π1 − π2

)

S: π1 >

{
PU1

(
N\E∅, v|N\E∅ , ∅, ·

)
, 1 /∈ E∅

r1, 1 ∈ E∅

E: π1 ≥ r1, π2 ≥ r2
t2 − π1 − π2 ≥ r3
M: π1 ≥ 1

2 , π2 ≥ 1
2

P: π1 ≥ 1
2 , π2 ≥ 1

2

F

PU
(
{1, 2, 3} , u{1,2}, {1, 3} , π, t

)

= (π1, t− π1 − π3, π3)

S: π1 >

{
PU1

(
N\E∅, v|N\E∅ , ∅, ·

)
, 1 /∈ E∅

r1, 1 ∈ E∅

E: π1 ≥ r1, t− π1 − π3 ≥ r2
π3 ≥ r3

M: π1 ≥ 1
2 , t− π1 − π3 ≥ 1

2

P: π1 ≥ 1
2 , π3 ≥ 0

G

PU
(
{1, 2, 3} , u{1,2}, {2, 3} , π, t

)

= (t− π2 − π3, π2, π3)

S: t− π2 − π3 >

{
PU1

(
N\E∅, v|N\E∅ , ∅, ·

)
, 1 /∈ E∅

r1, 1 ∈ E∅

E: t− π2 − π3 ≥ r1, π2 ≥ r2
π3 ≥ r3

M: t− π2 − π3 ≥ 1
2 , π2 ≥ 1

2

P: π2 ≥ 1
2 , π3 ≥ 0

Table A1: Constraints for proposer 1 enlisting player 2 and any foreign
reservation payoffs
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{1, 3} :
(
1
2 , 0

)

B

PU
(
{1, 2, 3} , u{1,2}, {1} , π, t

)

=
(
π1, t− π1

2 ,−π1
2

)

S: π1 >

{
PU1

(
N\E∅, v|N\E∅ , ∅, ·

)
, 1 /∈ E∅

r1, 1 ∈ E∅

E: π1 ≥ r1, t− π1
2 ≥ r2

−π1
2 ≥ r3

M: π1 ≥ 1
2 ,−π1

2 ≥ 0

P: π1 ≥ 1
2

C

PU
(
{1, 2, 3} , u{1,2}, {2} , π, t

)

=
(
t− π2

2 , π2,−π2
2

)

S: t− π2
2 >

{
PU1

(
N\E∅, v|N\E∅ , ∅, ·

)
, 1 /∈ E∅

r1, 1 ∈ E∅

E: t− π2
2 ≥ r1, π2 ≥ r2
−π2

2 ≥ r3
M: t− π2

2 ≥ 1
2 ,−π2

2 ≥ 0

P: π2 ≥ 1
2

D

PU
(
{1, 2, 3} , u{1,2}, {3} , π, t

)

=
(
1
2 − π3

2 ,
1
2 − π3

2 , π3
)

S: 12 − π3
2 >

{
PU1

(
N\E∅, v|N\E∅ , ∅, ·

)
, 1 /∈ E∅

r1, 1 ∈ E∅

E: 12 − π3
2 ≥ r1,

1
2 − π3

2 ≥ r2
π3 ≥ r3

M: 12 − π3
2 ≥ 1

2 , π3 ≥ 0

P: π3 ≥ 0

E

PU
(
{1, 2, 3} , u{1,2}, {1, 2} , π, t

)

=
(
π1, π2, t2 − π1 − π2

)

S: π1 >

{
PU1

(
N\E∅, v|N\E∅ , ∅, ·

)
, 1 /∈ E∅

r1, 1 ∈ E∅

E: π1 ≥ r1, π2 ≥ r2
t2 − π1 − π2 ≥ r3

M: π1 ≥ 1
2 , t

2 − π1 − π2 ≥ 0

P: π1 ≥ 1
2 , π2 ≥ 1

2

F

PU
(
{1, 2, 3} , u{1,2}, {1, 3} , π, t

)

= (π1, t− π1 − π3, π3)

S: π1 >

{
PU1

(
N\E∅, v|N\E∅ , ∅, ·

)
, 1 /∈ E∅

r1, 1 ∈ E∅

E: π1 ≥ r1, t− π1 − π3 ≥ r2
π3 ≥ r3

M: π1 ≥ 1
2 , π3 ≥ 0

P: π1 ≥ 1
2 , π3 ≥ 0

G

PU
(
{1, 2, 3} , u{1,2}, {2, 3} , π, t

)

= (t− π2 − π3, π2, π3)

S: t− π2 − π3 >

{
PU1

(
N\E∅, v|N\E∅ , ∅, ·

)
, 1 /∈ E∅

r1, 1 ∈ E∅

E: t− π2 − π3 ≥ r1, π2 ≥ r2
π3 ≥ r3

M: t− π2 − π3 ≥ 1
2 , π3 ≥ 0

P: π2 ≥ 1
2 , π3 ≥ 0

Table A2: Constraints for proposer 1 enlisting player 3 and any foreign
reservation payoffs
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As a next step, we consider the special case r1 = 1
6 , r2 =

7
12 , and r3 = −1

3 .

If the proposer 1 suggests the status quo, E∅ = {1, 2} is the only emigration
set fulfilling constraint E∅. If the proposer does not want to emigrate, he
aims for E∗ �= ∅. This follows from the fact that an emigration by player
2 induces player 1 to emigrate himself while player 3 (with a reservation
payoff below his Shapley value) offers himself for exploitation. Thus, we
are justified in working with tables A1 and A2. We use the specific foreign
reservation payoffs and find contradictions or best civil-service vectors:

{1, 2} :
(
1
2 ,
1
2

)

B

PU
(
{1, 2, 3} , u{1,2}, {1} , π, t

)

=
(
π1, t− π1

2 ,−π1
2

)

1
2 ≤ π1 ≤ 2t− 7

6

π1 ≤ 2
3

which implies t ≥ 5
6 and

Sol: π∗1 = min
(
2t− 7

6 ,
2
3

)

=

{
2
3 ,

11
12 ≤ t ≤ 1

2t− 7
6 ,

5
6 ≤ t < 11

12 ≈ 0.916 67

C

PU
(
{1, 2, 3} , u{1,2}, {2} , π, t

)

=
(
t− π2

2 , π2,−π2
2

)

1
2 ≤ t− π2

2
7
12 ≤ π2 ≤ 2

3

which implies t ≥ 19
24 ≈ 0.79

Sol: π∗2 =
7
12 , t−

π∗2
2 = t− 7

24

D

PU
(
{1, 2, 3} , u{1,2}, {3} , π, t

)

=
(
1
2 − π3

2 ,
1
2 − π3

2 , π3
)

contradiction
between E and P

E

PU
(
{1, 2, 3} , u{1,2}, {1, 2} , π, t

)

=
(
π1, π2, t

2 − π1 − π2
)

π1 ≥ 1
2

π2 ≥ 7
12

π1 ≤ t2 + 1
3 − π2

≤ t2 − 1
4

which implies t2 ≥ 1
2 − 1

3 +
7
12 =

3
4

and hence t ≥
√

3
4 ≈ 0.87

Sol: π∗2 =
7
12 , π

∗
1 = t2 − 1

4

F

PU
(
{1, 2, 3} , u{1,2}, {1, 3} , π, t

)

= (π1, t− π1 − π3, π3)

contradiction
between E and P:
7
12 ≤ t− π1 − π3
≤ t− 1

2 − 0

≤ 1− 1
2 =

1
2

G

PU
(
{1, 2, 3} , u{1,2}, {2, 3} , π, t

)

= (t− π2 − π3, π2, π3)

contradiction
between E, M, and P:

1
2 ≤ t− π2 − π3
≤ t− 7

12 − 0

≤ 1− 7
12 =

5
12

Table A3: Contradictions and optimality for each proposal involving
C∗ �= ∅ (enlisting player 2)
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{1, 3} :
(
1
2 , 0

)

B

PU
(
{1, 2, 3} , u{1,2}, {1} , π, t

)

=
(
π1, t− π1

2 ,−π1
2

)
contradiction

in M

C

PU
(
{1, 2, 3} , u{1,2}, {2} , π, t

)

=
(
t− π2

2 , π2,−π2
2

)
contradiction
in M and P

D

PU
(
{1, 2, 3} , u{1,2}, {3} , π, t

)

=
(
1
2 − π3

2 ,
1
2 − π3

2 , π3
)

contradiction
between E and P

E

PU
(
{1, 2, 3} , u{1,2}, {1, 2} , π, t

)

=
(
π1, π2, t

2 − π1 − π2
)

contradiction
between E and M:
0 ≤ t2 − π1 − π2
≤ t2 − 1

2 − 7
12

≤ 1− 13
12 < 0

F

PU
(
{1, 2, 3} , u{1,2}, {1, 3} , π, t

)

= (π1, t− π1 − π3, π3)

contradiction
between E and M:
7
12 ≤ t− π1 − π3
≤ t− 1

2 − 0

≤ 1− 1
2 =

1
2

G

PU
(
{1, 2, 3} , u{1,2}, {2, 3} , π, t

)

= (t− π2 − π3, π2, π3)

contradiction
between E and M:
1
2 ≤ t− π2 − π3
≤ t− 7

12 − 0

≤ 1− 7
12 =

5
12

Table A4: Contradictions and optimality for each proposal involving
C∗ �= ∅ (enlisting player 3)

Thus, we have three candidates. The lemma now follows from

0 < 1− 1

6

√
3 <

19

24
<

5

6
<

√
3

4
<

7

8
<

11

12
<

1

2
+

1

12

√
5
√
6 <

√
11

12
<

23

24
< 1

and the straightforward comparisons

B versus C:
2

3
< t− 7

24
⇔ t >

23

24
,

B versus C: 2t− 7

6
< t− 7

24
⇔ t <

7

8

B versus E:
2

3
< t2 − 1

4
⇔ t >

√
11

12

B versus E: 2t− 7

6
< t2 − 1

4
⇔ t < 1− 1

6

√
3

C versus E: t− 7

24
< t2 − 1

4
⇔ t >

1

2
+

1

12

√
5
√
6



CHAPTER XV

A real-estate model

1. Introduction

The aim of cooperative game theory is to suggest and defend payoffs
for the players that depend on a coalition function (characteristic function)
describing the economic, social, or political situation. In this sense, the
players’ payoffs are determined endogenously. However, there are situations
in real life where some players’ payoffs are exogenous. For example, in many
countries lawyers or real-estate agents obtain a regulated fee or a regulated
percentage of the business involved. Similarly, civil servants who participate
in the production of economic goods in different ways are also paid according
to official schedules. As a final example, consider the cost allocation problem
for a firm’s important input such as computing or other facilities. If the firm
sells some user rights to outsiders, the cost allocation problem for the firm’s
units involves exogenous (negative) payments to the outsiders.

As the title suggests, we aim for a value that incorporates the idea of
exogenous payments while staying close to the Shapley value. Thus, we are
asking the question of how much the business partners or the private-sector
agents obtain after paying off the lawyers or civil servants, respectively.

Our characterizations use three important axioms. First of all, we de-
mand that the payoffs under the new value actually give the predetermined
payoff to the exogenous players, i.e., the realtor’s fee to the realtor and the
civil-service payments to the civil servants (axiom X). Second, our value has
the following property: If the exogenous payments change and if the coali-
tion function changes by the same amount (to be made precise later), the
endogenous players’ payoffs do not change. Third, we impose a consistency
axiom (axiom C): If the exogenous payments happen to be equal to the
payoff determined endogenously (i.e., according to the Shapley value), then
the endogenous agents also obtain their Shapley values.

Section 2 introduces and axiomatizes our exogenous-payments value. In
that section, we also relate the value to the core and present an application.
We show how to incorporate weights for the endogenous players in section
3, again with an application. The final section concludes the paper.

0I would like to acknowledge helpful discussions with, and valuable hints by, André

Casajus, Frank Hüttner, Pavel Brendler, and Andreas Tutic. Two anonymous referees

provided detailed hints.
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262 XV. A REAL-ESTATE MODEL

2. XP values

2.1. XP games. We now introduce the set of exogenous playersX ⊆ N

(the civil servants, if you like) and the payments π ∈ R|X| they receive. In
order to make the problem interesting, we demand that X be a strict subset
of N . The other players are called endogenous players (the private sector)
and denoted by D := N\X.

Thus, we have the following definition of XP games (where XP stands
for eXogenous Payments):

D�������
� XV.1. XP games are tuples

(N, v,X, π)

where

• (N, v) is a TU game,

• X is a strict subset of N, and

• π ∈ R|X| is a vector specifying a payoff for every member of X.

2.2. Axioms. An XP value ϕ assigns a payoff vector to every XP game,
ϕ (N, v,X, π) ∈ Rn. Of course, our value has to fulfill the following axiom:

X (exogenous payments): For all i ∈ X, we have ϕi (N, v,X, π) = πi.

Axiom X expresses the idea that exogenous players i ∈ X indeed obtain
πi. Given that axiom, most other axioms are restricted to players from D

for obvious reasons. Consider now the following five axioms:

E (efficiency): We have ϕN (N, v,X, π) = v (N) .

S (symmetry): For all symmetric players i, j ∈ D, ϕi (N, v,X, π) =

ϕj (N, v,X, π) .

N-∅ (null player for X = ∅): If i ∈ N is a null player, then ϕi (N, v, ∅, π) =
0.

Axioms E, S and N-∅ are obvious requirements. Axiom N-∅ demands that
a null player obtains the payoff zero if there are no exogenous players in the
game. If, however, exogenous players exist, null players cannot, in general,
have zero payoffs. For example, in the 0-game v (defined by v (K) = 0 for all
K ⊆ N), all players are null players and the endogenous players have to pay
πX for reasons of efficiency. Thus, a null-player axiom is not a reasonable
requirement in case of X �= ∅. Also, a null-player-out axiom (see Derks &
Haller 1999) cannot hold for the value we are to define. If a null player from
D is excluded from the game, the other endogenous players have to divide
πX between themselves.

M (marginalism): Assume two coalition functions v and z from VN . Let
i be a player from D obeying

v (S ∪ {i})− v (S) = z (S ∪ {i})− z (S)
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for all S ⊆ N\ {i} . Then
ϕi (N, v,X, π) = ϕi (N, z,X, π) .

BF (Brink fairness): Let i and j be players from D that are symmetric
in (N, z) . Then

ϕi (N, v + z,X, π)− ϕi (N, v,X, π) = ϕj (N, v + z,X, π)− ϕj (N, v,X, π) .

Axiom M states that player i from D is affected by a coalition function
only insofar as his marginal contributions are concerned. This holds for
the Shapley value but not for our value. The reason is that the players
from D pay π to the players from X but enjoy the contributions made by
these exogenous players by efficiency. In contrast to axiom M, our value
fulfills axiom BF. This axiom says that two players are equally affected by
adding a coalition function z (to some given coalition function v) if they are
symmetric in (N, z).

A (additivity): For any coalition functions v′, v′′ ∈ VN , any payments π′,
π′′ ∈ R|X| and any player i from N, we obtain

ϕi
(
N, v′ + v′′,X, π′ + π′′

)
= ϕi

(
N, v′, X, π′

)
+ ϕi

(
N, v′′, X, π′′

)
.

Note that axiom A concerns all the players from X ∪ D and refers to
payments as well as coalition functions. Thus, if a player i ∈ X is involved
in two games, he is to obtain the sum of what he would get in each of them.

Next, we present the shifting axiom. It says that a player from D does
not gain or suffer if a change in πX is balanced by a corresponding change
of v by πX . In a sense, both πX and v (see eq. (??)), are shifted in the
same direction. For example, if a lawyer or a civil servant is responsible for
an increase (or a decrease) of the social product and if his renumeration is
changed by the very same amount, the endogenous players are not affected.

SH (shifting): For all i ∈ D, we have

ϕi (N, v + πX , X, π) = ϕi
(
N, v + π′X ,X, π

′)

for all π, π′ ∈ R|X|.
It is not difficult to show that axioms X, S, E, and A imply axiom SH.

The final axiom is a very important one:

C (consistency): For any player i ∈ D,

ϕi
(
N, v,X, (ϕx (N, v, ∅, π))x∈X

)
= ϕi (N, v, ∅, π) .

If the players in X obtain what they would obtain without any exogenous
players, the players inD also obtain what they should get without exogenous
players. Differently put, if the players in X (happen to) obtain the value
dictated by the axioms for games without exogenous players, so do the
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other players. Consistency axioms have been surveyed by Thomson (1990)
and Driessen (1991).

2.3. Axiomatization. In order to compare our value with the Shapley
value, we note the following theorem:

T �
��� XV.1. Assuming X = ∅ (in which case N-∅ and N are equiv-
alent) and ignoring π in that case, the Shapley value is characterized by the

following sets of axioms for solution ϕ:

• E, S, N, and A (Shapley (1953a))
• E, S, and M (Young (1985))
• E, N, and BF (van den Brink (2001))

The Shapley value with exogenous payments is denoted by ShX,π and given
by

ShX,πi (N, v) =

{
πi, i ∈ X

Shi (N, v) +
1
|D| (ShX (N, v)− πX) , i ∈ D

We can consider the Shapley value with exogenous payments as an XP value
for XP games (N, v,X, π) or, alternatively, as a solution for TU games where
X and π enter as parameters.

As the above discussion makes clear, we can look for sets of axioms
including the axioms E, S, N-∅, and A or including E, N-∅, and BF. We
prepare our two characterizations with a lemma:

L���� XV.1. Assuming axiom C and any of the two following axiom
sets

• E, S, N-∅, and A or
• E, N-∅, and BF

we obtain

Shi (N, v) = ϕi
(
N, v,X, (Shx (N, v))x∈X

)

for all players i ∈ D.

Proof. Either one of the set of axioms (E, S, N-∅, and A on the one hand
or E, N-∅, and BF on the other hand) obviously imply

ϕi (N, v, ∅, π) = Shi (N, v) . (XV.1)

We then find

Shi (N, v) = ϕi (N, v, ∅, π) (eq. (XV.1))

= ϕi
(
N, v,X, (ϕx (N, v, ∅, π))x∈X

)
(axiom C)

= ϕi
(
N, v,X, (Shx (N, v))x∈X

)
(eq. (XV.1))

�
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T �
��� XV.2. The Shapley value with exogenous payments is char-
acterized by the axioms X, E, S, N-∅, A, and C.

Proof. It is not difficult to show that ShX,π fulfills all the axioms mentioned
in the theorem. Let ϕ be an XP value. For i ∈ X, axiom X guarantees
ϕi (N, v,X, π) = πi. For i ∈ D, we obtain the desired result by

ϕi (N, v,X, π)

= ϕi
(
N, v,X, (Shx (N, v))x∈X

)

+ϕi
(
N, 0, X, (πx)x∈X − (Shx (N, v))x∈X

)
(axiom A)

= Shi (N, v) + ϕi
(
N, 0,X, (πx)x∈X − (Shx (N, v))x∈X

)
(lemma XV.1)

= Shi (N, v) +
1

|D| (ShX (N, v)− πX) (axioms E, S)

�

The axioms are independent. For the necessity of axiom C, see the
conclusions.

T �
��� XV.3. The Shapley value with exogenous payments is char-
acterized by the axioms X, E, BF, N-∅, SH, and C.

Proof. ShX,π also fulfills the axioms BF and SH. Consider the coalition
function z := πX − ShX (N, v). Then any two players i and j from D are
symmetric in (N, z) and Brink fairness implies

ϕi (N, v + z,X, π)− ϕi (N, v,X, π) = ϕj (N, v + z,X, π)− ϕj (N, v,X, π) .

Fix i ∈ D and sum this equation for all j ∈ D. Using axioms X and E and
hence ϕD (N, v,X, π) = v (N)− πX , we find

ϕi (N, v,X, π) = ϕi (N, v + z,X, π) +
1

|D| (ShX (N, v)− πX) .

The equations

Shi (N, v) = ϕi
(
N, v,X, (Shx (N, v))x∈X

)
(lemma XV.1)

= ϕi
(
N, v − ShX (N, v) + πX , X, (πx)x∈X

)
(axiom SH)

= ϕi (N, v + z,X, π)

provide the final bit of our proof.�
The verification of independence is easy with the exception of the shifting

axiom.

L���� XV.2. There is an XP value different from the Shapley value
with exogenous payments that satisfies the axioms X, E, BF, N-∅, and C.
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Proof. The XP value ρ defined by

ρi (N, v)

=





ShX,πi (N, v) + 1, N ⊇ {1, 2, 3} , 1, 2 ∈ D, 3 ∈ X,Sh3 (N, v) �= π3 = 0, i = 1

ShX,πi (N, v)− 1, N ⊇ {1, 2, 3} , 1, 2 ∈ D, 3 ∈ X,Sh3 (N, v) �= π3 = 0, i = 2

ShX,πi (N, v) , otherwise

obeys all the axioms mentioned in the lemma.�

2.4. The Shapley value with exogenous payments and the core.
The core of a game (N, v) is given by

{x ∈ Rn : xN = v (N) and xK ≥ v (K) for all K ⊆ N} .

The question arises: under what circumstances does ShX,π (N, v) lie in the
core? An immediate requirement is πK ≥ v (K) for all K ⊆ X. According
to a familiar theorem, the Shapley value of convex games is in the core. The
following implication is rather immediate:

C
�
""��	 XV.1. Let v be a convex game. If πX ≤ ShX (N, v) and

πK ≥ v (K) for all K ⊆ X, ShX,π (N, v) lies in the core.

The inequality πX ≤ ShX (N, v) cannot, in general, be weakened; just
consider inessential games.

2.5. Application: Basic income. In many countries, the introduc-
tion of some basic income is vividly discussed. Under such a system of social
security and taxation, every agent (often restricted to citizens) — rich or poor
— obtains a basic payoff (basic income). In general, basic payoffs may well
differ from person to person according to handicaps, nationality or other
differences. Of course, the basic income for everybody has to be paid for by
taxes of various sorts. The Shapley value for exogenous payments can be
used for a simple model.

Following a suggestion made by André Casajus in private communica-
tion, we duplicate a TU game (N, v) (which stands for the economy) in the
following manner.

• On the basis of player set N = {1, ..., n} , we define a set N ′ :=
{1′, ..., n′} with |N | = |N ′| and a player set N̂ := N∪N ′.

• We define a TU game
(
N̂, v̂

)
by v̂ (K) = v (K ∩N) . Thus, every

player from N ′ is a null player in
(
N̂, v̂

)
and we have Shi (N, v) =

Shi
(
N̂, v̂

)
for all players i ∈ N .

• Every player i′ ∈ N ′ is an exogenous player and obtains the payoff
(the basic income) πi′ .
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Obviously, the dash-player is just a copy of a player from N invented for the
purpose of collecting the basic income. We find the payoffs

ShN
′,π

i

(
N̂, v̂

)
=

{
πi, i ∈ N ′

Shi (N, v)− πN ′
|N | , i ∈ N

Thus, the overall payoff for a player i ∈ N and his clone i′ ∈ N is

Shi (N, v)︸ ︷︷ ︸
market income

+ πi′︸︷︷︸
basic income

− πN ′

|N |︸︷︷︸
tax

.

Therefore, the introduction of a basic-income system makes an agent better
off iff his basic payoff is greater than the average basic payoff.

3. Weighted XP values

3.1. Axiomatization. Our value can be extended to incorporate weights
for the players from D. The weights determine the burden sharing of the D-
players with respect to the payments obtained by theX-players. In contrast,
the weights in the Kalai-Samet weighted value affect all players’ payoffs, de-
pending on the hierarchy level (see Kalai & Samet 1987b).

A weighted XP game is a tuple (N, v,X, π, w) where (N, v,X, π) is
an XP game and w = (wi)i∈D a tuple of strictly positive numbers. A
weighted XP value ϕ assigns a payoff vector to every weighted XP game,
ϕ (N, v,X, π,w) ∈ Rn. The weighted Shapley value with exogenous pay-
ments (no relation to the weighted Shapley values!) is given by

ShX,π,wi (N, v) =

{
πi, i ∈ X

Shi (N, v) +
wi∑

d∈D wd
(ShX (N, v)− πX) , i ∈ D

It can be axiomatized on the basis of (obvious variations of) the axioms X,
E, N-∅, A, and C from the first axiom set.

X (exogenous payments): For all i ∈ X, we have ϕi (N, v,X, π,w) = πi.

E (efficiency): We have ϕN (N, v,X, π, w) = v (N) .

N-∅ (null player forX = ∅): If i ∈ N is a null player, then ϕi (N, v, ∅, π,w) =
0.

A (additivity): For any coalition functions v′, v′′ ∈ VN , any payments π′,
π′′ ∈ R|X| and any player i from N, we obtain

ϕi
(
N, v′ + v′′,X, π′ + π′′, w

)
= ϕi

(
N, v′, X, π′, w

)
+ ϕi

(
N, v′′, X, π′′, w

)
.

C (consistency): For any player i ∈ D,

ϕi
(
N, v,X, (ϕx (N, v, ∅, π,w))x∈X , w

)
= ϕi (N, v, ∅, π,w) .

The symmetry axiom has to take the weights into account:
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S (symmetry): For all symmetric players i, j ∈ D obeying wi = wj ,

ϕi (N, v,X, π,w) = ϕj (N, v,X, π,w) .

Additionally, we need two more axioms:

IR (irrelevance): For all i ∈ D and all π, π′ ∈ R|X|, w,w′ ∈ R|D|, we have
ϕi (N, v, ∅, π,w) = ϕi

(
N, v, ∅, π′, w′

)
.

W (weighing): For all players i, j ∈ D,

wiϕj (N, 0,X, π, w) = wjϕi (N, 0, X, π,w) .

Axiom IR states that the exogenous payments and the weights are not
relevant for a player i if there are no exogenous players. Axiom W ensures
that the ratio of weights is equal to the ratio of payoffs in a zero game. It is
similar to the ”weighting of treatments” axiom by Haeringer (1999).

T �
��� XV.4. The weighted Shapley value with exogenous payments
is characterized by the axioms (given in this section) X, E, S, N-∅, A, C,
IR, and W.

Proof. ShX,π,w fulfills all the above axioms. Turning to uniqueness, axiom
X ensures ϕi (N, v,X, π) = πi for all i ∈ X. Note that IR and S imply
weight-independent symmetry in case of X = ∅. Assume two symmetric
players i, j ∈ D that do not (necessarily) obey wi = wj. We then have

ϕi (N, v, ∅, π, w) = ϕi (N, v, ∅, π, (1, ..., 1)) (axiom IR)

= ϕj (N, v, ∅, π, (1, ..., 1)) (axiom S)

= ϕj (N, v, ∅, π,w) (axiom IR)

We now closely follow the proof of lemma XV.1 to show that axioms E, S,
IR, N-∅, A and C imply

Shi (N, v) = ϕi
(
N, v,X, (Shx (N, v))x∈X , w

)
.

Proceeding as in the proof of theorem XV.2, we easily find

ϕi (N, v,X, π,w) = Shi (N, v)+ϕi
(
N, 0,X, (πx)x∈X − (Shx (N, v))x∈X , w

)
.

We now apply axiom W:

ϕi (N, v,X, π,w)

= Shi (N, v) +
1∑

d∈D wd

∑

d∈D
wdϕi

(
N, 0,X, (πx)x∈X − (Shx (N, v))x∈X , w

)

= Shi (N, v) +
1∑

d∈D wd

∑

d∈D
wiϕd

(
N, 0,X, (πx)x∈X − (Shx (N, v))x∈X , w

)
(axiom W)

= Shi (N, v) +
wi∑
d∈D wd

(−πX + ShX (N, v)) (axiom E)
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�

One might wonder whether axiom IR is not implied by the other axioms.
This is not true as the following lemma shows.

L���� XV.3. There is a weighted XP value different from the weighted
Shapley value with exogenous payments that satisfies the axioms X, E, S,

N-∅, A, C, and W.

Proof. We define the ρ-value in three steps:
I. Let T be any nonempty subset of N and uT a unanimity game. Then, for
any α ∈ R, the weighted XP value ρ for X = ∅ is defined by

ρi (N,αuT , ∅, π,w) =

{
α

|MT | , i ∈ T,wi =WT

0, i /∈ T or wi < WT

,

where WT : = max
i∈T

wi and MT := {i ∈ T : wi =W}

II. As any game v can be written as

v =
∑

T �=∅,
T⊆N

λTuT

for suitably chosen λT , we obtain

ρi (N, v, ∅, π,w) =
∑

T �=∅,
T⊆N

ρi (N,λTuT , ∅, π, w)

III. Finally, we define

ρi (N, v,X, π,w){
πi, i ∈ X

ρi (N, v, ∅, π,w) + wi∑
d∈D wd

(ρX (N, v, ∅, π, w)− πX) , i ∈ D

It is not difficult to show that the axioms mentioned in the lemma are indeed
fulfilled. Also, in general, we have ρi (N,αuT , ∅, π,w) �= Shi (N,αuT ).�

3.2. Application: buying a house in the presence of a realtor.
3.2.1. The model. We now turn to the application of our value to a very

simple housing market. The three agents are a seller of a house S, a buyer B
and a real-estate agent A. (Thus, these pages contribute to intermediation
theory, Spulber (1999) being the standard reference.) We assume that the
seller’s reservation price r is below the buyer’s willingness to pay w. Thus,
the gains from trade are positive, w − r > 0.

In many real-world markets, the realtor charges a fee π which is a fraction
f of the house price p for his service, π = fp. This payoff to the realtor π
is payable by the buyer and the seller in proportions gS = 0 and gB = 1,
respectively. These are the weights introduced in the previous section and
we assume that they are given exogenously. The guiding question for our
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application concerns the fee fraction f chosen by the realtor in order to
maximize π.

The seller and the buyer need the realtor to come into contact. There-
fore, the coalition function v is given by N = {S,B,A} and

v (K) =

{
w − r, K = N,

0, otherwise

• At the first stage, the realtor decides on f .
• At the second stage, the seller and the buyer decide whether they
will indeed do business with each other. If not, the game ends with
payoffs 0 for every player.

• At the third stage, the seller and the buyer engage in a bargaining
process, the outcome of which is determined by the weighted XP
value.

3.2.2. The third stage: bargaining. We abbreviate Sh{A},π,(0,1) (N, v) by
ξ. The three agents S, B, and A obtain weighted Shapley value with exoge-
nous payments

ξ = (ξS, ξB, ξA)

=

(
w − r

3
,
w− r

3
+ 1 ·

(
w − r

3
− π

)
, π

)

=

(
w − r

3
,
2

3
(w− r)− π, π

)

So far, the realtor’s fee π is exogenous so that we could apply our formula.
However, the model allows to calculate the "equilibrium" house price p∗ so
that payments to the realtor are now endogenous at fp∗. Indeed, the seller’s
rent is p− r = ξS so that we obtain

p∗ = ξ∗S (f) + r =
w − r

3
+ r (XV.2)

=
2

3
r +

1

3
w

and

ξ∗B (f) = w − p∗ − fp∗,

π∗ (f) = fp∗

3.2.3. The second stage: do they have a deal. The seller is willing to sell
his house if ξS ≥ 0 holds which is true by w − r > 0. The buyer will buy
this house if w − p∗ − fp∗ ≥ 0 or

f ≤ w − p∗

p∗
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or (use eq. (XV.2))

f ≤ w −
(
w−r
3 + r

)
w−r
3 + r

=
2(w− r)

2r +w

hold. For any f ≥ 0, the realtor is happy to help in the deal. Thus, the deal
can be struck for any fee percentage f obeying

0 ≤ f ≤ 2 (w − r)

2r +w
.

3.2.4. The first stage: setting f . Obviously, the real-estate agent maxi-
mizes her profit by letting

f∗ =
2 (w − r)

2r +w

As expected, we find df∗

dw > 0 and df∗

dr < 0.

4. Conclusions

This paper has to aims. First, we introduce and axiomaize a new value
where payments are fixed for some players. Second, we show how to apply
this value to two quite different fields - basic income (social policy) and renu-
meration for real-estate agents. The second example belongs to the growing
number of hybrid noncooperative-cooperative models which, following Bran-
denburger & Stuart (2007) (who use the core rather than the Shapley value
or the XP Shapley value), can also be called biform games. In our exam-
ple, the first two stages (setting f and deciding on whether to trade) form
an extensive game where the payoffs are calculated by way of cooperative
means at the third stage.

The main idea of our paper is to give exogenous payments to some
players. Consistency plays a central role in our proofs. It seems a nat-
ural requirement. However, for future research, we point to an attractive
alternative. Define a TU game

(
N\X,pv,X,π

)
by

pv,X,π (S) =

{
v (S ∪X)− πX , S �= ∅
0, S = ∅

For example, X is the set of civil servants in an economy (N, v) and πX the
taxes to be paid for the civil servants. pv,X,π is close to coalition functions
defined in Aumann & Drèze (1974) and in Peleg (1986). The most important
difference is that these authors assume that players from S can choose the
players from X they want to use and pay for. Our more simple definition
makes sense for the above interpretation. Assuming that the players from
X obtain π and the endogenous players get Sh

(
pv,X,π

)
, we find efficiency

in the sense of ShN\X
(
pv,X,π

)
+ πX = v (N).
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Interestingly, consistency is not fulfilled by our XP value. As an example,
consider N = {1, 2, 3} , v = u{1,2}, X = {1} and the payoffs

Sh2
(
N,u{1,2}

)
=

1

2

ShX,π2

(
N,u{1,2}

)
=

1

2
+

1

|{2, 3}|

(
1

2
− π1

)

Sh2

(
pu{1,2},{1},π

)
= 1− π1

2
�= 1

2
for π1 =

1

2
.

In this example, player 2 takes all the benefit from the services provided
by the civil servant 1, but pays half the taxes. In such-like situations, a
violation of consistency makes perfect sense.

Vector-measure games



Part F

Vector-measure games



This part deals with nonatomic agents. We need continua of agents
for an analysis of growth theory and for a model on evolutionary theory.
Growth theory is attacked in two steps. In chapter XVI, we present the
standard Solow growth model which takes a central role in any course on
growth theory. This model builds on production functions featuring constant
returns. For other production functions, the continuous Shapley value can
be very helpful. This is the subject matter of chapter XVII.

The second application concerns an evolutionary cooperative game the-
ory which we develop in chapter XVIII.



CHAPTER XVI

The Solow growth model

1. Introduction

This chapter prepares the upcoming one where we make use of the con-
tinuous Shapley value. We present the standard Solow (1956) model that
uses a constant-returns production function in order to trace the capital-
per-head trajectory in terms of the rate of saving, the depreciation rate, the
growth rate of the (working) population and the initial capital per head.
The first part of this chapter presents the Solow model on the basis of a
Cobb-Douglas production function. The second part generalizes to any neo-
classical production function.

We will guide the reader

• to an understanding of discrete and continuous growth rates,
• through the dynamics of the Solow model for both Cobb-Douglas
and neoclassical production functions, and

• to the equilibrium concept employed by growth theorists.

2. Growth rates

2.1. Discrete-time growth rates. We take some economic (or other)
variable y whose evolution we want to consider. By yt we denote the value
of y at time t, t = 0, 1, ... . Our definition of a growth rate in discrete time
presupposes some given time interval, for example a year or a month.

D�������
� XVI.1. The discrete-time growth rate of y is defined by

γ〈1〉y :=
yt+1 − yt

yt
.

Growth rates are often denoted by γ (”gamma”), the Greek letter for
g. Superscript 〈1〉 refers to the full time interval, a year, say. Note that

γ
〈1〉
y does not carry the time index. Sometimes, this will mean that γ〈1〉y is

constant over time, but at other times, the author is just to lazy to write
down the time index or does not want to bother the reader with too much
notational garbage.

275
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E������� XVI.1. What are the growth rates of xt, yt, and zt, given by

xt : = t,

yt : = t+ 4 and

zt : = 100t?

Multiplying

yt

by the growth factor

1 + γ〈1〉y = 1 +
yt+1 − yt

yt

yields, at the end of a year,

yt

(
1 +

yt+1 − yt
yt

)

= yt+1.

t years later, a given y0 (y at time 0) has become

yt = y0
(
1 + γ〈1〉y

)t
. (XVI.1)

For example, if you take Euro 100,- to the bank to earn an interest of
r = 5

100 = 5%, at the end of five years, you collect

100

(
1 +

5

100

)5
≈ 100 · 1.276 = 127.6.

In growth theory, yt often denotes income per head at time t, i.e.,

yt =
Yt
Lt
,

where Yt is the income and Lt the labor force, both at time t. One would,
of course, think that the growth rates of y, Y and L are closely connected.
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Indeed, we obtain

yt+1 − yt
yt

=

Yt+1
Lt+1

− Yt
Lt

Yt
Lt

=

Yt+1
Lt+1

− Yt
Lt

Yt
Lt

Yt+1−Yt
Yt

− Lt+1−Lt
Lt

(
Yt+1 − Yt

Yt
− Lt+1 − Lt

Lt

)

=

Yt+1Lt−YtLt+1
Lt+1Lt

Yt
Lt

Yt+1Lt−YtLt−(Lt+1Yt−LtYt)
YtLt

(
Yt+1 − Yt

Yt
− Lt+1 − Lt

Lt

)

=

1
Lt+1Lt

Yt
Lt

1
YtLt

(
Yt+1 − Yt

Yt
− Lt+1 − Lt

Lt

)

=

1
Lt+1Yt
1

YtLt

(
Yt+1 − Yt

Yt
− Lt+1 − Lt

Lt

)

=
Lt
Lt+1

(
Yt+1 − Yt

Yt
− Lt+1 − Lt

Lt

)
.

Thus, the growth rate of

y =
Y

L
is close to the growth rate of Y minus the growth rate of L if Lt is close to
Lt+1,

yt+1 − yt
yt

≈ Yt+1 − Yt
Yt

− Lt+1 − Lt
Lt

.

Very much the same holds for the product of two variables. Let us consider
the production function

Yt = LtKt,

which supposes that income Yt is the product (in mathematical terms) of
labor Lt and capital Kt. We have

Lt+1 − Lt
Lt

+
Kt+1 −Kt

Kt

=
(Lt+1 −Lt)Kt + (Kt+1 −Kt)Lt

LtKt

=
Lt+1Kt+1 − Lt+1Kt+1 + (Lt+1 − Lt)Kt + (Kt+1 −Kt)Lt

LtKt

=
Lt+1Kt+1 − LtKt − Lt+1Kt+1 +Lt+1Kt − LtKt +Kt+1Lt

LtKt

=
Yt+1 − Yt

Yt
+
Lt (Kt+1 −Kt)− Lt+1 (Kt+1 −Kt)

LtKt

≈ Yt+1 − Yt
Yt

.
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The growth rate of the product of two variables is approximately equal to
the sum of the growth rates of the two factors. Now, if the time intervals
are ”very small”, both approximations are very good. Indeed, if we define
growth in continuous time, they will turn out to be exact.

2.2. From discrete to continuous time. Let us consider half-yearly
instead of yearly growth rates. For example, the bank may pay out interest
every six months. To make up for the half-yearly interest payment, the
interest rate is halfed. Instead of the growth factor

(
1 + γ〈1〉

)t

for the yearly growth rate γ〈1〉y , we have the growth factor



(
1 +

γ〈1〉

2

)2

t

=

(
1 +

γ〈1〉

2

)2t
.

for the half-yearly growth rate γ〈1〉

2 .

Food for thought: Would you prefer an interest payment of γ〈1〉

2 ,

two times a year, to an interest rate of γ〈1〉, paid out only once a
year?

Since we earn interest on the interest, these two factors are not equal:
(
1 +

γ〈1〉

2

)2t
>

(
1 + γ〈1〉

)t
.

We now look for a growth rate that makes the investor indifferent between

half-yearly payments and yearly payments. That is, we define γ〈 12〉 implicitly
by

(
1 +

γ〈 12〉
2

)2t
=

(
1 + γ〈1〉

)t
.

Food for thought: Would you expect γ〈 12〉 > γ〈1〉 or γ〈 12〉 < γ〈1〉?

From (
1 +

γ〈 12〉
2

)2t
=

(
1 + γ〈1〉

)t

we obtain

1 +
γ〈 12〉
2

=




(
1 +

γ〈 12〉
2

)2t


1
2t

=

((
1 + γ〈1〉

)t) 1
2t

=
(
1 + γ〈1〉

)1
2

and then

γ〈 12〉 = −2 + 2

√
1 + γ〈1〉.
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We can now conclude

γ〈1〉 > 0

⇒
(
γ〈1〉

)2
> 0

⇒
(
γ〈1〉

)2
+ 4(1 + γ) > 4 (1 + γ)

⇒
(
γ〈1〉 + 2

)2
> 4 (1 + γ)

⇒ γ〈1〉 + 2 > 2
√
1 + γ

⇒ γ〈1〉 > −2 + 2
√
1 + γ = γ〈 12〉

We now decrease the time interval even further. Generally, we consider
an interest payment m times a year with interest rate γ〈1〉/m. Then, at the
end of t years, we obtain

((
1 +

γ〈1〉

m

)m)t

=

(
1 +

γ〈1〉

m

)mt

.

It can be shown (but we will not do that here) that this growth factor is

an increasing function of m. The sequence

((
1 + γ〈1〉

m

)mt)

m∈N
converges

(gets closer and closer to some value) and we have

lim
m→∞

(
1 +

γ〈1〉

m

)mt

= eγ
〈1〉t.

Again, because of the interest on the interest, one prefers to obtain contin-

uous interest payments. Analogous to γ〈 12〉, we are now looking for γ〈0〉,
which is the rate at which indifference to a yearly interest rate obtains:

eγ
〈0〉t =

(
1 + γ〈1〉

)t
.

Applying the natural logarithm on both sides and deviding by t yields

γ〈0〉 = ln
(
1 + γ〈1〉

)
(XVI.2)

We would like to confirm γ〈0〉 < γ〈1〉. Indeed, it is well-known that

lnx < x− 1 for x > 0, x �= 1

holds. In fig. 1, the reader can see the logarithm which cuts the abscisse at
x = 1. So does x− 1. Replacing x by 1 + y, we obtain

ln (1 + y) < y for y > −1, y �= 0

from where we find the desired inequality:

γ〈0〉 = ln
(
1 + γ〈1〉

)
< γ〈1〉 for γ〈1〉 > −1, γ〈1〉 �= 0
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81

6

4

2

x

1−x

xln

F����� 1. The natural logarithm

The growth rates γ〈1〉 and γ〈0〉 are close for small rates, as can be seen
from the following table:

γ〈1〉 γ〈0〉 (approximation)
0, 001 (one-tenth of a percent) 0, 0009995

0, 01 (one percent) 0, 0099503

0, 1 (10 percent) 0, 09531

0, 2 (20 percent) 0, 18232

0, 3 (30 percent) 0, 26236

2.3. Continuous-time growth rates. In discrete time, the growth
rate of y is defined by

γ〈∆t〉y :=

yt+∆t−yt
(t+∆t)−t

yt
.

Taking the limit with respect to ∆t yields

lim
∆t→0

γ〈∆t〉y = lim
∆t→0

yt+∆t−yt
(t+∆t)−t

yt

= lim
∆t→0

∆yt
∆t

yt

=
dyt
dt

yt
.

D�������
� XVI.2. The continuous-time growth rate of y is defined by

γy := γy,t :=
dyt
dt

yt

where the time index is often suppressed.

It is important for the reader to understand that yt is just another way to
write y (t) , i.e., we have a function y which takes one argument, t. Therefore,
we could as well have written dy(t)

dt or dy
dt instead of dyt

dt . Writing time as an
index rather than a functional argument is the usual procedure in growth
theory.
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Assuming a constant growth rate g, we obtain

g =
dyt
dt

yt
,

which does not define γy,t (as in the definition above) but claims that the

growth rate of y, i.e., dytdt /yt, is equal to the constant g. This is a differential
equation, i.e., an equation that contains a function y (with argument t) to-
gether with the first (or higher order) derivative of y. ”Solving a differential
equation” means to state the function y explicitly. In this case, exponential
growth given by

yt = y0e
gt (XVI.3)

does the trick.

E������� XVI.2. Calculate dyt
dt /yt for yt = y0e

gt. Hint: the derivative

of ex is ex, but do not forget the chain rule.

The upshot of this exercise is γy = g so that we can (and will) write

yt = y0e
γyt.

2.4. Using the natural logarithm to express growth. In analyzing
the growth of some x, it is sometimes expedient not to consider

yt

directly, but rather take recourse to

ŷt = ln yt.

The reason is this: The derivative of ŷ with respect to t is equal to the
growth rate of y. To see this, note d lnx

dx = 1
x . We obtain

dŷ

dt
=

d ln yt
dt

=
1

yt

dy

dt
(chain rule!)

=

·
yt
yt

Therefore, if ŷ is plotted against t, the growth rate of y can be seen directly
from the slope of the ŷ-graph.

L���� XVI.1. The growth rate of y is given by
·
yt
yt

=
d ln yt
dt

.

E������� XVI.3. Try to find the relationship between the (continuous-
time) growth rates of Y, K and L for Yt = LtKt. Hint: apply the product

rule of differentiation and use ln (LK) = lnL+ lnK.
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Of course, the solution to our exercise cannot surprise the reader who
has gone through subsection 2.1 on pp. 275. Also, for

y =
Y

L

we find

γy = γY − γL.

To sum up, in continuous time we obtain:

• The growth rate of a product is equal to the sum of the growth
rates of its factors.

• The growth rate of a ratio is equal to the difference of the growth
rates of nominator and denominator.

An application concerns the relationship between the monetary interest rate
and the real interest rate. By r we denote the monetary interest rate which
is the growth rate for an asset Km, a deposit in a bank or a government
bond. If π denotes the rate of inflation, the real interest rate is given by
r − π. Let us explain, why.

Now, if we denote the price level by P and the real capital by K, we
have

K :=
Km

P
and, applying the above rule, the real interest rate is given by

γK = γKm
− γP = r − π.

E������� XVI.4. Assuming a constant growth rate, apply the natural
logarithm to the exponential-growth formula

yt = y0e
γyt

in order to confirm

γy =
ln yt − ln y0

t− 0
=

1

t
ln

yt
y0
.

Hint: lnx is the inverse of ex, i.e., ln ex = x.

Finally, we can use the natural logarithm to justify a handy rule of
thumb. According to this rule the number of years needed to double some
variable y is approximately equal to

70

γy · 100
.

For example, if you take some money to the bank and you get an interest
rate of 2%, you need 35 years to double your capital.

Inversely, in order to achieve a doubling in t years, a growth rate (in
percentage points) of

70

t



3. CONVERGENCE 283

is needed. If you hope to double your capital within 10 years, you have to
ask for an interest rate of 7%.

The confirmation of this rule is not difficult. We are looking for the
growth rate γy and/or the time span needed to double y, i.e., we need to
solve

y0e
γyt = 2y0.

Deviding by y0 and taking the logarithm leads to

γyt = ln
(
eγyt

)
= ln 2 ≈ 0, 69315.

Solving for t or γy, we obtain

t ≈ 70

γy · 100
and

γy · 100 ≈
70

t
,

respectively. This approximation formula yields the following table:

Growth rate
in percentage points

Years needed
for doubling
(approximation)

Years needed
for doubling
(correct,
continuous time)

Years needed
for doubling
(correct,
yearly interest)

0.1 (one-tenth of a percent) 700 ≈ 693.15 ≈ 693.49

1 (one percent) 70 ≈ 69.31 ≈ 69.66

10 (ten percent) 7 ≈ 6.93 ≈ 7.27

20 (twenty percent) 312 ≈ 3.46 ≈ 3.80

30 (thirty percent) 213 ≈ 2.31 ≈ 2.64

The reader will note that we used two approximations for this formula. First,
we have ln 2 instead of 0.7 (no problem), second, we use the continuous-time
growth rate instead of the more usual yearly one.

3. Convergence

One of the central questions of growth theory is whether or not different
economies converge over time. In this section, we will stress the need to
distinguish between weak and strong convergence. Consider two variables
xt and yt with 0 < x0 < y0. Weak convergence means that x grows faster
than y. Alternatively, the ratio of y over x decreases in time. Put formally:

D�������
� XVI.3. Weak convergence between xt and yt is said to hold
if, whenever 0 < x0 < y0, the growth rates obey γx > γy for all t ≥ 0.

L���� XVI.2. Weak convergence between xt and yt hold iff, whenever

0 < x0 < y0,
d
yt
xt

dt < 0.
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”Iff” is short for ”if and only if”. Differently put, the lemma provides a
criterium for weak convergence. The proof is easy:

dyx
dt

< 0

⇔
dy
dtx− dx

dt y

x2
< 0

⇔
dy
dt

x
−

dx
dt

x

y

x
< 0

⇔
dy
dt

y
−

dx
dt

x
< 0 (multiply by

x

y
)

⇔ γy < γx

Weak convergence may hold even if x and y never get close. For example,
weak convergence exists between

xt = t and

yt = 2t+ 2.

E������� XVI.5. Show that weak convergence holds between xt and yt.

Strong convergence requests that the two variables do indeed get closer
and closer.

D�������
� XVI.4. Strong convergence between xt and yt is said to hold
if weak convergence between xt and yt holds and if

lim
t→∞

yt
xt

= 1.

E������� XVI.6. Show that strong convergence does not hold between
xt = t and yt = 2t+ 2.

4. Cobb-Douglas production functions

The Cobb-Douglas production function F is given by

Y = F (K,L) = AKαL1−α, A > 0, 0 < α < 1.

Y is total output, K and L denote the amount of capital and labor that
enter into production, and A is a technological coefficient that can be used
to model and discuss technological progress. Since we do not deal with tech-
nological progress in this chapter and the next, we disregard the parameter
A:

Y = F (K,L) = KαL1−α, 0 < α < 1.

The Cobb-Douglas (for short, CD) production function exhibits a number of
interesting properties. First of all, if all inputs are increase by some factor,
output grows by that same factor.
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D�������
� XVI.5. A production function F exhibits constant returns

to scale, if we have

F (τK, τL) = τF (K,L) ,K ≥ 0, L ≥ 0

for any τ ≥ 0.

E������� XVI.7. Can you prove that the CD production function is of
constant returns? Hint: you will use (a1a2)

b = ab1a
b
2 and a

bac = ab+c.

Second, the marginal productivity of each factor is positive and decreas-
ing. The more capital (or labor) we employ, the higher the output, but the
additional output of additional input of capital gets smaller and smaller.
Indeed, for L > 0, we obtain

∂F

∂K
= αKα−1L1−α

= α
L1−α

K1−α

= α

(
L

K

)1−α
> 0

and it is easy to see that the marginal product of capital decreases with
increasing K. In other words: F is a concave function of K (and of L, too).
In expressing the marginal product of capital, we have written ∂F

∂K instead
of dF

dK , because F carries two arguments, K and L, and we need to apply
the partial derivative with respect to K, while holding L constant.

CD production functions feature positive and decreasing marginal pro-
ductivities in an extreme fashion. On one hand, if we keep on increasing K,
the marginal product finally becomes zero,

lim
K→∞

∂F

∂K
= 0.

It cannot decrease any further. On the other hand, if we let K vanish, the
marginal product becomes very high,

lim
K→0

∂F

∂K
=∞.

This two properties are called Inada conditions.
Third, the production elasticity of capital is constant and equal to α

while the production elasticity of labor is equal to 1−α. Thus, a one percent
change in the quantity of capital (labor) results in an α percent (1 − α

percent) change in output. Formally, the production elasticity of capital is
given by

εY,K =
∂Y
Y
∂K
K

=
∂Y

∂K

K

Y
.

E������� XVI.8. Can you confirm that the production elasticity of cap-
ital is equal to α?
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Assume that factors of production are paid their marginal product.
Then, factor payments equal output. This is the exhaustion theorem, due
to Euler.

E������� XVI.9. Prove Euler’s theorem for CD production functions:

∂F

∂K
·K +

∂F

∂L
· L = F (K,L) .

E������� XVI.10. Assuming a CD production function, show how the
growth rate of output depends on the growth rates of capital and labor.

Hint: you will use the product and chain rule of differentiation (first growth-

rate definition) or the rules for manipulating the natural logarithm (second

growth-rate definition).

In growth theory, we are often concerned with per-head variables. In
particular, per-head consumption might be taken as a measure of welfare.
CD production functions are very suitable in this context because they allow
to express per-head output

y :=
Y

L
as a function of capital per head,

k :=
K

L
.

Indeed, we find

y =
KαL1−α

L
=

Kα

Lα
= kα =: f (k) .

f is called the production function in intensive form. Its (one) argument is
capital per head.

5. Dynamics (CD production function)

We are now ready to introduce the Solow growth model for CD produc-
tion functions. At every point in time, output is devided between consump-
tion and investment. We assume that output can be used for both purposes.
For example, animals such as cows (output) can be slaughtered and eaten
(consumption) or used to produce additional animals.

In the standard Solow model, one works with the plausible consumption
function

C := (1− s)Y

where C is overall consumption and s ≥ 0 the constant saving rate. This is
the behaviorist tradition. Alternatively, and closer to microeconomics, one
assumes a representative agent who chooses his consumption path over his
whole life time. We take up this optimizing tradition in chapter ??.

Pursuing the behaviorist tradition, per-head consumption is given by

c :=
C

L
= (1− s)

Y

L
= (1− s) y.
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Now, we can put down the changes in the stock of capital:
·
K = sY − δK (XVI.4)

where sY is the income’s share not consumed and hence invested, and δ is
the constant depreciation rate. Eq. XVI.4 is based on the assumption that
savings and investments are equal so that s can be addressed as the rate of
savings or the rate of gross investments.

Since per-head output y depends on per-head capital endowment k, we
are interested in knowing the dynamics of capital per head. In case of zero
investments, capital endowments per head decrease for two reasons. First,
depreciation reduces the amount of capital available in our economy. Second,
if the population grows, per-head endowment of capital is reduced even if
overall capital stays constant. Our calculations will show the increase of
capital needed in order to make up for these two effects.

We proceed in two steps. First, we apply the quotient rule:

·
k =

·(
K

L

)
=

·
KL−

·
LK

L2

=

·
K

L
−

·
L

L

K

L

=

·
K

L
− nk

and find how the change in per-head capital depends on the change of capital
·
K, labor supply L, the growth rate of labor n := γL and the capital per
head k.

Second, we insert eq. XVI.4 and find
·
k =

sY − δK

L
− nk

= s
Y

L
− δ

K

L
− nk

= skα − (δ + n)k.

By deviding with k > 0, we obtain the growth rate of per-head capital

γk =

·
k

k
=

s

k1−α
− (δ + n) . (XVI.5)

Capital per head increases if the actual investment per head

s
Y

L
lies above the break-even investment per head

(δ + n)k.

Note that the break-even investment per head reflects the two effects dis-
cussed above.
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Let us consider two economies that differ only in capital endowment per
head but have equal parameters s, δ, and n. Then, the capital-poor economy
(measured in capital per head) will witness a greater growth of capital per
head. This can easily be seen from eq. XVI.5. This is the property of
β-convergence that we will look at in greater detail in chapter ??.

6. Steady state (CD production function)

Apart from the dynamics, we are interested in wether our variables will
settle down in the long run. If they do, a so-called steady state has been
achieved.

D�������
� XVI.6. A steady state is a tuple of relevant economic vari-
ables that grow at constant rates.

The reader will note that this equilibrium concept is very different from
microeconomic equilibrium concepts. Indeed, the definition does not refer
to any economic actors that have preferences, endowments and actions or
strategies. So far, growth theory is devoid of preferences, optimization, and
other ingredients typical of economic theory. We will turn to a more actor-
based growth theory in later chapters and, in a very restrictive manner, in
the next section.

For the Solow model, one might consider the tuples (Y,K,L) or (Y, y, k, L) .
Since the per-head capital endowment is a central variable, a steady state

implies that
·
k
k and hence (see eq. XVI.5)

s

k1−α
− (δ + n)

is constant. However, since s, δ and n are constant, this term, can be con-

stant only if k does not change. Formally, this can be seen from
d

(
s

k
1−α
t

−(δ+n)
)

dt =

0.

Indeed, we obtain

d
(

s
k1−α

− (δ + n)
)

dt
=

d
(
sk−1+α

)

dt

= s (−1 + α)k−2+α
dk

dt

= s (−1 + α)
1

k2−α
dk

dt

which is equal to zero

• for s = 0, in which case the (constant!) growth rate of per-head
capital is equal to − (δ + n) and per-head capital approaches zero,
or
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F����� 2. Break-even versus actual investment

• for dk
dt = 0, so that the growth rate of per-head capital is zero and

the steady state is characterized by
s

(k∗)1−α
= δ + n, (XVI.6)

s (k∗)α = (δ + n) k∗, or (XVI.7)

k∗ =

(
s

δ + n

) 1
1−α

. (XVI.8)

In the steady state, k∗ is constant and so are

y∗ = f (k∗) = (k∗)α =

(
s

δ + n

) α
1−α

and

c∗ = (1− s)

(
s

δ + n

) α
1−α

.

On the other hand, K, Y, and C grow at rate n.

E������� XVI.11. Show this. Hint: remember K = kL, Y = yL, and

C = cL.

The dynamics and the steady state can be visualized as in fig. 2 and 3.
In both figures, k is the abscisse variable. The first depicts the change in
per-head capital, the second the growth rate.

Both figures suggest that the per-head endowment of capital increases
as long as it is smaller than the steady-state value. This can also be shown
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k
0

n+δ

( )
α−= 1k

s

k

kf
s

0<kγ

0>kγ

*k

F����� 3. Positive and negative growth rates

algebraically: 0 < k < k∗ =
(

s
δ+n

) 1
1−α

implies

γk =
s

k1−α
− (δ + n)

>
s

(k∗)1−α
− (δ + n)

=
s

((
s

δ+n

) 1
1−α

)1−α − (δ + n)

= 0.

Inversely, capital per head goes down if it is larger than the steady-state
value. In this sense, the steady state at k∗ is stable.

Another steady state exists at k = 0. Here, output is zero and invest-
ment, too. However, for a small k > 0 capital per head increases (if s > 0

holds) and converges towards k∗.
Both figures show how changes in s, δ, n, and α influence the steady-state

capital per head. This is the topic of the next section.
An alternative way to obtain the steady state is to solve the differential

equation
.
k = skα − (n+ δ)k.
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The solution is

kt =

(
s

n+ δ
+

(
k1−α0 − s

n+ δ

)
e−(1−α)(n+δ)t

) 1
1−α

.

E������� XVI.12. Can you confirm that the solution is correct? You
need to form the time derivative of kt and find the above differential equation.

Hint: this is not easy, so this time you will be pardoned for not trying for

yourself.

Now, by letting the time index go towards infinity, we find

lim
t→∞

e−(1−α)(n+δ)t = lim
t→∞

1

e(1−α)(n+δ)t
= 0

and see that kt converges towards its steady state:

lim
t→∞

kt

=

(
s

n+ δ
+

(
k1−α0 − s

n+ δ

)
lim
t→∞

e−(1−α)(n+δ)t
) 1

1−α

=

(
s

n+ δ
+

(
k1−α0 − s

n+ δ

)
· 0

) 1
1−α

=

(
s

n+ δ

) 1
1−α

= k∗.

7. Comparative statics and the golden rule (CD production
function)

Comparative statics means: How do the (exogenous) parameters of our
model influence the (endogenous) variables? In the Solow model, the para-
meters are s, δ, n, and α. The central variable is capital per head,

k∗ =
(

s

δ + n

) 1
1−α

.

It is a positive function of

• the production elasticity of capital α and
• the saving rate s

but depends negatively on

• the rate of depreciation δ and
• the growth rate of the population n.

It is important to note that a change in these parameters does indeed change
capital per head, but does not change the growth rates of the most important
variables (which are 0 and n, respectively).

With respect to developing countries, Robert Solow posed the famous
question: ”Why are we so rich and they so poor?” His model does provide
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a partial answer. Consumption per head may be taken as an indicator of
richness. Indeed, looking at

c∗ = (1− s)

(
s

δ + n

) α
1−α

,

we find that a high rate of depreciation (no repair of public and private
capital) and a high rate of population growth depress consumption per head.
Also, a high production elasticity of capital increases consumption because
it increases capital per head and output per head. However, while saving
increases capital per head, it does not unambiguously increase consumption
per head. On one hand, increasing s decreases consumption immediately, on
the other hand, increasing s leads to a higher per-head capital and income.

This brings us to the question of which saving rate is optimal, where op-
timality is defined in terms of steady-state consumption per head c∗. Setting
the derivative of

c∗ = (1− s) y∗

= (k∗ (s))α − s (k∗ (s))α

= (k∗ (s))α − (δ + n)k∗ (eq. XVI.7)

with respect to s equal to zero yields

α (k∗ (s))α−1
dk∗

ds
− (δ + n)

dk∗

ds
= 0,

hence

kgold
!
=

(
α

δ + n

) 1
1−α

.

kgold is the capital per head in the steady state that maximizes steady-state
consumption per head. The optimal capital per head is positive function
of α (the production elasticity of capital) and a negative function of both δ

(depreciation rate) and n (rate of growth of the population). Comparing,

kgold
!
=

(
α

δ + n

) 1
1−α

and k∗ (s) =
(

s

δ + n

) 1
1−α

yields

sgold
!
= α.

Here, the exclamation marks ! expresses the fact that kgold and sgold are
the result of an optimization. A capital endowment per head above kgold is
”dynamically inefficient”, i.e., it is possible to consume more in every period
by saving less.

Fig. 4 helps to visualize the golden rule. sgold leads to a steady-state
capital per head kgold and a steady-state consumption per head cgold. Note
that steady-state consumption c∗ is the difference of

(k∗ (s))α and (δ + n)k∗.
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F����� 4. The golden rule of capital accumulation

Hence, in order to maximize this difference, the slope of (k∗ (s))α has to
equal the slope of (δ + n)k∗ which is δ + n.

8. Neoclassical production function

8.1. Constant returns to scale. So far, we looked at the Solow
model where the production function is of the Cobb-Douglas variety. This
is unduly restrictive, motivated by didactic considerations, only. In gen-
eral terms, the Solow model presupposes a neoclassical production function
(the most prominent example being Cobb-Douglas). A production function
Y = F (K,L) is called neoclassical if F has two properties:

(1) constant returns to scale and
(2) decreasing marginal productivities obeying the Inada conditions.

Neoclassical production functions are of constant returns which will turn
out to be a very powerful property. Constant returns to scale is a special
sort of homogeneity:

D�������
� XVI.7. A production function F is homogeneous of degree

d, if we have

F (τK, τL) = τdF (K,L) ,K ≥ 0, L ≥ 0

or any τ ≥ 0. A production function F exhibits constant returns to scale if

it is homogeneous of degree 1.
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E������� XVI.13. Prove that the production function given by

F (K,L) =
[
αK−ρ + (1− α)L−ρ

]−1/ρ
, 0 < α < 1, ρ > −1, ρ �= 0

exhibits constant returns to scale.

E������� XVI.14. Can you show that the Leontief production function,
given by

Y = F (K,L) = min (AK,BL) ,

also obeys constant returns to scale?

The production function of the above exercise (which is not neoclassical!)
is called CES production function because it shows a ”constant elasticity of
substitution” which we will demonstrate below on in section ??.

Constant returns to scale are not a very plausible assumption. Indeed,
for very low endowments of capital and labor, constant returns will not hold
because gains from specialization need a certain size of the economy. Also,
the reader might think of public goods such as software (production) which
can be used by everyone in a small economy and a huge economy alike. On
the other hand, if all gains from specialization have been exhausted and no
public goods exist, constant returns to scale might hold for τ ≥ 1.

E������� XVI.15. Can you prove F (0, 0) = 0 for any constant-returns

production function F?

The expedience of constant returns lies in the possibility of expressing
the output per head as a function of capital per head. Indeed, for τ := 1

L ,

we obtain

F

(
K

L
, 1

)
= F

(
1

L
K,

1

L
L

)
=

1

L
F (K,L) .

By defining

k : =
K

L
,

y : =
Y

L
, and

f (k) : = F (k, 1)

we find

y =
F (K,L)

L
= F

(
K

L
, 1

)
= f (k) . (XVI.9)

Hence, f (k) is the output per head for a per-head endowment of capital k.
Romer (1996, S. 9) suggests the following interpretation of this equation.
Imagine that the economy is devided in L small economies, each of which
endowed with 1 unit of labor and k = K

L units of capital. Because of
constant returns, each of these small economies produces an Lth part of the
total economy. f is called the production function in intensive form.
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E������� XVI.16. Determine the intensive form of the CES production
function.

Constant returns is a powerful restriction that turns out to have many
interesting consequences concerning the marginal productivities

∂F

∂K
and

∂F

∂L
.

We assume that our production functions are ”twice continuously differen-
tiable”. Note that every differentiable function is continuous. Therefore, a
twice differentiable function is continuous and its first derivative is contin-
uous, too. Inserting ”continuously” in ”twice continuously differentiable”
ensures that the second-order derivatives are also continuous. Our produc-
tion function has four second-order derivates, two of them mixed:

∂2F

(∂K)2
: =

∂ ∂F
∂K

∂K
,

∂2F

(∂L)2
: =

∂ ∂F∂L
∂L

,

∂2F

∂K∂L
: =

∂ ∂F∂L
∂K

, and

∂2F

∂L∂K
: =

∂ ∂F
∂K

∂L

The two mixed derivates are equal. The effect of a marginal increase of
capital on the marginal productivity of labor is equal to the effect of a
marginal increase of labor on the marginal productivity of capital.

Sometimes, it is necessary to explicitly state where (for which capital
and labor values) a derivative is calculated. If no such values are given,
(K,L) is assumed, for example,

∂F

∂K
=

∂F

∂K

∣∣∣∣
(K,L)

.

We can now prove some identities that follow from the fact that F is
constant-returns.

L���� XVI.3. Let F be homogeneous of degree 1. Then,

(1) the marginal productivities are homogeneous of degree 0 :

∂F

∂K

∣∣∣∣
(τK,τL)

=
∂F

∂K

∣∣∣∣
(K,L)

and (XVI.10)

∂F

∂L

∣∣∣∣
(τK,τL)

=
∂F

∂L

∣∣∣∣
(K,L)

(XVI.11)
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(2) the second-order derivatives are homogenous of degree −1 :

τ
∂2F

(∂K)2

∣∣∣∣
(τK,τL)

=
∂2F

(∂K)2

∣∣∣∣
(K,L)

and (XVI.12)

τ
∂2F

(∂L)2

∣∣∣∣
(τK,τL)

=
∂2F

(∂L)2

∣∣∣∣
(K,L)

(XVI.13)

(3) the marginal productivities can be expressed as functions of capital
per head, k :

∂F

∂K
=

df

dk
and (XVI.14)

∂F

∂L
= f (k)− k

df

dk
=: ω (k) (XVI.15)

(4) Euler’s theorem holds:

F (K,L) =
∂F

∂K
K +

∂F

∂L
L (XVI.16)

and, finally,

(5) the second-order derivatives relate to each other in a simple man-
ner:

∂2F

∂K∂L
= −k ∂2F

(∂K)2
, (XVI.17)

∂2F

∂K∂L
= −1

k

∂2F

(∂L)2
, and (XVI.18)

∂2F

(∂K)2
∂2F

(∂L)2
=

(
∂2F

∂K∂L

)2
. (XVI.19)

The first item of the above lemma can be solved by the reader.

E������� XVI.17. Prove
∂F

∂K

∣∣∣∣
(τK,τL)

=
∂F

∂K

∣∣∣∣
(K,L)

and

∂F

∂L

∣∣∣∣
(τK,τL)

=
∂F

∂L

∣∣∣∣
(K,L)

for a constant-returns production function F, i.e., show that the marginal

productivities are homogeneous of degree 0 (note τ0 = 1). Hint: form the

derivative of F (τK, τL) = τF (K,L) with respect to K and L and use the

chain rule of differentiation.

The first item can be generalized as we note, without proof, in the fol-
lowing lemma:

L���� XVI.4. Let F be a production function that is homogeneous of
degree d. Then,

∂F

∂K

∣∣∣∣
(τK,τL)

= τd−1
∂F

∂K

∣∣∣∣
(K,L)
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The proof of the second item is quite analogous to the proof of the first.
The trick is to form the derivative of ∂F

∂K

∣∣
(τK,τL)

= ∂F
∂K

∣∣
(K,L)

with respect to
K and to proceed analogously with labor.

Turning to the third item, we find

∂F (K,L)

∂K
=

∂
[
Lf

(
K
L

)]

∂K
= L

df

d
(
K
L

) ∂
(
K
L

)

∂K

= L
df

dk

1

L
=

df

dk
.

In case of constant returns, the marginal product of labor is designated by
ω (k) . Here, ω is reminiscent of w as in wage rate. Indeed, if factors are
paid their marginal products, the wage rate of a worker who uses k units of
capital is equal to

ω (k) = f (k)︸ ︷︷ ︸
output by one worker

with capital k

− k︸︷︷︸
capital

used by worker

df

dk︸︷︷︸
marginal-product

price for capital
︸ ︷︷ ︸

payments for capital

used by worker

E������� XVI.18. Show ∂F
∂L = f (k)−k dfdk . Hint: Beginn with

∂F (K,L)
∂L =

∂(Lf(KL−1))
∂L and apply the product rule of differentiation.

E������� XVI.19. Prove Euler’s theorem (item 4). Hint: You need the

results from item 3.

Euler’s theorem claims that factor payments according to marginal prod-
ucts exhaust the total product. Also useful: Euler’s theorem implies item
5. Forming the derivative with respect to K and L yield

∂F

∂K
=

(
∂2F

(∂K)2
K +

∂F

∂K

)
+

∂2F

∂K∂L
L and

∂F

∂L
=

∂2F

∂K∂L
K +

(
∂2F

(∂L)2
L+

∂F

∂L

)

and hence the desired equalities

∂2F

∂K∂L
= −k ∂2F

(∂K)2
and

∂2F

∂K∂L
= −1

k

∂2F

(∂L)2

which imply the third one,

∂2F

(∂K)2
∂2F

(∂L)2
=

(
∂2F

∂K∂L

)2
.
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This concludes the proof of lemma XVI.3.

8.2. Decreasing marginal productivities and Inada conditions.
The second property of neoclassical production functions concern the mar-
ginal productivities of the factors. For capital (and analogously, for labor),
neoclassical production functions require positive and decreasing marginal
productivity:

∂F

∂K
> 0 for L > 0, (XVI.20)

∂2F

(∂K)2
< 0. (XVI.21)

That is, F is a concave function of K (and of L, too). Neoclassical produc-
tion functions are also defined by the Inada conditions. These require that
the marginal product (being positive and decreasing) finally vanishes:

lim
K→∞

∂F

∂K
= 0 (XVI.22)

If, on the other hand, K tends to 0, the marginal product (having increased
all the way with decreasing K) gets infinite:

lim
K→0

∂F

∂K
=∞ (XVI.23)

The Inada conditions also require the corresponding properties for labor.
We now need to know whether f inherits these properties from F . In-

deed, we find that

• the marginal product per head of capital per head is positive by
XVI.20:

df

dk
=

∂F (k, 1)

∂k
> 0, (XVI.24)

• the marginal product per head of capital per head decreases by
XVI.21:

d2f

(dk)2
=

∂2F (k, 1)

(∂k)2
< 0, (XVI.25)

and also
• the Inada conditions hold by XVI.22 and XVI.23:

lim
k→∞

df

dk
= lim

k→∞
∂F (k, 1)

∂k
= 0, (XVI.26)

lim
k→0

df

dk
= lim

k→0
∂F (k, 1)

∂k
=∞. (XVI.27)

We have shown above that constant returns to scale imply F (0, 0) = 0.

Furthermore, using the Inada conditions, Barro & Sala-i-Martin (1999, p.
52) show that F (0, L) = F (K, 0) = 0 hold for any L and K. Hence, we also
have

f (0) = F (0, 1) = 0. (XVI.28)
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9. Dynamics and steady state (neoclassical production function)

Very similar to the procedure in the first part of this chapter, we derive
the dynamics for capital per head. First of all, we have

·
Kt = sYt − δKt (XVI.29)

where

• Kt is the economy’s stock of capital,

•
·
Kt is the change of this stock

• due to sYt, the share s (=saving rate) of income Yt invested and
• due to δKt, the depreciated capital at a depreciation rate δ.

Since output per head y can be expressed as a function of capital per
head k, we consider the dynamics of k :

·
k =

·(
K

L

)

=

·
KL−

·
LK

L2

=

·
K

L
− nk

=
sY − δK

L
− nk

= sf (k)− (n+ δ)k (XVI.30)

where n is the (working) population’s growth rate. In order to grow (in
terms of capital per head), the actual investment per head

sf (k)

has to make up for both per-head depreciation of capital δk and the dilution
effect through population growth nk.

The growth rate of per-capita endowment of capital is given by

γk =

·
k

k
= s

f (k)

k
− (δ + n) , k > 0. (XVI.31)

In a steady state, growth rates of all relevant economic variables have to be
constant so that

sf (k)

k
− (δ + n)

needs to be constant, too. Therefore, if k is the steady-state capital per
head, sf(k)

k − (δ + n) may not change. Therefore according to the quotient
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rule and the chain rule,

0 =
d
[
sf(k)
k − (δ + n)

]

dt

= s
df(k)k
dt

= s
df
dk

dk
dt k − dk

dt f (k)

k2

= s
df
dkk − f (k)

k

dk
dt

k

= −sf (k)−
df
dkk

k
γk

= −s
∂F
∂L

k
γk (eq. ??).

Since the marginal product of labor is positive, a steady state occurs at
s = 0 or γk = 0. Leaving aside zero savings for the moment, eq. XVI.31
implies

sf (k∗) = (δ + n) k∗ (XVI.32)

for the steady-state variable k∗.
Output and consumption per head are also constant,

y∗ = f (k∗) and

c∗ = (1− s) y∗,

while K = kL, Y = yL, and C = cL grow at rate n.
We depict the dynamics and the steady state in figures 5 and 6. The

first depicts the change in per-head capital. When the actual investment out-
passes the break-even investment, capital per head increases by eq. XVI.30.
However, a second steady state exists at k = 0, with output and investment
equal to zero. This steady state is not stable. Indeed, for a small k > 0

capital per head increases (if s > 0 holds) and converges towards k∗. Fig. 6
shows the development towards k∗ by depicting eq. XVI.31.

Both figures assume s > 0. If we have s = 0, according to eq. XVI.31,
the growth rate of capital per head is negative and constant at − (δ + n) .

E������� XVI.20. Draw the equivalents of figures 5 and 6 for s = 0.

Returning to s > 0, we now want to show more formally that k = 0 and
k∗ > 0 are the two values of capital per head where the actual investment
equals the break-even investment.

• For sufficiently small endowments of capital per head k > 0, ac-
tual investment per head sf (k) is greater than the break-even in-

vestment (δ + n) k by the Inada condition XVI.27. Hence,
·
k =

sf (k)− (n+ δ) k is positive and capital per head increases.
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F����� 5. Break-even versus actual investment
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F����� 6. Positive and negative growth rates

• For sufficiently large k, actual investment per head is smaller than
break-even investment, by the other Inada condition XVI.26. There-
fore, capital per head decreases.

• Summarizing, sf (k) − (n+ δ) k is positive for small k and neg-
ative for large ones. Therefore, we should find a k∗ in between
where sf (k∗) − (n+ δ)k∗ is zero. This follows from the so-called
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intermediate-value theorem which holds for continuous functions.
(sf (k)− (n+ δ)k is continuous for k > 0.)

• k = 0 is a steady state by f (0) = 0 (see p. 298).
• Finally, f and hence sf (k)−(n+ δ)k is concave by XVI.25 so that
further nulls are excluded.

10. Comparative statics and the golden rule (neoclassical
production function)

In general, the comparative-statics results do not change by considering
a general neoclassical production function instead of a CD production func-
tion. In particular, k∗ is a positive function of s (dk∗/ds > 0) which is clear
from fig. 5.

Starting from

c∗ (s) = (1− s) f (k∗ (s))

= f (k∗ (s))− (δ + n) k∗ (s) (eq. XVI.32)

we maximize consumption per head by

f ′ (k∗ (s))
dk∗

ds
− (δ + n)

dk∗

ds
!
= 0

⇔ f ′ (k∗ (s))
!
= (δ + n) (note

dk∗

ds
> 0).

We call
f ′ (kgold)

!
= δ + n

the golden rule of capital accumulation, depicted in fig. 7. Indeed, the slope
of f (k∗ (s)) has to be equal to the slope of (δ + n) k∗ (s) because steady-
state consumption c∗ is the difference of output per head f (k∗ (s)) and
(break-even) investment (δ + n)k∗.
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F����� 7. The golden rule of capital accumulation

11. Topics and literature

The main topics in this chapter are

• Solow model
• depreciation
• growth rate

•

We recommend the textbook

12. Solutions

Exercise XVI.1
We obtain

xt+1 − xt
xt

=
t+ 1− t

t
=

1

t

yt+1 − yt
yt

=
t+ 5− (t+ 4)

t+ 4
=

1

t+ 4
<

1

t
and

zt+1 − zt
yt

=
100 (t+ 1)− 100t

100t
=

1

t

Exercise XVI.2
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You have found

dyt
dt

yt
=

d(y0egt)
dt

y0egt

=
y0e

gtg

y0egt

= g.

If another result were correct, our solution to the differential equation would
have been false.
Exercise XVI.3

Using the original definition, we obtain

γY =

·
Yt
Yt

=
d(KtLt)

dt

KtLt

=
dKt

dt Lt +
dLt
dt Kt

KtLt

=
dKt

dt

Kt
+

dLt
dt

Lt
= γK + γL.

Using the logarithm, we have

γY =
d lnYt
dt

=
d ln (KtLt)

dt

=
d (lnKt + lnLt)

dt

=
d lnKt

dt
+
d lnLt
dt

= γK + γL.

Exercise XVI.4
Applying the natural logarithm on both sides of the equation yields

ln yt = ln y0 + ln eγyt

= ln y0 + γyt

and hence

γy =
ln yt − ln y0

t− 0
=

ln yt
y0

t− 0
.

Exercise XVI.5



12. SOLUTIONS 305

Obviously, y0 > x0. Now,

γy =
2

2t+ 2

=
1

t+ 1
(multiply by

1/2

1/2
)

<
1

t
= γx

Exercise XVI.6
While x and y converge in a weak sense, they do not in a strong sense:

lim
t→∞

2t+ 2

t

= lim
t→∞

(
2 +

2

t

)

= 2 + lim
t→∞

2

t
= 2 > 1

yt
xt

decreases (by weak convergence), but yt > 2xt for all t.
Exercise XVI.7

Constant returns to scale are easy to show:

F (τK, τL) = (τK)α (τL)1−α

= ταKατ1−αL1−α

= τατ1−αKαL1−α

= τF (K,L) .

Exercise XVI.8
∂Y
∂K is just another expression of ∂F

∂K , therefore

εY,K =
∂F

∂K

K

Y

= α

(
L

K

)1−α K

KαL1−α

= α.

Exercise XVI.9
You have found (haven’t you?)
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∂F

∂K
·K +

∂F

∂L
· L = α

(
L

K

)1−α
·K + (1− α)

(
K

L

)α

· L

=

[
α
L1−α

K1−α ·K + (1− α)
Kα

Lα
· L

]

=
[
αKαL1−α + (1− α)KαL1−α

]

= F (K,L) .

Exercise XVI.10
For Yt = F (Kt, Lt) = Kα

t L
1−α
t , we find

γY =
dYt
dt

Yt

=

d(Kα
t L

1−α
t )

dt

Kα
t L

1−α
t

=

[
αKα−1

t
dK
dt L

1−α
t +Kα

t (1− α)L−αt
dL
dt

]

Kα
t L

1−α
t

(product rule and chain rule)

= α
dK
dt

Kt
+ (1− α)

dL
dt

Lt
= αγK + (1− α) γL.

Alternatively, we have

γY =
d lnYt
dt

=
d ln

(
Kα
t L

1−α
t

)

dt

=
d (α lnKt + (1− α) lnLt)

dt

=
d (α lnKt)

dt
+
d ((1− α) lnLt)

dt

= α
d lnKt

dt
+ (1− α)

d lnLt
dt

= αγK + (1− α)γL.

Exercise XVI.11
Since K is the product of k and L, we have

γK = γk + γL = 0+ n = n.

Analogously, we obtain γY = γC = n.

Exercise XVI.12
We need to show that

kt =

[
s

n+ δ
+ e(1−α)(−n−δ)t

(
k1−α0 − s

n+ δ

)] 1
1−α

(XVI.33)
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solves the differential equation

.
k = skα − (n+ δ)k. (XVI.34)

We define

E (t) :=
s

n+ δ
+ e(1−α)(−n−δ)t

(
k1−α0 − s

n+ δ

)
.

Then, we have

kt = (E (t))
1

1−α and (XVI.35)

E (t) = (kt)
1−α (XVI.36)

Before forming the derivative of eq. XVI.33 with respect to t, we take
note of the following:

(1) Eq. XVI.33 can be rewritten:

k1−αt = e(1−α)(−n−δ)t
(
k1−α0 − s

n+ δ

)
+

s

n+ δ
(XVI.37)

and

e(1−α)(−n−δ)t · k1−α0 = k1−αt +
s

n+ δ

(
e(1−α)(−n−δ)t − 1

)
. (XVI.38)

(2) It is easy to see

1

1− α
− 1 =

1

1− α
− 1− α

1− α
=

α

1− α
(XVI.39)

(3) Finally, forming the derivative of the term in square brackets of
XVI.33 yields

dE (t)

dt

= (1− α)(−n− δ)e(1−α)(−n−δ)t
(
k1−α0 − s

n+ δ

)

= e(1−α)(−n−δ)tk1−α0 (1− α)(−n− δ)

+(1− α)e(1−α)(−n−δ)ts (XVI.40)
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Now, we form the derivative of kt with respect to t and obtain the
desired result:

dkt
dt

=
1

1− α
(E (t))

1
1−α

−1 · dE (t)

dt
(chain rule, applied to XVI.35)

=
1

1− α
(E (t))

α
1−α

dE (t)

dt
(XVI.39)

= kαt ·
[
e(1−α)(−n−δ)tk(0)1−α(−n− δ) + e(1−α)(−n−δ)ts

]
(XVI.36,XVI.40)

= kαt ·
[(

k1−αt +
s

n+ δ

(
e(1−α)(−n−δ)t − 1

))
(−n− δ) + e(1−α)(−n−δ)ts

]
(XVI.38)

= kαt ·
[
k1−αt (−n− δ)− s

(
e(1−α)(−n−δ)t − 1

)
+ e(1−α)(−n−δ)ts

]

= kαt ·
[
k1−αt (−n− δ)− se(1−α)(s−n−δ)t + s+ e(1−α)(−n−δ)ts

]

= kαt ·
[
k1−αt (−n− δ) + s

]

= kt(−n− δ) + sk(t)α

Exercise XVI.13
For any τ ≥ 0, we obtain

F (τK, τL) =
[
α (τK)−ρ + (1− α) (τL)−ρ

]−1/ρ

=
[
ατ−ρK−ρ + (1− α) τ−ρL−ρ

]−1/ρ

=
(
τ−ρ

[(
αK−ρ + (1− α)L−ρ

)])−1/ρ

=
(
τ−ρ

)−1/ρ [(
αK−ρ + (1− α)L−ρ

)]−1/ρ

= τ−ρ·(−1/ρ)F (K,L)

= τF (K,L)

and confirm that F is constant-returns.
Exercise XVI.14

First, we note F (0 ·K, 0 · L) = 0 · F (K,L), so that the equality holds
for τ = 0. For τ > 0, we have

AK ≤ BL⇔ τ (AK) ≤ τ (BL)

and hence

F (τK, τL) = min (A (τK) , B (τL))

= min (τ (AK) , τ (BL))

= τ min (AK,BL) .

Exercise XVI.15
For τ := 0, the desired equation follows easily:

F (0, 0) = F (0 ·K, 0 · L) = 0 · F (K,L) = 0

Exercise XVI.16
The intensive form of the CES production function is given by
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f (k) = F

(
K

L
, 1

)

=

[
α

(
K

L

)−ρ
+ (1− α) · 1−ρ

]−1/ρ

=
[
αk−ρ + (1− α)

]−1/ρ

Exercise XVI.17
The derivative of F (τK, τL) = τF (K,L) with respect to K yields

∂F (τK, τL)

∂K
=

∂ [τF (K,L)]

∂K

⇔ ∂F (τK, τL)

∂ (τK)

d (τK)

dK
= τ

∂ [F (K,L)]

∂K

⇔ ∂F (τK, τL)

∂ (τK)
=

∂ [F (K,L)]

∂K

⇔ ∂F

∂K

∣∣∣∣
(τK,τL)

=
∂F

∂K

∣∣∣∣
(K,L)

.

Analogously, forming the derivative with respect to L leads to

∂F (τK, τL)

∂L
=

∂ [τF (K,L)]

∂L

⇔ ∂F

∂L

∣∣∣∣
(τK,τL)

=
∂F

∂L

∣∣∣∣
(K,L)

.

Exercise XVI.18
You have found

∂F (K,L)

∂L
=

∂
(
Lf

(
KL−1

))

∂L

= f
(
KL−1

)
+ L

∂f

∂ (KL−1)

d
(
KL−1

)

dL

= f (k) + L
∂f

∂k
(−1)KL−2

= f (k)− df

dk
k.

Exercise XVI.19
Euler’s theorem:
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F����� 8. Break-even versus actual investment for zero savings

∂F

∂K
K +

∂F

∂L
L =

df

dk
K +

(
f (k)− k

df

dk

)
L

=
df

dk
K + f (k)L− K

L

df

dk
L

= Lf (k)

= F (K,L) .

Exercise XVI.20
Compare fig. 8 and 9.
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k

n+δ

( )
k
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F����� 9. Positive and negative growth rates

13. Further exercises without solutions





CHAPTER XVII

Growth theory without constant returns

1. Introduction

1The standard Solow (1956) model uses a constant-returns production
function in order to trace the capital-per-head trajectory in terms of the
rate of saving (s), the depreciation rate (δ), the growth rate of the (working)
population (n) and the initial capital per head (k0). We present a Solow-
type model where the population is divided in m groups which differ in s,

δ, n, and k0. It is an easy exercise to present a suchlike model if returns
to scale are constant. In that case, paying factors their marginal products
with respect to both labor and capital exhausts the total product (Euler’s
theorem). In our paper, we allow for non-constant returns to scale. In order
to solve the exhaustion problem, we apply the (Pareto efficient!) Shapley
value.

This chapter has a static and a dynamic part. In the first, static, part,
we consider a population of worker-capitalists. They contribute one unit
of labour and a given amount of capital and get paid their Shapley value.
The Shapley value makes use of so-called marginal contributions which are
somewhat similar to marginal products. For tractability reasons, we deal
with atomless populations and need to introduce the continuous Shapley
value, proposed by Aumann & Shapley (1974). We find that the continuous
Shapley value is equal to marginal-product payment in the special case of
constant returns.

We apply the Shapley outcome to the specific question of when immi-
gration into an economy is welcomed by the incumbent groups. We have
two results. First, immigration of both labor and capital (capital imports)
is welcomed only in case of increasing returns to scale. Second, the rela-
tive capital richness of the incumbent groups are decisive for their attitude
towards immigration. In particular, capital-rich groups are more welcom-
ing towards labor immigration and capital-poor groups are more welcoming
towards capital immigration.

In the dynamic, growth theory, part of our paper, we use the static
results to derive the m-group dynamics for production function which is
Cobb-Douglas but not (in general) constant-returns. In the case of one

1This chapter is part of a joint project together with Andre Casajus and Thomas

Steger.
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F����� 1. Attributing measures to players

group only, we can calculate the steady state. In the general case with more
than one group, a steady state does not exists. However, we are able to
characterize an approximate steady state.

2. The static case

2.1. The population and its structure. Our economy is not pop-
ulated by the n players but by m intervals of workers. Assume any vector
LL = (L1, ..., Lm) ∈ Rm+ where Li is the number of workers belonging to group
i. Let λ be the Lebesgues-Borel measure on R. We now choose m intervals
Ii ⊆ R, such that λ (Ii) = Li holds for every i = 1, ...,m and such that the
intervals do not intersect. Thus, Ii stands for the workers of group i and
I := ∪mi=1Ii is the set of all workers with cardinality L :=

∑m

i=1
Li = λ (I).

By B we mean the set of Borel sets of I. We now define µ?Li by

µ
?L
i (K) := λ (K ∩ Ii) ,K ∈ B.

It is easy to show that µ
?L
i is a measure on (I,B). Let µ

?L =
∏

i∈N
µ
?L
i :

B → RN , K �→
(
µ
?L
i (K)

)
i∈N

be the Cartesian product of these measures.

µ (K) distributes the agents in K among the m groups and attributes a size
to each group.

E���
"� XVII.1. Consider fig. 1. We have N = {1, 2} , LL =
(
1
2 , 2

)

and intervals I1 =
[
0, 12

]
and I2 = [2, 4] . For K :=

[
0, 14

]
∪
[
5
2 , 3

]
∈ B we

obtain

µ1 (K) = λ (K ∩ I1) = λ

([
0,

1

4

])
=

1

4
and

µ2 (K) = λ (K ∩ I2) = λ

([
5

2
, 3

])
=

1

2
.
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2.2. Factors of production and production function. Them groups
differ with respect to the capital they own. Let ki be the amount of capital
owned by a worker of group i. The amount of capital is equal to

Ki : = kiLi for group i, and

K : =
m∑

i=1

kiLi for all groups together.

We now define

g = (gK , gL) : Rm+ → R2,

(L1, ..., Lm) �→
(

m∑

i=1

kiLi,
m∑

i=1

Li

)
.

(kiLi, Li) is the capital and labor available to group i of size Li.
For a production function Y = F (K,L),

F ◦ g : Rm+ → R,

(L1, ..., Lm) �→ F (gK (L1, ..., Lm) , gL (L1, ..., Lm))

yields the output producible by the m groups of size L1, ..., Lm.

2.3. Vector measure game and Shapley value. Before we can ap-
ply the continuous Shapley value, we need to define the appropriate vector
measure game. We choose

v := F ◦ g ◦ µ : B → R

Given a coalition S ∈ B, µ (S) specifies how to devide S among them groups,
g shows the labor and capital available to all those groups and F yields the
product. If F is continuously differentiable, so is F ◦ g. If F (0, 0) = 0, we
also have (F ◦ g) (0) = 0. From now on, we assume that F has these two
properties. We can then apply the continuous Shapley value (the so-called
diagonal formula) as proposed by Aumann & Shapley (1974, p. 23) (see also
Neyman 2002, pp. 2141). For S ∈ B, it is given by

Sh (v) (S) =
m∑

j=1

µj (S)

∫ 1

0

∂ (F ◦ g)
∂Lj

∣∣∣∣
(τµ1(I),...,τµm(I))

dτ

=
m∑

j=1

λ (S ∩ Ij)

∫ 1

0

∂ (F ◦ g)
∂Lj

∣∣∣∣
(τL1,...,τLm)

dτ.

The analogue of a player j’s marginal contribution in the discrete Shapley
formula is the derivative of the coalition’s worth with respect to the measure
of agents of player j. This derivative is evaluated at τ LL = (τL1, ..., τLm) .

Thus, the formula looks at coalitions on the diagonal only. Remember that
we have a continuum of agents. If we take a subset of agents by chance, it
is likely that the composition in this subset (how many agents of player 1,
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player 2 etc.) does not deviate much from the composition in the overall
population (see Aumann & Shapley 1974, pp. 23).

We now show that the Shapley value coincides with payments accord-
ing to the marginal products if F is of constant returns. We prepare the
following lemma by three observations.

(1) As is known from the previous chapter, lemma XVI.4 on p. 296,
homogeneity of degree d (constant returns remain degree 1) of a
production function implies homogeneity of degree d − 1 of the
marginal productivities. Formally:

∂F

∂gK

∣∣∣∣
(τK,τL)

= τd−1
∂F

∂gK

∣∣∣∣
(K,L)

(XVII.1)

(2) Therefore, we can write the derivative ∂(F◦g)
∂Lj

∣∣∣
(τL1,...,τLm)

dτ featur-

ing in the diagonal formula as

∂F

∂gK

∣∣∣∣
(gK(τL1,...,τLm),gL(τL1,...,τLm))

∂gK
∂Li

∣∣∣∣
(τL1,...,τLm)

+
∂F

∂gL

∣∣∣∣
(gK(τL1,...,τLm),gL(τL1,...,τLm))

∂gL
∂Li

∣∣∣∣
(τL1

=
∂F

∂gK

∣∣∣∣
(τ
∑m

j=1 kjLj ,τ
∑m

j=1 Lj)
ki +

∂F

∂gL

∣∣∣∣
(τ
∑m

j=1 kjLj ,τ
∑m

j=1 Lj)
(eq. XVII.1)

= τd−1
∂F

∂gK

∣∣∣∣
(
∑m

j=1 kjLj ,
∑m

j=1 Lj)
ki + τd−1

∂F

∂gL

∣∣∣∣
(
∑m

j=1 kjLj ,
∑m

j=1 Lj)

= τd−1
[
∂F

∂gK

∣∣∣∣
(K,L)

ki +
∂F

∂gL

∣∣∣∣
(K,L)

]
.

(3) Finally, we calculate the integral
∫ 1

0
τd−1dτ =

1

d
τd

∣∣∣∣
1

0

=
1

d
. (XVII.2)

Now, for S := Ii, we find

Sh (v) (Ii)

Li
=

1

Li

m∑

j=1

λ (Ii ∩ Ij)

∫ 1

0

∂ (F ◦ g)
∂Lj

∣∣∣∣
(τL1,...,τLm)

dτ

=

∫ 1

0
τd−1

[
∂F

∂gK

∣∣∣∣
(K,L)

ki +
∂F

∂gL

∣∣∣∣
(K,L)

]
dτ (step 2)

=

[
∂F

∂gK

∣∣∣∣
(K,L)

ki +
∂F

∂gL

∣∣∣∣
(K,L)

]∫ 1

0
τd−1dτ

=

[
∂F

∂gK

∣∣∣∣
(K,L)

ki +
∂F

∂gL

∣∣∣∣
(K,L)

]
1

d
(eq. XVII.2)

so that, indeed, the Shapley value of an average agent in Ii is equal
to his marginal product payment in case of constant returns. In
general, if the production function is homogeneous of degree d,

the Shapley value accruing to an agent in group i is equal to the
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marginal product payment devided by d. In this sense, the Shap-
ley value provides an argument to renumerate workers and capital
proportional to the marginal products.

We now turn to the production function given by

Y = F (K,L) = KαLβ, 0 < α, β

which is homogeneous of degree d := α+ β. We obtain the vector measure
game given by

v (S) =

(
m∑

i=1

kiλ (S ∩ Ii)

)α

(λ (S))β ,

and the Shapley value for group i

Yi : = Sh (v) (Ii)

= Li

[
∂F

∂gK

∣∣∣∣
(K,L)

ki +
∂F

∂gL

∣∣∣∣
(K,L)

]
1

α+ β

= Li

[
α

α+ β
Kα−1Lβki +

β

α+ β
KαLβ−1

]
(XVII.3)

E������� XVII.1. Simplify

Yi = Li

[
α

α+ β
Kα−1Lβki +

β

α+ β
KαLβ−1

]

for the one-group case (m = 1, dropping the i-index) and comment!

3. Labor and capital immigration

Let us now examine the question of whether incumbent agents (of group
i) welcome additional groups, via immigration. To fix ideas, we assume that
a ”small” group m+ 1 joins the economy.

D�������
� XVII.1. We have labor immigration into an economy if
Lm+1 > 0 and km+1 = 0 hold. We have capital immigration (capital im-

ports) into an economy if Lm+1 = 0, km+1 > 0 hold.

Note that capital imports imply that Ym+1 is paid to agents outside our
economy. For practical purposes, however, there is no harm in assuming
some very small population size Lm+1 > 0 earning Ym+1.

D�������
� XVII.2. Group i is said to be welcoming towards labor (cap-
ital) immigration if dYidL > 0 (dYidK > 0) holds.

Note that consumption is defined by Ci := (1− si)Yi so that ”welcom-
ing” could equivalently be defined with respect to consumption. We find

dYi
dK

> 0 in case of
K

L
>

1− α

β
ki and

dYi
dL

> 0 in case of ki >
1− β

α

K

L
.
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P�


����
� XVII.1. Considering immigration at time into an econ-
omy, we find:

• Group i benefits from labor immigration if ki >
1−β
α

K
L holds. In

particular, if group i is as capital-rich as the economy as a whole

(ki =
K
L ), group i is welcoming towards labor immigration iff in-

creasing returns to scale hold. The more capital-rich a group is,

the more welcoming towards labor immigration it is. In case of

constant returns to scale, the more-than-average capital-rich groups

welcome labor immigration while the less-than-average capital-rich

groups oppose labor immigration.

• Group i benefits from capital immigration if KL > 1−α
β ki holds. In

particular, if group i is as capital-rich as the economy as a whole

(ki = K
L ), group i is welcoming towards capital immigration iff

increasing returns to scale hold. The more capital-rich a group

is, the less welcoming towards capital immigration it is. In case of

constant returns to scale, the more-than-average capital-rich groups

oppose capital immigration while the less-than-average capital-rich

groups welcome capital immigration.

• Increasing returns to scale are a necessary condition for any group
to be welcoming to both capital and labor.

It may be interesting to speculate about whether some group i benefitting
from immigration will later come to regret it. Consider, for example, a
capital-rich group that welcomes labor immigration but opposes capital im-
migration. If an initially capital-poor group has a high rate of saving, group
i may finally be harmed.

4. Dynamics of per-head capital endowment

In order to treat the dynamics, we add the time index and denote by

• Iit the set of group-i workers at time t,
• It : ∪mi=1Iit the set of all workers at time t,
• Lit := λ (Iit) the size of group i at time t,
• Lt :=

∑m
i=1 Lit the size of the overall working population at time t,

• LLt = (L1t, ..., Lmt) ∈ Rm+ the population size vector at time t,
• Bt the set of Borel sets of It, and
• µ

?Lt
it : Bt → Rm+ the measure on (It,Bt) defined by µ

?Lt
it (S) :=

λ (S ∩ Iit) , S ∈ Bt.

The m groups grow at rates n1, ..., nm, respectively.
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Taking depreciation into account, the capital stock of group i develops
in accordance with

d (Litkit)

dt
=

dKit

dt
= siYit − δiKit

= siLit

[
α

α+ β
Kα−1
t Lβt kit +

β

α+ β
Kα
t L

β−1
t

]
− δiLitkit.

Now, because of

d(Litkit)
dt

Lit
=

dkit
dt

+ kit

dLit
dt

Lit

=
dkit
dt

+ kitni

we obtain

dkit
dt

=
d(Litkit)

dt

Lit
−kitni = si

[
α

α+ β
Kα−1
t Lβt kit +

β

α+ β
Kα
t L

β−1
t

]
−(δi + ni) kit

and hence

·
kit
kit

= si

[
α

α+ β

Lβt
K1−α
t

+
β

α+ β

Kα
t

L1−βt

· 1

kit

]
− (δi + ni) . (XVII.4)

In the one-group case (m = 1, dropping the i-index), we obtain

·
kt
kt

= s
Lβt

K1−α
t

− (δ + n) (XVII.5)

If, on top, we assume α+β = 1 (neoclassical production function), we obtain
the well-known Solow equation

·
kt
kt

=
s

k1−αt

− (δ + n)

For two groups i and j with kit > kjt, we obtain the difference in growth
rates of capital per head

·
kit
kit

−
·
kjt
kjt

= (si − sj)
α

α+ β

Lβt
K1−α
t

+

(
si
kit

− sj
kjt

)
β

α+ β

Kα
t

L1−βt

− (δi + ni) + (δj + nj)

We now turn to the special case of equal rates of growth for both sectors of
the population, n := ni = nj, equal depreciation rates, δ := δi = δj , and
equal rates of saving, s := si = sj . Then, we have convergence of growth
rates in capital per head.
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5. The steady state for a one-group economy

Our model admits a steady state for one group. In order to trace out
the capital-per-head trajectory, we write L as L0ent. We then find

Lβ

K1−α =

(
L0e

nt
)β

(L0entk)
1−α =

(
L0e

nt
)β

(L0ent)
1−α k1−α

= Lα+b−10

(
ent

)α+β−1

k1−α
= Lα+b−10

e(α+β−1)nt

k1−α
.

(XVII.6)
Omitting the time as well as the group index, the differential equation XVII.5
can be written as

·
kt
kt

= s
Lβt

K1−α
t

− (δ + n)

= sLα+b−10

e(α+β−1)nt

k1−α
− (δ + n) (eq. XVII.6)

Normalizing the population at time 0, we let L0 = 1 and can work with
·
k

k
= s

e(α+β−1)nt

k1−α
− (δ + n)

If (!) a steady state exists, the growth rate of capital per head has to be
zero and we find

0 =
∂
·
k
k

∂t
=

∂
(
se(α+β−1)nt

k1−α − (δ + n)
)

∂t

=
se(α+β−1)nt (α+ β − 1)n · k1−α − (1− α)k−α

·
k · se(α+β−1)nt

k2(1−α)
,

hence

se(α+β−1)nt (α+ β − 1)n · k1−α − (1− α) k−α
·
k · se(α+β−1)nt = 0

and finally
·
kc

kc
=

α+ β − 1

1− α
n,

where c denotes ”candidate”. From

se(α+β−1)nt

k1−α
− (δ + n) =

α+ β − 1

1− α
n

we obtain the candidate equilibrium path

kc =

(
se(α+β−1)nt

(α+β−1)n
1−α + (δ + n)

) 1
1−α

.

Calculating the growth rate on this path, we obtain

d

(
se(α+β−1)nt

(α+β−1)n
1−α +(δ+n)

) 1
1−α

dt(
se(α+β−1)nt

(α+β−1)n
1−α

+(δ+n)

) 1
1−α

=
α+ β − 1

1− α
n
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so that
k∗ = kc

is, indeed, the equilibrium path of per-head capital. In order to check on
stability, we note that

·
k

k
>

·
k∗

k∗
implies, and is implied by,

k < k∗.???

In case of constant returns to scale, we obtain (of course) growth rate 0.

For increasing returns to scale the per-head capital endowment grows at a
constant rate, for decreasing returns it shrinks. Note that both growth and
shrinkage is leveraged by the growth of the population. In case of one group
only, steady-state per-head consumption is given by

c : = (1− s)KαLβ−1

= (1− s)
(
entk

)α (
ent

)β−1
(L0 = 1)

= (1− s) ent(α+β−1)kα.

In case of decreasing returns to scale (possibly due to shortage of land), con-
sumption tends to zero which makes a positive growth rate of the population
unsustainable and gives rise to a Malthusian interpretation.

6. Conclusion

The continuous Shapley value seems to be a potent instrument to tackle
distributive questions in growth theory in the absence of constant returns.
We could show how to incorporate the continuous Shapley value into a
Solow-type model with non-constant returns. Our model allows to shed some
light on hotly debated immigration policy. In particular, we could identify
the circumstances under which incumbent agents welcome immigration.
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7. Topics and literature

The main topics in this chapter are

• continuous Shapley value
• immigration

•
We recommend the textbook

8. Solutions

Exercise XVII.1
In the one-group case, we obtain

Y = KαLβ

which is also a consequence of Pareto efficiency.
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9. Further exercises without solutions





CHAPTER XVIII

Evolutionary cooperative game theory

1. Introduction

1Evolutionary models of various forms have been part and parcel of
economics for a long time (see, for example, the articles collected by Witt
1993). A specific class of models have been developed within game theory. In
usual parlance, evolutionary game theory (see, for example, Weibull (1995)
or Samuelson (1997)) means evolutionary theory applied to non-cooperative
games. The aim of this paper is to develop an evolutionary cooperative game
theory where we concentrate on the transferable-utility case. Apparently,
ideas in this direction have been around for some time. Nasar (2002, p.
xxiv) reports that John Nash, picking up his old interest in game theory,
“received a grant from the National Science Foundation to develop a new
‘evolutionary’ solution concept for cooperative games”.

Let us reconsider the apex game h for N = {1, ..., 4} . It is defined by

h (K) =





1, 1 ∈ K and K\ {1} �= ∅
1, K = N\ {1}
0, otherwise

The Shapley payoff vector is

Sh (h) =

(
1

2
,
1

6
,
1

6
,
1

6

)
.

Imbedding games like the apex game into an evolutionary setting, we in-
terpret the payoffs as fitness. A player’s success feeds into his proliferation.
In order to model reproductive differences between players, we distinguish
between players (like the four players in the apex game) and agents who take
up the roles (or types) of these n players. If a role is particularly fruitful
(in producing relatively high payoffs for the agents assuming that role), the
relative number of agents assuming that role increases.

While the number of players is a natural number, we deal with a con-
tinuum of agents for each player. Therefore, we need an extended coalition
function that is capable of dealing with non-integer players (agents). The
Lovasz extension vℓ or the multi-linear (Owen) extension vMLE are suitable
candidates (see chapter XVII). For reasons explained in the conclusions, we
prefer the Lovasz extensions over the multi-linear extension. The use of the

1This chapter is part of a joint project together with Andre Casajus.
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Lovasz extension has important repercussions for our model. Indeed, we will
find that the scarce players get all the payoff.

Extensions of coalition functions cannot be an input for the (standard)
Shapley value. Therefore, we use the continuous Shapley value that we in-
troduced in the previous chapter on growth theory. We thus obtain the
payoff information seen as a fitness variable and can then define the repli-
cator dynamics. Whenever an agent receives an above-average payoff, the
population share of this agent (and of all other agents playing the same role)
will increase — a standard result in replicator-dynamics models (for example
Weibull 1995, chapter 3).

For the apex game and the Lovasz extension, we find two (up to sym-
metry) asymptotically stable population configurations:

• x̂ =
(
1
2 ,
1
2 , 0, 0

)
and

• x̂ =
(
0, 13 ,

1
3 ,
1
3

)
.

The first configuration obtains whenever the apex player’s initial share is
at least as high as the share of any of the weak players. In that case, the
apex player teams up with the weak player who has the largest initial share.
If, however, the apex player’s initial share is lower than the shares of all
the weak players, our replicator dynamics yields the second asymptotically
stable population configuration — the apex player’s share tends to zero.

In terms of interpretation, evolutionary noncooperative game theory
(ENGT) differs from evolutionary cooperative game theory (ECGT). ENGT
builds on the idea that two players are drawn at random from a large pop-
ulation. They are programmed to play a certain (mixed) strategy and the
strategy that does better than other strategies grows faster. In contrast,
ECGT concern all the agents of all players at the same time — the whole
economy, so to speak.

We suggest to use the term ECGT for the non-atomic (or at least many-
agents) setup. It is the agents whose shares change. In contrast, one might
envision a model where the players themselves grow or shrink. A suitable
example is provided by firms. Depending on their profits they will grow in
an organic fashion (rather than grow by mergers and acquisitions).

In the following section, we will formally introduce agents, the extended
coalition functions, and the continuous Shapley value. We present the repli-
cator dynamics in section 5 and some general results in section 6. We men-
tion two of these results here: 1. Dominated players (with lower marginal
contributions) may survive in the long run. 2. For simple games, asymptot-
ically stable population configurations involve minimal winning coalitions.
The organizational dynamics is derived in section 7. Section 8 concludes the
paper.
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2. Some formal definitions

2.1. Payoff vectors. A payoff vector x for N is an element of RN or
a function N → R. For future reference, we define

• RN+ :=
{
x ∈ RN : xi ≥ 0 for all i ∈ N

}
,

• RN++ :=
{
x ∈ RN : xi > 0 for all i ∈ N

}
,

• ∆ := ∆(N) :=
{
x ∈ RN+ :

∑
xi = 1

}
and

• int (∆) := int (∆ (N)) =
{
x ∈ RN++ :

∑
xi = 1

}
.

2.2. Agents and vector measure games. We work with continua
of players who are called agents in this chapter. We have n players in a
cooperative game v. Each player is associated with an interval of agents.
Assume any vector s = (s1, ..., sn) ∈ RN+ where si is the number of agents
taking on player i’s role.

Similar to the previous chapter XVII, we denote by

• Ii the interval of agents representing player i, i ∈ N ,
• I := ∪i∈NIi the union of the non-intersecting intervals, i.e., the set
of all agents,

• λ the Lebesgues-Borel measure λ on R,
• B the set of Borel sets of I,
• µsi , i ∈ N, a measure on B defined by

µsi (K) := λ (K ∩ Ii) ,K ∈ B
and

• µs =
∏

i∈N
µsi : B → RN , K �→ (µsi (K))i∈N the Cartesian product of

these measures.

3. The Lovasz extension

We use the Lovasz extension of a coalition functio v as introduced in
chapter XIII. It is denoted by vℓ and given by

uℓT (s) := min
i∈T

si, T ⊆ N,T �= ∅

and

vℓ (s) :=
∑

T∈2N\{∅}
dv (T ) ·min

i∈T
si

L���� XVIII.1. Let v ∈ V (N) be a simple game. For s ∈ RN+ , we have
vℓ (s) = max

K∈M
min
i∈K

si.

The proof of this lemma ...
The arguments solving the maxmin problem are denoted by the set of

minimal winning coalitionsMmaxmin ⊆M and the set of players Nmaxmin ⊆
N.
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D�������
� XVIII.1. For future reference, we define a simple game
v (M, s) on the player set Nmaxmin by specifying its set of minimal winning

coalitions by
{
W ⊆ Nmaxmin : there exists a coalition K ∈Mmaxmin s.t. W = K ∩Nmaxmin

}
.

(XVIII.1)

v (M, s) depends directly onMmaxmin andNmaxmin and on s only insofar
as they are determined by s.

Thus, we employ the following algorithm:

• We start with a set of minimal winning coalitions M on some set
N .

• We then delete all those minimal winning sets whose minimal size
is smaller than the minimal size of any other minimal winning set,
thereby obtaining Mmaxmin.

• The set of players in winning coalitionsMmaxmin with minimal sizes
(all of them identical) are denoted Nmaxmin.

• We intersect all the winning coalitions fromMmaxmin withNmaxmin

so as to obtain a new minimal winning set XVIII.1.

3.0.1. Differentiability. Alas, the Lovasz extension is not differentiable.
Consider a unanimity game uT and its Lovasz extension that is given by

uℓT (s) := min
i∈T

si.

Let s− := minT (s) := mini∈T si be the minimum player size of the T -players
and let T− := {j|sj = s−} be the set of T -players with minimal size. Then,
for any unanimity game uT and any player i ∈ T we find

∂uℓT (s)

∂si
=

{
1, T− = {i}
0, i /∈ T−

but uℓT is not partially differentiable at s with respect to si in case of i ∈
T− �= {i} (i is one of several players with minimal size).

For later purposes, we consider the following approximation by partially
differentiable functions uℓ,mT = minmT : RN+ → R which are defined, for all
∅ �= T ⊆ N and m ∈ N, by

minmT (s) :=





0, s− = 0

|T | 1m
(
∑

i∈T
1
sm
i

) 1
m

= |T | 1m
(∑

i∈T s
−m
i

)− 1
m , else. (XVIII.2)

By standard rules for limites, we can confirm limm→∞minmT (s) = minT (s)

for all ∅ �= T ⊆ N and all s ∈ RN+ .
We denote by vℓ,m the m-th approximation of vℓ given by

vℓ,m (s) :=
∑

∅�=T⊆N
dv (T ) ·minmT (s) , m ∈ N,
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which also is linear in v ∈ V (N) and non-negatively homogenous in s ∈ RN+ .

4. Vector measure games and Shapley value

Before we can apply the continuous Shapley value, we need to define the
appropriate vector measure games

vℓ,s : = vℓ ◦ µs : B → R and

vℓ,m,s : = vℓ,m ◦ µs : B → R

Given a coalition K ∈ B, µs (K) specifies how to devide K among the n

groups and how to measure these subgroups. vℓ or vℓ,m then yield the
worth in accordance with the underlying TU game v.

We now apply the Aumann & Shapley (1974, Theorem B) diagonal
formula (see also Neyman 2002, pp. 2141) to vℓ,m,s. Taking any coalition
K ∈ B and any coalition function v, this formula yields

Sh vℓ,m,s (K) =
n∑

j=1

µsj (K)

∫ 1

0

∂vℓ,m

∂sj

∣∣∣∣
τs

dτ,

respectively. Shuℓ,m,sT (K) are the payoffs accruing to coalition K. The ana-
logue of player j’s marginal contribution in the discrete Shapley formula is
the derivative of the coalition’s worth with respect to the measure of agents
of player j. This derivative is evaluated at τs = (τs1, ..., τsn) . Thus, the
formula looks at coalitions on the diagonal only. Remember that we have
a continuum of agents. If we take a subset of agents by chance, it is likely
that the composition in this subset (how many agents of player 1, player 2
etc.) will not deviate much from the composition in the overall population
(see Aumann & Shapley 1974, pp. 23).

L���� XVIII.2. The Lovasz extension leads to

Shuℓ,m,sT (Ii) =





0, i /∈ T

0, s− = 0

|T | 1m s−mi
(∑

j∈T s
−m
j

)−m+1
m

, i ∈ T and s− �= 0

and

Shuℓ,sT (Ii) := lim
m→∞

Shuℓ,m,sT (Ii) =

{
s−
|T−| , i ∈ T−, s− �= 0

0, otherwise

Commenting on the Lovasz extension, consider N = {1, 2} and the una-
nimity game u{1,2}. Assume s1 < s2 so that player 1 is the scarce player.
The diagonal formula implies that we look at marginal contributions (par-
tial derivatives) along a line through the origin. By τs1 < τs2, player 2’s
Shapley payoff approaches 0 as m approaches infinity.
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Using the additivity of the value, one also obtains the payoffs Sh vℓ,s (Ii)
and Sh vℓ,m,s (Ii) , i ∈ N, m ∈ N. One easily checks that Sh vℓ,s (Ii) and
Sh vℓ,m,s (Ii) are homogenous of degree 1 with respect to s.

D�������
� XVIII.2. Consider a coalition function v ∈ V (N) and its

extension vext, a player i ∈ N and a population configuration s ∈ RN+ with
si > 0. The averge payoff accruing to agents from Ii is also called agent i’s

payoff and is given by

Sh i

(
vext,s

)
:=

Sh vext,s (Ii)

si
.

E���
"� XVIII.1. For any unanimity game uT , we find

Sh i

(
uℓ,sT

)
=

{
1
|T−| , i ∈ T−, s− �= 0

0, otherwise

so that N = T = {1, 2, 3} yields

Sh 1
(
uℓ,sT

)
=





1, s1 < min (s2, s3)
1
2 , s1 = s2 < s3
1
2 , s1 = s3 < s2
1
3 , s1 = s2 = s3
0, s1 > s2 or s1 > s3

and, using example XIII.1, the apex payoffs for the Lovasz extension are

given by
(
Sh 1

(
hℓ,s

)
, Sh 2

(
hℓ,s

)
, Sh 3

(
hℓ,s

)
, Sh 4

(
hℓ,s

))

=





(0, 1, 0, 0) , s1 < s2 < s3 < s4(
0, 12 ,

1
2 , 0

)
s1 < s2 = s3 < s4(

0, 13 ,
1
3 ,
1
3

)
s1 < s2 = s3 = s4(

1
2 ,
1
2 , 0, 0

)
s1 = s2 < s3 < s4(

2
3 ,
1
6 ,
1
6 , 0

)
s1 = s2 = s3 < s4(

1
2 ,
1
6 ,
1
6 ,
1
6

)
s1 = s2 = s3 = s4

(1, 0, 0, 0) , s2 < s1 < s3 < s4
(1, 0, 0, 0) s2 < s1 = s3 < s4(
2
3 , 0,

1
6 ,
1
6

)
s2 < s1 = s3 = s4

(1, 0, 0, 0) s2 < s1 < s3 = s4
(1, 0, 0, 0) , s2 < s3 < s1 < s4
(1, 0, 0, 0) s2 = s3 < s1 < s4(
1
2 , 0, 0,

1
2

)
s2 ≤ s3 < s1 = s4

(0, 0, 0, 1) s2 < s3 < s4 < s1(
0, 0, 12 ,

1
2

)
s2 < s3 = s4 < s1(

0, 13 ,
1
3 ,
1
3

)
s2 = s3 = s4 < s1

(0, 0, 0, 1) s2 = s3 < s4 < s1
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L���� XVIII.3. Let v ∈ V (N) be a simple game with the set of mini-

mal winning coalitions M and let v (M, s) be the game defined in definition

XVIII.1. The agents’ Shapley values for players i ∈ N are given by

Sh i
(
vℓ,s

)
=

{
Sh i (v (M, s)) , i ∈ Nmaxmin

0, otherwise
,

Thus, in a simple game, a player obtains a non-zero payoff zero only if

• he belongs to minimal winning coalition,
• his size is minimal within at least one minimal winning coalition,
and

• this minimal size is at least as large as the minimal sizes found in
any other winning coalition.

The lemma implies that, generically, small changes in the players’ sizes do
not affect the agents’ Shapley values.

L���� XVIII.4. Assume a set of minimal winning coalitions M =

{W1,W2} and a nonempty intersection K :=W1 ∩W2 �= ∅.
• Assume minj∈W2\K sj > minj∈W1\K sj > minj∈K sj. Then, posi-

tive payoffs accrue to players from {i ∈ K : si = minj∈K sj} while
all other players have zero payoff.

• Assume minj∈W2\K sj > si ≥ minj∈W1\K sj for all i ∈ K. Then,

positive payoffs accrue to players from {i ∈ K : si = minj∈K sj}
while all other players have zero payoff.

• Assume minj∈W2\K sj = si > minj∈W1\K sj for all i ∈ K. Then,

positive payoffs accrue to players from {i ∈W2 : si = minj∈W2 sj}
while all other players have zero payoff.

T �
��� XVIII.1. If i, j ∈ N are symmetric in (N, v) and si = sj then

Sh vℓ,s (Ii) = Sh vℓ,s (Ij) and Sh vℓ,m,s (Ii) = Sh vℓ,m,s (Ij) .

5. Replicator dynamics

5.1. Formula. Interpreting the agents’ Shapley payoffs as fitness and
assuming a constant birthrate β and a constant death rate δ, the evolution
of si is defined by

ṡi =
[
β + Sh i

(
vℓ,s

)
− δ

]
si.

In terms of population shares

xi :=
si∑n
j=1 sj

we obtain the replicator dynamics

ẋi =


Sh i

(
vext,s

)
−

n∑

j=1

Sh j

(
vext,s

)
xj


xi (XVIII.3)
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where the growth rate of a player’s population share equals the difference of
his agents’ fitness and the average fitness of all agents. Of course, we have
x ∈ ∆ and this procedure does not work for s = 0.

5.2. Differential equation and discrete replicator dynamics. Stan-
dard methods do not guarantee the existence of a solution to our replicator
equation. Therefore, we resort to discrete replicator dynamics which ob-
viously exist. Assuming a starting point at time t = 0 and a population
share vector x (0) = (x1 (0) , ..., xn (0)) ∈ ∆, we define the discrete replicator
dynamics by

xi (t) = xi (t− 1)+xi (t− 1)


Sh i

(
vℓ,x(t−1)

)
−

n∑

j=1

Sh j
(
vℓ,x(t−1)

)
xj


 , t ≥ 1

While it is easy to check that
∑

xi (t) = 1 follows from
∑

xi (t− 1) =

1, t ≥ 1, we cannot, in general, exclude a negative population share. In
order to avoid this problem and in order to smooth out the solution orbit,
we introduce a (very small) step length σ > 0 and work with the replicator
dynamics

xi (t) = xi (t− 1)+xi (t− 1)σ


Sh i

(
vℓ,x(t−1)

)
−

n∑

j=1

Sh j

(
vℓ,x(t−1)

)
xj


 , t ≥ 1

(XVIII.4)
In a continuous case, σ would affect the velocity of change but not the
solution orbit.

We now revisit the apex game. The initial population share vector
x (0) =

(
2
10 ,

1
10 ,

3
10 ,

4
10

)
is used in fig. 1 where the plot builds on S =1200

steps with step length σ = 1
600 . In the beginning, only player 1’s agent set

grows. As soon as the sizes of player 1’s agent set and player 4’s agent set
equal, both agent sets grow while the agent sets of players 2 and 3 tend
towards zero.

Fig. 2 starts with the population configuration
(
1
10 ,

2
10 ,

3
10 ,

4
10

)
. Finally,

the three unimportant players grow until each reaches a population share of
1
3 .

Applying the formula

number of time periods = number of steps times step length,

the above examples rest on 2 (physical) time periods, 2 = T = S · σ =

1200 · 1
600 .

D�������
� XVIII.3. Consider a coalition function v ∈ V (N) and a

starting population share vector x (0) = (x1 (0) , ..., xn (0)) ∈ ∆(N). The

Euler replicator dynamic for T time periods is defined by the discrete repli-

cator dynamics XVIII.4 obeying 0 ≤ t ≤ S, σ = T
S and S →∞.
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2

1

1, 44

3
3

F����� 1. The apex player teams up with player 4

1

2

3 2, 3 2, 3, 4
4

F����� 2. The three unimportant players trump the apex player

D�������
� XVIII.4. A vector of population shares x̂ = (x̂1, ..., x̂n) ∈ ∆

is a steady state if there exists a population share vector x (0) = (x1 (0) , ..., xn (0)) ∈
∆ such that the Euler replicator dynamics yields

lim
T→∞

xi (t) = x̂i

for all i = 1, ..., n.

D�������
� XVIII.5. A steady state x̂ = (x̂1, ..., x̂n) ∈ ∆ is called as-

ymptotically stable if there exists some ε > 0 such that for all population

vectors x (0) obeying ‖x (0)− x̂‖2 < ε we have

lim
T→∞

x (t) = x̂. (XVIII.5)
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1

2
1, 2

F����� 3. Player 2 is dominated but does not vanish.

6. General results

In ENGT, strictly dominated strategies are wielded out. We present
a dominance definition and show that we do not have a similar result in
ECGT.

D�������
� XVIII.6. Let v ∈ V (N). Player i ∈ N strictly dominates

player j ∈ N if v (K∪{i}) > v (K∪{j}) holds for all K ⊆ N\ {i, j}. Player
i ∈ N weakly dominates player j ∈ N if v (K∪{i}) ≥ v (K∪{j}) holds
for all K ⊆ N\ {i, j} and if there is a coalition K̂ ∈ N\ {i, j} such that
v
(
K̂∪{i}

)
> v

(
K̂∪{j}

)
is true. In that case, we also say that i weakly

dominates j with strong K̂-dominance.

Note that strict and weak dominance are equivalent for n = 2. It is not
difficult to show that weak and strict dominance are transitive relations on
N .

We begin with two negative results. A strictly dominated player does
not need to vanish nor does a null player. The first assertion follows from the
game given by N = {1, 2} , v (1) = 1, v (2) = 0 and v (1, 2) = 3. Assume the
initial population share vector x (0) =

(
4
5 ,
1
5

)
. Player 2 is strictly dominated

but holds his ground as can be seen in fig. 3. Also, a weakly dominating
player (as the apex player) can vanish while the player dominated by him
does not, as we have seen above (fig. 2).

Consider, now, the game for two players given by v (1) = 0, v (2) = −1 =

v (1, 2). Fig. 4 (with x (0) =
(
1
5 ,
4
5

)
) proves that a null player (player 1 in

our case) does not need to vanish.
However, a dominated null player vanishes:

L���� XVIII.5. Let v ∈ V (N) where j ∈ N is strictly dominated

by player i, j is a null player and xi (0) > 0 and there exists a player

k ∈ N\ {i, j} with xk > 0. Then, limT→∞ xj (t) = 0.

In contrast to the examples considered so far, we can have different non-
zero shares in the long run. Consider N = {1, 2, 3}, v ∈ V (N) given by
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1

1
2

2

F����� 4. Player 1 is a dominating null player.

1

2
3

1, 3

F����� 5. Different non-zero shares in the long run

v (1) = v (2) = v (3) = 0, v (1, 3) = 2, v (1, 2) = v (2, 3) = 1 and v (1, 2, 3) =

3. The initial population share vector x (0) =
(
3
4 ,
1
6 ,

1
12

)
yields fig. 5.

P�


����
� XVIII.1. Let v ∈ V (N) be a simple game with the set

of minimal winning coalitions M. Then, the asymptotically stable states
x̂ = (x̂1, ..., x̂n) are characterized by minimal wining coalitions W ∈ M and

x̂i =

{
1
|W | , i ∈W

0, otherwise
(XVIII.6)

Building on the two lemmata XVIII.3 and XVIII.4, the proof is not
difficult. Assume a minimal winning coalitionW and construct a size vector
x such that Nmaxmin ⊆W . (xi = x̂i provides the simplest example.) Then,
all the agents outsideW obtain zero payoff while all the (symmetric!) agents
within Nmaxmin obtain 1

|Nmaxmin| . Their shares grow until, finally, the shares

for the W -agents are the same. Thus, we have limT→∞ x (t) = x̂.
Inversely, take any asymptotically stable state x̂ = (x̂1, ..., x̂n) not obey-

ing eq. XVIII.6. There must be at least one minimal winning coalition W ′

such that x̂i > 0 for all i ∈ W ′. Otherwise, all the payoffs are zero and
we can identify a minimal winning coalition W, change the relative sizes
minimally such that x̂i > 0 for all i ∈ W holds and such that this minimal
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winning coalition wins in the sense of equations XVIII.5 and XVIII.6. (The
trick is to choose a minimal winning coalition where the players minimal
sizes (except those with zero size) are maximal.)

C
�
""��	 XVIII.1. Consider the apex game for four players and x2 (0) ≤
x3 (0) ≤ x4 (0) without loss of generality. The dynamics of the apex game

admit four steady states x̂ = (x̂1, ..., x̂4):

(1) x1 (0) < x2 (0) : x̂1 = 0, x̂2 = x̂3 = x̂4 = 1
3 (steady state WWW:

coalition of the weak)

(2) x1 (0) ≥ x2 (0) and

• x3 (0) < x4 (0) : x̂1 = x̂4 = 1
2 , x̂2 = x̂3 = 0 (steady state SW:

the strong with one weak agent)

• x3 (0) = x4 (0) and

— x2 (0) < x3 (0) and x1 (0) > x2 (0) : x̂1 = x̂3 = x̂4 =
1
3 , x̂2 = 0 (steady state SWW: the strong with two weak

agents)

— x2 (0) = x3 (0) or x1 (0) = x2 (0) : x̂1 = x̂2 = x̂3 = x̂4 =
1
4 (steady state SWWW: grand coalition)

The steady states WWW and SW are asymptotically stable while SWW

and SWWW are not.

7. Organizational model

So far, we differentiate between players and agents who assume the role
of players. We now turn to the organizational model where the sizes of the
players (organizations such as firms) change.

Consider a TU game v ∈ V (N) and its extension vext. For a given size
vector s ∈ Rn+, we can define a TU game v̊ext,s ∈ V (N) by

v̊ext,s (K) = vext (sK)

where sK ∈ Rn+ is given by

(sK)i =

{
si, i ∈ K

0, i /∈ K

Interpreting the Shapley payoffs for v̊ext,s as profits which are reinvested in
the firms, firm i’s share develops according to

ṡi = β Sh i

(
v̊ext,s

)

where β > 0 translates profits into size changes. Rewriting this equality in
terms of population shares yields the organizational dynamics

ẋi = β


Sh i

(
v̊ext,s

)

xi
−

n∑

j=1

Sh j

(
v̊ext,s

)

xi.
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For the Lovasz extension, we obtain

Shi
(
ůℓ,sT

)
=

{
minj∈T sj

|T | , i ∈ T

0, otherwise

8. Conclusion

In conclusion, we offer some remarks and point to future research. First,
we find that evolutionary cooperative game theory (ECGT) is very attrac-
tive from an interpretational point of view. First of all, even the most
basic models as they are presented in this paper belong to the (a) “playing
the field” and the (b) polymorphic variety. (a) just results from the way
the Shapley value is calculated and interpreted — an agent’s payoff depends
on the set-up of the economy as a whole. (b) is also the natural outflow
from different players roles. In contrast, the most basic model of evolu-
tionary noncooperative game theory (ENGT) builds on “pairwise contests”
and a monomorphic population playing a symmetric game. Of course, more
advanced ENGT models also deal with polymorphic playing-the-field situa-
tions.

Second, the specific extension (the Lovasz extension in this paper) is
very critical for the results obtained. We prefer the intuition underlying
the Lovasz extension of that for the multi-linear extension. If players (or
agents) work together (in the framework of a unanimity or an apex game)
and if the size of the agents is below 1, the multilinear extension, vMLE, has
a probabilistic interpretation (as noted by Owen 1972, p. 64) — the players
work together only if their time schedules happen to coincide. For example,
two productive players in the unanimity game u{1,2} with s =

(
1
2 ,
1
3

)
can

produce 1
2 · 13 , only. It seems to us that (by appropriate coordination), the

two agents should be able to produce the minimum of these two figures,
1
3 ,. which is exactly what the Lovasz extension does. Also, consider s =

(2, 3). The multi-linear extension yields 2 · 3 = 6 whereas the minimum
extension leads to 2. Also, an extension’s worth may turn out to be negative
even if the underlying coalition function itself is positive. In fact, we find
hMLE (2, 1, 3, 4) = −10.

Third, a major application of ENGT is equilibrium selection (see the
titel of the book by Samuelson 1997). In contrast, ECGT focuses on the
evolutionary pressure against players. Productive players survive where the
productivity depends on the size distribution. Alternatively, one might view
ECGT as a contribution to the vast field of coalition formation.

Fourth, Filar & Petrosjan (2000) have published a related paper where
they introduce dynamic cooperative games. The idea is to define a sequence
of games (in discrete or in continuous time) so that one TU game is deter-
mined by the previous one and by the payoffs achieved under some solution
concept. While our organizational model also produces a sequence of TU
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games, it cannot be subsumed under the heading of dynamic cooperative
games as defined by these authors. The technical reason is that the size
vector s cannot be derived from v̊ℓ,s. More importantly, the focus of Filar
& Petrosjan’s (2000) approach is quite different. The players in that paper
obtain the sum of payoffs for a sequence of coalition functions. The au-
thors deal with the problem of whether these payoffs obey some consistency
criterion.

We now turn to future work in ECGT and note that the replicator
dynamics are concerned with selection. Of course, mutation is the other
evolutionary force to be reckoned with. It is concerned with the change of
parameters rather than the selection pressures for a given set of parameters.
Within our framework, mutation can take different forms:

(1) We may consider small changes of the coalition function v.
(2) Other players could be added with very small sizes such that the

worths for the other players stays the same for a zero size of the
new arrival.

9. Appendix

9.1. Proof of lemma XVIII.2. The 0 payoffs follow from eq. XVIII.2.
In case of s− > 0 and i ∈ T , the diagonal formula yields
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Shuℓ,m,sT (Ii) = µsi (Ii)

∫ 1

0

∂uℓ,mT
∂si

∣∣∣∣∣
ts

dt

= si |T |
1
m

∫ 1

0

(
− 1

m

)
∑

j∈T
s−mj



− 1

m
−1

· (−m) s−m−1i

∣∣∣∣∣∣∣
ts

dt

= si |T |
1
m

∫ 1

0


∑

j∈T
s−mj



−m+1

m

· s−(m+1)i

∣∣∣∣∣∣∣
ts

dt

= si |T |
1
m

∫ 1

0


∑

j∈T
(tsj)

−m



−m+1

m

· (tsi)−(m+1) dt

= sis
−(m+1)
i |T | 1m

∫ 1

0


∑

j∈T
t−ms−mj



−m+1

m

· (tm)−m+1
m dt

= s−mi |T | 1m
∫ 1

0


∑

j∈T
s−mj



−m+1

m

dt

= |T | 1m s−mi


∑

j∈T
s−mj



−m+1

m

We rewrite Shuℓ,m,sT (Ii) for the third case to find

|T | 1m s−mi


∑

j∈T
s−mj



−m+1

m

= si |T |
1
m (smi )

−m+1
m


|T−| s−m− +

∑

j∈T\T−
s−mj



−m+1

m

= si |T |
1
m


|T−|

smi
sm−

+
∑

j∈T\T−

smi
smj



−m+1

m

=





si |T |
1
m


|T−|

smi
sm−︸︷︷︸
1

+
∑

j∈T\T−


 si

sj︸︷︷︸



m

<1




−m+1
m

, i ∈ T−

si |T |
1
m


|T−|


 si

s−︸︷︷︸



m

>1

+
∑

j∈T\T−
smi
smj




−m+1
m

, i /∈ T−

Standard rules for limites imply the desired results.
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In the previous chapter, we focus on a specific class of games, the gloves
games. In this chapter, we aim to familiarize the reader with many other
interesting games.
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10. Topics and literature

The main topics in this chapter are

• simple game
• winning coalition
• veto player
• dictator
• null player
• unanimity game
• apex game
• weighted voting game
• buying-a-car game
• Maschler-Spiel
• endowment game
• superadditivity
• convexity
• monotonicity

We introduce the following mathematical concepts and theorems:

• linear independence
• span
• basis
• coefficients

We recommend the textbook by Wiese (2005c).

11. Solutions

Exercise ??
There is only one such coalition function, the zero coalition function

(that fulfills v (K) = 0 for all K ⊆ N).
Exercise ??

12. Further exercises without solutions

Non-transferable utility





Part G

Non-transferable utility



In this last part of the course, we do not consider transferable-utility
coalition functions any more. Instead, we deal with coalition functions with-
out transferable utility. Exchange economies provide an important applica-
tion that we present in chapter XIX. Also, the bargaining theory due to John
Nash (chapter XX) is best understood as building on non-transferability.



CHAPTER XIX

Exchange economies

1. Introduction

Transferable utility is underlying the coalition functions considered so
far. To every coalition K ⊆ N , a real number v (K) is attributed with
the understanding that the players from K produce v (K) together. All the
solution concepts so far assume efficiency (Pareto efficiency or component
efficiency) where all the players (all the players in a component C) share the
worth v (N) (or v (C)). Thus, utility can be transferred from one player to
another one.

Non-transferable utility does away with this simplification. Instead of
attributing a real number to a coalition, a set of payoff vectors is specified.
For example, two players that exchange goods can achieve any payoff vector
that is linked to a feasible allocation.

In order to convey a first impression of what a coalition function without
transferable utility looks like, consider fig. 1. We have three players and
eight coalitions (left-hand side of the figure). Take coalition {Peter, Otto}.
The coalition function V (capital V rather than small v in case of transfer-
able utility) attributes V ({Peter, Otto}) ⊆ R2 to that coalition (right-hand
side). Similarly, V ({Peter, Otto, Carl}) is a subset of R3 and V (∅) = ∅.

In the following section, we formally define coalition functions without
transferable utility (for short, NTU coalition functions). We then consider

Peteru

Ottou

Set of coalitions Set of payoff vectors

{ }Peter ∅

{ }Carl Otto,{ }Carl Peter,

{ }Otto

{ }Carl Otto, Peter,

{ }Otto Peter,
{ }Carl

{ }( )Otto Peter,V

F����� 1. Part of a coalition function with non-transferable utility
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two different models. The first (sections through ) deals with General Equi-
librium Theory (GET). Here, agents observe prices and choose their good
bundles accordingly. GET envisions a market system with perfect compe-
tition. This means that all agents (households and firms) are price takers.
The aim is to find prices such that

• all actors behave in a utility, or profit, maximizing way and
• the demand and supply schedules can be fulfilled simultaneously.

In that case, we have found a Walras equilibrium. Note that the price-
finding process is not addressed in GET. Walras suggests that an auctioneer
might try to inch towards an equilibrium price vector. This is the so-called
tâtonnement.

Our purpose is to formulate the exchange economy by way of a NTU
coalition function. We then define the core concept and show that theWalras
equilibrium belongs to the core. In so doing, we follow a long tradition and
differentiate between

• the implications of Pareto efficiency on the one hand (this is the
Edgeworthian theme of cooperation, see chapter II, pp. 16) and

• the implications of individual utility and profit maximization for
markets (the Walrasian theme of decentralization).

The second model is concerned with matching (of spouses, for example) and
is presented in sections through. Again, we consider the implications of core
allocations.

2. Household theory

We now consider decisions in the face of prices. Assuming price taker-
ship, the households buy a best bundle within their budget. Therefore, we
analyze the budget first and then derive a best bundle on the basis of budget
and preferences.

2.1. Notation. In general (for an arbitrary dimension ℓ ∈ N) we write
Rℓ := {(x1, ..., xℓ) : xg ∈ R, g = 1, ..., ℓ} .

0 ∈ Rℓ is the null vector (0, 0, ..., 0). The vectors are often called points (in
Rℓ).

R����& XIX.1. For vectors x and y with ℓ entries, we define

• x ≥ y by xg ≥ yg for all g from {1, 2, ..., ℓ} ,
• x > y by x ≥ y and x �= y,

• x≫ y by xg > yg for all g from {1, 2, ..., ℓ} .
In household theory, we will work with the goods space

Rℓ+ :=
{
x ∈ Rℓ : x ≥ 0

}

rather than Rℓ where negative amounts of goods are allowed.
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A

B

C

1x

2x

1p

m

2p

m

F����� 2. The budget for two goods

2.2. Budget.
2.2.1. Money budget. We first assume that the household has some mon-

etary amount m at his disposal. The budget is the set of good bundles that
the household can afford, i.e., the set of bundles whose expenditure is not
above m. The expenditure for a bundle of goods x = (x1, x2, ..., xℓ) at a
vector of prices p = (p1, p2, ..., pℓ) is the dot product (or the scalar product),
of the two vectors:

p · x :=
ℓ∑

g=1

pgxg.

D�������
� XIX.1 (money budget). For a price vector p ∈ Rℓ and
monetary income m ∈ R+, the money budget is defined by

B (p,m) :=
{
x ∈ Rℓ+ : p · x ≤ m

}

where {
x ∈ Rℓ+ : p · x = m

}

is called the budget line.

For example, in case of two goods, the budget is the set of bundles
fulfilling p1x1 + p2x2 ≤ m. If the household does not consume good 1

(x1 = 0), he can consume up to m/p2 units of good 2. (Just solve the
inequality for x2.). In fig. 2, the household can afford bundles A and B, but
not C.

The following theorem should be no surprise to you. If you double all
prices and income, your budget remains unchanged:

L���� XIX.1. For any number α > 0, we have B (αp,αm) = B (p,m) .
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E������� XIX.1. Fill in: For any number α > 0, we have B (αp,m) =

B (p, ?) .

E������� XIX.2. Assume that the household consumes bundle A in fig.
2. Identify the “left-over” in terms of good 1, in terms of good 2 and in

money terms.

L���� XIX.2. The money budget is nonempty, closed and convex. If
p >> 0 holds, the budget is bounded.

P�

�. The budget is nonempty because we have (0, ..., 0) ∈ Rℓ+ and
0 · p = 0 ≤ m. It is closed because it is defined by way of weak inequalities
(xg ≥ 0, g = 1, ..., ℓ, x · p ≤ m). We now show convexity. Consider two
bundles x and x′ and a number k ∈ [0, 1] . Then x · p ≤ m and x′ · p ≤ m

imply (kx+ (1− k)x′) · p = kx · p + (1− k)x′ · p ≤ km + (1− k)m = m.

Therefore, the budget is convex. Finally, the budget is bounded in case of

p >> 0 because every bundle x in the budget fulflls 0 ≤ x ≤
(
m
p1
, ..., mpℓ

)
. �

E������� XIX.3. Verify that the budget line’s slope is given by −p1
p2
(in

case of p2 �= 0).

If both prices are positive, the budget line is negatively sloped.

D�������
� XIX.2. If prices are non-negative and the price of good 2 is
positive, the marginal opportunity cost of consuming one unit of good 1 in

terms of good 2 is denoted by MOC (x1) and given by

MOC (x1) =

∣∣∣∣
dx2
dx1

∣∣∣∣ =
p1
p2
.

Thus, if the household wants to consume one additional unit of good 1,
he needs to forgo MOC units of good 2 (see also fig. 3). Note that we use
the absolute value of the budget line’s slope — very similar to the definition
of the marginal rate of substitution on p. ??.

2.2.2. Endowment budget.
Definition. In the previous section, the budget is defined by some mon-

etary income m. We now assume that the household has some endowment
ω ∈ Rℓ+ which it can consume or, at the prevailing prices, use to buy another
bundle. In any case, we obtain the following definition:

D�������
� XIX.3. For a price vector p ∈ Rℓ and an endowment ω ∈
Rℓ+, the endowment budget is defined by

B (p, ω) :=
{
x ∈ Rℓ+ : p · x ≤ p · ω

}
.

Again, equality defines the budget line.

By letting m := ω ·p, the endowment budget turns into a money budget.
Therefore, lemma XIX.2 holds for an endowment budget as well.
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2x
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m

1x∆

1
2

1
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F����� 3. The opportunity cost of one additional unit of
good 1
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1ω

2
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pp ωω +

1

2211

p

pp ωω +

2ω

F����� 4. The endowment budget

In case of two goods, the budget line is written as

p1x1 + p2x2 = p1ω1 + p2ω2

and depicted in fig. 4.
Application: consumption today versus consumption tomorrow . We

now present three very important examples of endowment budgets. Our first
example deals with intertemporal consumption. Consider a household whose
monetary income in periods 1 and 2 is ω1 and ω2, respectively. His consump-
tion is denoted by x1 and x2. We assume that he can borrow (x1 > ω1) or
lend (x1 < ω1). Of course, he can also decide to just consume what he earns
(x1 = ω1). In either case, he has to break even at the end of the second
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1x

2x

2ω

1ω

( ) 21 1 ωω ++ r

( )r++
1

2
1

ω
ω

endowment
point

consumption point 
of a borrower

consumption point 
of a lender

( )r
dx

dx
+−= 1

1

2

F����� 5. Save or borrow?

period. At a given rate of interest r, his second-period consumption is

x2 = ω2︸︷︷︸
second-period

income

+ (ω1 − x1)︸ ︷︷ ︸
amount borrowed (<0)

or lended (>0)

+ r (ω1 − x1)︸ ︷︷ ︸
interest payed (<0)

or earned (>0)

= ω2 + (1 + r) (ω1 − x1)

We can rewrite the break-even condition (the budget equation) in two dif-
ferent fashions.

• Equalizing the future values of consumption and income yields

(1 + r)x1 + x2 = (1 + r)ω1 + ω2,

while
• the equality of the present values of consumption and income is
behind the budget equation

x1 +
x2

1 + r
= ω1 +

ω2
1 + r

.

Consider also fig. 5 where the present value of the income stream (ω1, ω2)

is found at the x1-axis and the future value at the x2-axis. The marginal
opportunity cost of one additional unit of consumption in period 1 is

MOC =

∣∣∣∣
dx2
dx1

∣∣∣∣ = 1+ r

units of consumption in period 2.

Application: leisure versus consumption. A second application concerns
the demand for leisure or, differently put, the supply of labor. We depict the
budget line in fig. 6. Recreational hours are denoted by xR. By definition,
the household works 24 − xR hours. For obvious reasons, we have 0 ≤
xR ≤ 24 = ωR. Recreational time is the good 1, the second good is real
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Rx

Cx

p

w

dx

dx

R

C −=

Cω

p
pw Cω+24

24

endowment
point

consumption
point

recreational
time

labor
time

F����� 6. Recreational versus labor time

consumption xC . xC may stand for the only consumption good (bread)
bought and sold at price p. Alternatively, you can think of a bundle of
goods xC and an aggregate price (index) p.

At a wage rate w, the household earns w (24− xR) . He may also obtain
some non-labor income pωC where p is the price index and ωC the real
non-labor income. Thus, the household’s consumption in nominal terms is

pxC = pωC +w (24− xR)

which can also be rewritten in endowment-budget form

wxR + pxC = w24 + pωC

where (ωC , 24) is the endowment point. Thus, the price of leisure is the wage
rate. Indeed, if a household chooses to increase its recreational time by one
unit, it foregoes w (in monetary consumption terms) or w

p (in real consump-
tion terms). The marginal opportunity cost of one unit of recreational time
is

MOC =

∣∣∣∣
dxC
dxR

∣∣∣∣ =
w

p

units of real consumption.

2.3. The household optimum.
2.3.1. The household’s decision situation and problem. The household’s

problem can be desribed by the following definition:

D�������
� XIX.4 (a household’s decision situation). A household’s de-
cision situation is a tuple

∆ = (B,�) with

B = B (p,m) ⊆ Rℓ+ or B = B (p, ω) ⊆ Rℓ+
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(a) 1x

2x
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budget
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budget
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F����� 7. Household optima?

where p ∈ Rℓ is a vector of prices and � a preference relation on Rℓ+. The
household’s problem is to find the best-response function given by

xR (∆) :=
{
x ∈ B: there is not x′ ∈ B with x′ ≻ x

}

If � is representable by a utility function U on Rℓ+, we have the decision
situation ∆ = (B,U) and the best-response function

xR (∆) := argmax
x∈B

U (x) .

Any x∗ from xR (∆) is called a household optimum.

Thus, the household aims to find a highest indifference curve attainable
with his budget. As a very obvious corollary from lemma XIX.1, we have

L���� XIX.3. For any number α > 0, we have xR (αp, αm) = xR (p,m) .

E������� XIX.4. Look at the household situations depicted in fig. 7.
Assume monotonicity of preferences. Are the highlighted points A or B

optima?

E������� XIX.5. Assume a household’s decision problem with endow-
ment ∆ = (B (p, ω) ,�). xR (∆) consists of the bundles x that fulfill the two

conditions:

(1) The household can afford x:

p · x ≤ p · ω
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Marginal willingness to pay: MRS =

∣∣∣∣
dx2
dx1

∣∣∣∣

If the household consumes
one additional unit of good 1,

how many units of good 2 movement on the
can he forgo so as to remain indifference curve
indifferent.

Marginal opportunity cost: MOC =

∣∣∣∣
dx2
dx1

∣∣∣∣

If the household consumes
one additional unit of good 1,

how many units of good 2 movement on the
does he have to forgo so as to remain budget line
within his budget.

F����� 8. Willingness to pay and opportunity cost

(2) There is no other bundle y that the household can afford and that
he prefers to x:

y ≻ x⇒??

Substitute the question marks by an inequality.

2.3.2. MRS versus MOC. A good part of household theory can be couched
in terms of the marginal rate of substitution and the marginal opportunity
cost. Consider fig. 8. We can ask two questions:

• What is the household’s willingness to pay for one additional unit
of good 1 in terms of units of good 2? The answer is MRS units of
good 2.

• What is the household’s cost for one additional unit of good 1 in
terms of units of good 2? The answer: MOC units of good 2.

Now, the interplay of the marginal rate of substitution MRS and mar-
ginal opportunity costMOC helps to find the household optimum. Consider
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1x

2x

1 unit
of good 1

indifference
curve

budget
line

MRS
MOC

F����� 9. Not optimal

the inequality

MRS =

∣∣∣∣
dx2
dx1

∣∣∣∣
︸ ︷︷ ︸

absolute value

of the slope of

the indifference

curve

>

∣∣∣∣
dx2
dx1

∣∣∣∣
︸ ︷︷ ︸

absolute value

of the slope of

the budget line

=MOC.

If, now, the household increases his consumption of good 1 by one unit, he
can decrease his consumption of good 2 by MRS units and still stay on the
same indifference curve. Compare fig. 9. However, the increase of good 1

necessitates a decrease of only MOC < MRS units of good 2. Therefore,
the household needs to give up less than he would be prepared to. In case of
strict monotonicity, increasing the consumption of good 1 leads to a higher
indifference curve.

Thus, we cannot have MRS > MOC at the optimal bundle unless it
is impossible to further increase the consumption of good 1. This is the
situation depicted in fig. 10.

Thus, if the household consumes both goods in positive quantities, we
can derive the optimality condition

MRS
!
=MOC

(if both terms are defined).
Alternatively, we can derive this first-order condition with the help of a

utility function (if we have one). The household tries to maximize

U

(
x1,

m

p2
− p1
p2
x1

)
.
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F����� 10. The willingness to pay can be higher than the cost.

If the household increases the consumption of good 1 by one unit, we have
two effects. First, his utility increases by ∂U

∂x1
. Second, an increase in x1 leads

to a reduction in x2 by MOC =
∣∣∣dx2dx1

∣∣∣ = p1
p2

and this reduced consumption

of good 2 decreases utility. Therefore, the household increases x1 as long as

∂U

∂x1︸︷︷︸
marginal benefit

of increasing x1

>
∂U

∂x2

∣∣∣∣
dx2
dx1

∣∣∣∣
︸ ︷︷ ︸

marginal cost

of increasing x1

holds. Dividing by ∂U
∂x2

, an increase in x1 leads to an increase in utility if

MRS =
∂U
∂x1
∂U
∂x2

(chapter ?? on p. ??)

>

∣∣∣∣
dx2
dx1

∣∣∣∣ =MOC

holds.
The MRS- versus-MOC rule can help to derive the household optimum

in some cases:

• Cobb-Douglas utility functions U (x1, x2) = xa1x
1−a
2 with 0 < a < 1

lead to

MRS =
∂U
∂x1
∂U
∂x2

=
a

1− a

x2
x1

!
=

p1
p2

and, together with the budget line, the household optimum

x1 (m,p) = a
m

p1
,

x2 (m,p) = (1− a)
m

p2
.
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• Goods 1 and 2 are perfect substitutes if the utility function is given
by U (x1, x2) = ax1 + bx2 with a > 0 and b > 0. An increase of
good 1 enhances utility if

a

b
=MRS > MOC =

p1
p2

holds so that we find the household optimum

x (m, p) =





(
m
p1
, 0

)
, a

b >
p1
p2{(

x1,
m
p2
− p1

p2
x1

)
∈ R2+ : x1 ∈

[
0, mp1

]}
a
b = p1

p2(
0, mp2

)
a
b <

p1
p2

• Preferences are concave with utility function U (x1, x2) = x21 + x22.

We have the marginal rate of substitution

MRS =
∂U
∂x1
∂U
∂x2

=
2x1
2x2

=
x1
x2

so that
x1
x2

=MRS > MOC =
p1
p2

holds for sufficiently large x1 which calls for an increase of x1. In-
versely,

x1
x2

=MRS < MOC =
p1
p2

holds for sufficiently large x2 so that an increase of x2 seems a good

idea. Therefore, we need to compare the extreme bundles
(
m
p1
, 0

)

and
(
0, mp2

)
and obtain

(
m

p1

)2
+ 02 ≥ 02 +

(
m

p2

)2
and

p1 ≤ p2

and finally

x (m,p) =





(
m
p1
, 0

)
, p1 ≤ p2{(

m
p1
, 0

)
,
(
0, mp2

)}
p1 = p2(

0, mp2

)
p1 ≥ p2

2.3.3. Household optimum and monotonicity. We now turn to specific
implications that can be drawn from the fact that some x∗ is a household
optimum and that some sort of monotonicity holds.

L���� XIX.4. Let x∗ be a household optimum of the decision situation
∆ = (B (p,m) ,�). Then, we have the following implications:

• Walras’ law: Local nonsatiation implies p · x∗ = m.

• Stict monotonicity implies p >> 0.

• Local nonsatiation and weak monotonicity imply p ≥ 0.
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P�

�. We use proofs by contradiction for each statement:

• Because of x∗ ∈ B, we can exclude p · x∗ > m. Assume p · x∗ < m.
Then, the household can afford bundles sufficiently close to x∗. By
local nonsatiation, some of these bundles are better than x∗. This
is a contradiction to x∗ being a household optimum.

• Turning to the second implication, assume a household optimum
and a price pg which is zero or negative. Then, the household
can afford more of good g. By strict monotonicity, the household is
better off implying the desired contradiction (existence of household
optimum).

• Assume a negative price for some good g. By weak monotonic-
ity the household can “buy” additional units of that good without
being worse off. Since the price is negative, the household has ad-
ditional funding for preferred bundles which exist by nonsatiation.
Again, a contradiction to the existence of a household optimum
follows.

�

3. NTU coalition functions and the core

3.1. Definition of NTU coalition functions. We denote the coali-
tion function without transferable utility by V in order to make the dis-
tinction from the coalition function v in the transferable-utility case. V

attributes to every coalition K �= ∅ a set of utility vectors

uK := (ui)i∈K ∈ R|K|

for K’s members. The interpretation is similar to transferable utility — the
coalition K can achieve any vector from V (K) all by itself.

E������� XIX.6. Depict

V ({Peter, Otto}) = {(uPeter, uOtto) : uPeter ≥ 2, uOtto ≥ 1, uPeter + uOtto ≤ 4} .

D�������
� XIX.5 (coalition function). A coalition function V on N for
non-transferable utlity associates to every subset K of N a subset of R|K|

such that

• V (∅) = ∅ and
• V (K) �= ∅ for K �= ∅

hold. V (K) is called coalition K’s worth. In order to economize on the

use of symbols, we denote the set of all games on N by VN and the set of
all games (for any player set N) by V.

E������� XIX.7. Which of the following expressions are formally cor-
rect?

• V ({1, 2}) = 1
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• V ({1, 2}) = {1}
• V ({1, 2}) = (1, 2)

• V ({1, 2}) = ∅
• V ({1, 2}) = {(1, 2)}
• V ({1, 2}) =

{
(x1, x2) ∈ R2 : x1 ≤ 3, x2 ≤ 4, x1 + x2 ≤ 5

}

Normally, V has to obey some other requirements, too, such as convexity
or closedness (consult McLean 2002, pp. 2079). A coalition function v

with transferable utility can be written as a coalition function V without
transferable utility by letting

V (K) :=

{
xK ∈ R|K| :

∑

i∈K
xi ≤ v (K)

}

for each K ⊆ N . If K contains two players, V (K) equals the set of utility
tuples lying on or below a line of slope −1.

E������� XIX.8. Determine the axis intercepts of the line just men-
tioned.

Finally, we want to discuss what superadditivity means in the present
context.

D�������
� XIX.6 (superadditivity). The coalition function V without
transferable utility is called superadditive if, for all coalitions S, T ⊂ N

S ∩ T = ∅ (S and T are disjunct),
uS ∈ V (S) and

uT ∈ V (T )

imply

(uS , uT ) ∈ V (S ∪ T ) .

Here (uS , uT ) is the vector that contains utilities for the players from S

and for the players from T . For two agents superadditivity means that the
utility levels that the two agents can achieve individually are still in reach
after forming a coalition.

E������� XIX.9. Are V1 and/or V2 defined on N = {1, 2, 3} and given
by

• V1 (K) =





{i} , K = {i}
{(x1, x2) : x1 ≤ 1, x2 ≤ 4} , K = {1, 2}
{(x1, x3) : x1 ≤ 2, x3 ≤ 3} , K = {1, 3}
{(x2, x3) : x2 ≤ 4, x3 ≤ 5} , K = {2, 3}
{(x1, x2, x3) : x1 + x2 + x3 ≤ 10} K = {1, 2, 3}
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• V2 (K) =





{i} , K = {i}
{(x1, x2) : x1 ≤ 1, x2 ≤ 4} , K = {1, 2}
{(x1, x3) : x1 ≤ 2, x3 ≤ 2} , K = {1, 3}
{(x2, x3) : x2 ≤ 4, x3 ≤ 5} , K = {2, 3}
{(x1, x2, x3) : x1 + x2 + x3 ≤ 9} K = {1, 2, 3}

superadditive?

3.2. The core.

D�������
� XIX.7 (core). The core of a NTU game V is the set all

utility vectors u = (ui)i∈N ∈ Rn that obey feasibility and non-blockability:
• u ∈ V (N) .

• There is no coaliton K and no utility vector u′ = (u′i)i∈N such that
u′K ∈ V (K) holds and ui ≤ u′i for all i ∈ K with strict inequality

for at least on i ∈ K.

Non-blockability means: If a coalitionK kann achieve u′ for its members,
u′ must not be a coalition-specific Pareto improvement over u. Differently
put: If there are a utility vectors u and u′ and a colition K such that

u′K ∈ V (K)

and

uK < u′K

hold, u does not lie in the core (since K blocks u).
The core of a NTU coalition function can be empty; Predtetchinski &

Herings (2004) specify necessary and sufficient condition for a non-empty
core.

4. Edgeworth boxes and coalition functions

4.1. Preview. In order to understand General Equilibrium Theory, the
reader needs to know basic household theory (budget, utility functions, in-
difference curves, household optimum). Chapter II (pp. 16) may also be
helpful.

Before delving into the General Equilibrium Theory, we will give you a
short preview of where we are heading to. The General Equilibrium Theory
has two grand themes. The first is Pareto improvements through exchanges.
The second big topic is decentralization through prices.

It is quite possible to add price information into Edgeworth boxes. If
household A buys a bundle

(
xA1 , x

A
2

)
with the same worth as his endowment,

we have

p1x
A
1 + p2x

A
2 = p1ω

A
1 + p2ω

A
2 .

Starting from an endowment point, positive prices p1 and p2 lead to nega-
tively sloped budget lines for both individuals. In fig. 11, two price lines
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−
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F����� 11. Walras equilibrium

with prices pl1 < ph1 are depicted. The indifference curves indicate which
bundles the households prefer.

E������� XIX.10. Why do the two price lines in fig. 11 cross at the
endowment point ω?

Of course, we would like to know whether these prices are compatible in
the sense of allowing both agents to demand the preferred bundle. If that
is the case, the prices and the bundles at these prices constitute a Walras
equilibrium.

E������� XIX.11. The low price pl1 is not possible in a Walras equilib-
rium, because there is excess demand for good 1 at this price:

xA1 + xB1 > ωA1 + ωB1 .

Do you see that? How about good 2?

4.2. The NTU coalition function of an exchange economy. We
now proceed to the formal definition of an exchange economy.

D�������
� XIX.8 (exchange economy). An exchange economy is a tu-
ple

E =
(
N,G,

(
ωi

)
i∈N , (Ui)i∈N

)

consisting of

• the set of agents N = {1, 2, ..., n} ,
• the finite set of goods G = {1, ..., ℓ} ,

and for every agent i ∈ N
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• an endowment ωi =
(
ωi1, ..., ω

i
ℓ

)
∈ Rℓ+, and

• a utility function Ui : Rℓ+ → R.

Thus, every agent has property rights on endowments. In the two-agents
two-good case, the exchange economy can be depicted by the exchange Edge-
worth box:

• The size of the box is given by ω = ω1 + ω2.
• The utility functions can be depicted by indifference curves (to-
gether with numbers indicating strict preference).

• The endowment
(
ω1, ω2

)
is a specific point within the box.

D�������
� XIX.9. Consider an exchange economy E.
• A bundle (yi)i∈N ∈ Rℓ·n+ is an allocation.

• An allocation (yi)i∈N is called K-feasible if
∑

i∈K yi ≤ ∑
i∈K ωi

holds.

• An allocation (yi)i∈N is called feasible if it is N-feasible.

We can now specify the NTU coalition function associated with a given
exchange economy. For K �= ∅, we let

V (K) :=
{
uK ∈ R|K| : There is a K-feasible allocation x with ui ≤ Ui (xi) , i ∈ K

}
.

Thus, for every non-empty coalition K we determine the set of bundles
that this coalition possesses where the entries for the non-K players are of
no relevance. Every such K-feasible allocation defines the maximal utility
levels that the players from K can achieve.

5. GET: decentralization through prices

5.1. Excess Demand and Market Clearance. In this section we
deal with the question whether the demand for one good is greater than the
supply for this good.

D�������
� XIX.10. Assume an exchange economy E, a good g ∈ G

and a price vector p ∈ Rℓ. If every household i ∈ N has a unique household

optimum xi
(
p, ωi

)
, good g’s excess demand is denoted by zg (p) and defined

by

zg (p) :=
n∑

i=1

xig
(
p, ωi

)
−

n∑

i=1

ωig.

The corresponding excess demand for all goods g = 1, ..., ℓ is the vector

z (p) := (zg (p))g=1,...,ℓ .

The excess demand is a quantity of goods and a vector of quantities of
goods respectively. In contrast, the value of the excess demand, which is
given by

p · z (p) ,
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is a scalar amount of money. We remind the reader of Walras’ law (p. 356)
which immediately implies the following version:

L���� XIX.5 (Walras’ law). Every consumer demands a bundle of
goods obeying p ·xi ≤ p ·ωi where local nonsatiation implies equality. For all
consumers together, we have

p · z (p) =
n∑

i=1

p ·
(
xi − ωi

)
≤ 0

and, assuming local-nonsatiation, p · z (p) = 0.

Walras’ law is of great importance for General Equilibrium Theory. We
will later look at the conditions under which excess demand is zero. Then,
the problem is to get from z (p) · p = 0 ∈ R to z (p) = 0 ∈ Rℓ.

D�������
� XIX.11. A market g is called cleared if excess demand zg (p)
on that market is equal to zero.

The following two exercises are adapted from Leach (2004, pp. 54) .

E������� XIX.12. Consider a market where the excess demand of three
individuals 1, 2, and 3 is given by

z1 (p) =
8

p
− 4, z2 (p) =

4

p
− 2, z3 (p) =

12

p
− 2.

Find the market-clearing price. Is individual 3 a buyer or a seller?

E������� XIX.13. Abba (A) and Bertha (B) consider buying two goods
1 and 2, and face the price p for good 1 in terms of good 2. Think of good

2 as the numeraire good with price 1. Abba’s and Bertha’s utility func-

tions, uA and uB, respectively, are given by uA
(
xA1 , x

A
2

)
=

√
xA1 + xA2 and

uB
(
xB1 , x

B
2

)
=

√
xB1 +xB2 . Endowments are ω

A = (18, 0) and ωB = (0, 10) .

Find the bundles demanded by these two agents. Then find the price p that

fulfills ωA1 + ωB1 = xA1 + xB1 and ω
A
2 + ωB2 = xA2 + xB2 .

In the above exercise, what, if only market 1 is cleared? The following
lemma shows that local nonsatiation excludes this possibility.

L���� XIX.6 (Market clearance). In case of local nonsatiation,

(1) if all markets but one are cleared, the last one also clears or its
price is zero,

(2) if at prices p≫ 0 all markets but one are cleared, all markets clear.

P�

�. If ℓ−1markets are cleared, the excess demand on these markets
is 0. Without loss of generality, markets g = 1, ..., ℓ−1 are cleared. Applying
Walras’s law we get

0 = p · z (p)
= pℓzℓ (p) ,
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and hence both claims. �

5.2. Walras equilibrium.
5.2.1. Definition. Are there prices for all ℓ goods, for which all individual

demands are possible at the same time? Differently put, is there a price
vector p̂, such that the demand for all ℓ goods does not exceed the initial
endowment:

D�������
� XIX.12. A price vector p̂ and the corresponding demand
system

(
x̂i

)
i=1,...,n

= (xi
(
p̂, ωi

)
)i=1,...,n is called a Walras equilibrium if

n∑

i=1

x̂i ≤
n∑

i=1

ωi

or

z (p̂) ≤ 0

holds.

The equilibrium condition requires that

(1) all households choose an optimal bundle, i.e., every household i

chooses the bundle of goods xi
(
p̂, ωi

)
(or a bundle from xi

(
p̂, ωi

)
)

at given prices p̂,
(2) the resulting allocation is feasible, or, differently put, for every

good, the quantity demanded is not larger than the available quan-
tity.

E������� XIX.14. Rewrite the equilibrium condition
n∑

i=1

xi
(
p̂, ωi

)
≤

n∑

i=1

ωi

so that it is clear that the inequalities must hold for each good.

The equilibrium condition excludes that the demand for one good is
greater than the supply for this good. The reader might find this definition
of the equilibrium confusing at the first glance. Why do we not define
equilibrium through the equality of supply and demand? The definition is
weaker and we will show in the next section that under certain conditions a
not positive excess demand implies an excess demand of zero.

5.2.2. Market clearing in the Walras equilibrium. In this section, we will
present the conditions for which a market in equilibrium has an excess de-
mand of zero, i.e. the market is cleared. Consider the following definitions
and lemmata:

D�������
� XIX.13. A good is called free if its price is equal to zero.

L���� XIX.7 (free goods). Assume local nonsatiation and weak monotonic-

ity for all households. If
[
p̂,

(
x̂i

)
i=1,...,n

]
is a Walras equilibrium and the

excess demand for a good is negative, this good must be free.
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P�

�. Assume, to the contrary, that pg > 0 holds. We obtain a con-
tradiction to Walras law for local nonsatiation:

p · z (p) = pgzg (p)︸ ︷︷ ︸
<0

+
ℓ∑

g′=1,
g′ �=g

pg′zg′ (p) (zg (p) < 0)

<
ℓ∑

g′=1,
g′ �=g

pg′︸︷︷︸
≥0

zg′ (p)︸ ︷︷ ︸
≤0

(lemma XIX.4, p. 356)

≤ 0.

�

Finally (for now), we need to define the desiredness of goods:

D�������
� XIX.14. A good is desired if the excess demand at price zero
is positive.

L���� XIX.8 (desiredness). If all goods are desired and if local nonsa-
tiation and weak monotonicity hold and if p̂ is a Walras equilibrium, then

z (p̂) = 0.

P�

�. Suppose that there is a good g with zg (p̂) < 0. Then g must be
a free good according to lemma XIX.7 and have a positive excess demand
by the definition of desiredness, zg (p̂) > 0. �

5.2.3. Example: The Cobb-Douglas Exchange Economy with Two Agents.
We remember from chapter ?? that income m and Cobb-Douglas utility
function

u (x1, x2) = xa1x
1−a
2

implies the household optimum

x1 = a
m

p1
,

x2 = (1− a)
m

p2
.

Consider, now, individual 1 with Cobb-Douglas utility function u1 and pa-
rameters a1 (for good 1) and 1 − a1 (for good 2). The initial endowment
of individual 1 equals ω1 = (1, 0). Individual 2 possesses a Cobb-Douglas
utility function u2 with parameters a2 (for good 1) and 1− a2 (for good 2).
His initial endowment is ω2 = (0, 1). Parameters a1 and a2 obey the follow-
ing conditions: 0 < a1 < 1 and 0 < a2 < 1. Both goods are desired and
local strict monotonicity holds. According to lemma XIX.8, the market is
in equilibrium only if it is cleared. Substituting the value of the endowment
for income, we get the demand for good 1 for individual 1 :
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Ax2

Bx2

Bx1

F����� 12. The General Equilibrium in the exchange Edge-
worth box

x11
(
p1, p2, ω

1 · p
)

= a1
ω1 · p
p1

= a1

and the demand for good 1 for individual 2

x21
(
p1, p2, ω

2 · p
)

= a2
ω2 · p
p1

= a2
p2
p1
.

Assuming positive prices, lemma XIX.6 (p. 362) says that both markets are
cleared if one is cleared. Market 1 is cleared if demand equals supply, i.e., if

a1 + a2
p2
p1

= 1,

which is equivalent to
p2
p1

=
1− a1
a2

.

All prices, which satisfy these equations, are equilibrium prices. Obviously,
only relative prices are determined.

Figure 12 sketches the equilibrium in the two-goods case.

5.3. Existence of the Walras equilibrium.
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F����� 13. Brouwer fixed-point theorem

5.3.1. Proposition. So far we have not questioned the existence of the
Walras equilibrium. Fortunately, the following theorem holds:

T �
��� XIX.1 (Existence of the Walras Equilibrium). If aggregate
excess demand is a continuous function (in prices), if the value of the excess

demand is zero and if the preferences are strictly monotonic, there exists a

price vector p̂ such that z(p̂) ≤ 0.

The proof of this theorem uses Brouwer’s fixed-point theorem. There-
fore, we introduce this theorem in the next section and then present the
proof of the proposition in section 2.5.3.

5.3.2. Brouwer fixed-point theorem.

T �
��� XIX.2. Suppose f : M →M is a function on the nonempty,

compact and convex set M ⊆ Rℓ. If f is continuous, there exists x ∈ M

such that f (x) = x. x is called a fixed point.

Note that the range of f is included in M . One can figure out the
conclusion from Brouwer’s fixed-point theorem for the one-dimensional case
by means of a continuous function on the unit interval. If either f (0) = 0

or f (1) = 1 hold, one fixed point is found. Otherwise, fig. 13 shows a
continuous function fulfilling f (0) > 0 and f (1) < 1. The graph of such a
figure cuts the 45◦-line. The projection of this intersection point onto the
x- or the y-axis is the sought-after fixed point.

The fixed-point theorem can be nicely illustrated. Put a handkerchief
on the square [0, 1]× [0, 1] from R2. This subset is nonempty, compact and
convex. A continuous function

f : [0, 1]× [0, 1] → [0, 1]× [0, 1]

corresponds to the following process:
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• rumple the handkerchief,
• put the rumpled handkerchief again on the square and
• press it flat.

The handkerchief must not be torn because tearing corresponds to a non-
continuous f . Brouwer’s fixed-point theorem now claims that there is at
least one spot on the handkerchief which, before and after rumpling, comes
to lie on the same place of the square. Alternatively, one can imagine stir-
ring cake dough with a wooden spoon so that the dough does not lose its
coherence. At least one participle of the dough does not change its place
despite the stirring movements.

We do not prove the theorem but ask you to try the following exercise.

E������� XIX.15. Assume, one of the requirements for the fixed-point
theorem does not hold. Show, by a counter example, that there can be a

function such that there is no fixed point. Specifically, assume that

a) M is not compact

b) M is not convex

c) f is not continuous.

May-be, German-speaking people may like to learn Brouwer’s fixed-point
theorem by memorizing the poem due to Hans-Jürgen Podszuweit (found in
Homo Oeconomicus, XIV (1997), p. 537):

Das Nilpferd hört perplex:

Sein Bauch, der sei konvex.

Und steht es vor uns nackt,

sieht man: Er ist kompakt.

Nimmt man ’ne stetige Funktion

von Bauch

in Bauch

— Sie ahnen schon —,

dann nämlich folgt aus dem

Brouwer’schen Theorem:

Ein Fixpunkt muß da sein.

Dasselbe gilt beim Schwein

q.e.d.

5.3.3. Proof of the existence theorem XIX.1. In order to apply Brouwer’s
fixed-point theorem to proposition XIX.1, we first construct a convex and
compact set. The prices of the ℓ goods could be normed such that the sum of
the nonnegative (!, we have strict monotonicity) prices equals 1. Just divide
all prices by the sum of the prices. We can restrict our search for equilibrium
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prices to the ℓ− 1- dimensional unit simplex:

Sℓ−1 =



p ∈ Rℓ+ :

ℓ∑

g=1

pg = 1



 .

Sℓ−1is nonempty, compact (closed and bounded as a subset of Rℓ−1) and
convex.

E������� XIX.16. Draw S1 = S2−1.

The idea of the proof is as follows: First, we define a continuous function
f on this (nonempty, compact and convex) set. Brouwer’s theorem says that
there is at least one fixed point of this function. Second, we show that such
a fixed point fulfills the condition of the Walras equilibrium.

The abovementioned continuous function

f =




f1
f2
.

.

.

fℓ




: Sℓ−1 → Sℓ−1

is defined by

fg (p) =
pg +max (0, zg (p))

1 +
∑ℓ

g′=1max
(
0, zg′ (p)

) , g = 1, ..., ℓ

f is continuous because every fg, g = 1, ..., ℓ, is continuous. The latter is
continuous because z (according to our assumption) and max are continuous
functions. Finally, we can confirm that f is well defined, i.e., that f (p) lies
in Sℓ−1 for all p from Sℓ−1 :

ℓ∑

g=1

fg (p) =
ℓ∑

g=1

pg +max (0, zg (p))

1 +
∑ℓ

g′=1max
(
0, zg′ (p)

)

=
1

1 +
∑ℓ

g′=1max
(
0, zg′ (p)

)
ℓ∑

g=1

(pg +max (0, zg (p)))

=
1

1 +
∑ℓ

g′=1max
(
0, zg′ (p)

)


1 +

ℓ∑

g=1

max (0, zg (p))




= 1.

The function f increases the price of a good g in case of fg (p) > pg, only,
i.e. if

pg +max (0, zg (p))

1 +
∑ℓ

g′=1max
(
0, zg′ (p)

) > pg
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or

max (0, zg (p)) > pg

ℓ∑

g′=1

max
(
0, zg′ (p)

)

or

max (0, zg (p))∑ℓ
g′=1max

(
0, zg′ (p)

) >
pg∑ℓ

g′=1 pg′

holds.
The last formula has a nice interpretation: when the relative excess

demand for a good is greater than the relative price for the same good
(as measured by the sum of the excess demand, respectively the sum of
the prices), the function f increases the price. Behind f, we imagine the
workings of the Walras auctioneer, who changes prices upon observing excess
demands. This so-called tâtonnement may (or may not) converge towards
the equilibrium price vector.

We now complete the proof: according to Brouwer’s fixed-point theorem
there is one p̂ such that

p̂ = f (p̂) ,

from which we have

p̂g =
p̂g +max (0, zg (p̂))

1 +
∑ℓ

g′=1max
(
0, zg′ (p̂)

)

and finally

p̂g

ℓ∑

g′=1

max
(
0, zg′ (p̂)

)
= max (0, zg (p̂))

for all g = 1, ..., ℓ.
Next we multiply both sides for all goods g = 1, ..., ℓ by zg(p̂):

zg(p̂)p̂g

ℓ∑

g′=1

max
(
0, zg′ (p̂)

)
= zg(p̂)max (0, zg (p̂))

and summing up over all g yields

ℓ∑

g=1

zg(p̂)p̂g

ℓ∑

g′=1

max
(
0, zg′ (p̂)

)
=

ℓ∑

g=1

zg(p̂)max (0, zg (p̂)) .

By Walras’ law, the left-hand expression is equal to zero. The right one
consists of a sum of expressions, which are equal either to zero or to (zg (p̂))

2.
Therefore, zg (p̂) ≤ 0 for all g = 1, ..., ℓ. This is what we wanted to show.
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6. Pareto optimality and the core

6.1. The first welfare theorem from the point of view of gen-
eral equilibrium analysis. We now turn to general equilibrium analysis
and consider the total system of markets simultaneously. For an exchange
economy, we will be able to show more than just Pareto efficiency (compare
chapter II, pp. 17). We will show that every Walras allocation lies in the
core in case of strict monotonicity. The core presented in this section is re-
lated to the core introduced in chapter III. While in that chapter, the core is
defined within the framework of coalition functions, we present a definition
for allocations in the present section. In both cases, a core is defined by
Pareto efficiency and the impossibility to block. As in chapter III, we call a
subset S ⊆ N a coalition.

A coalition S can block an allocation if it can present an allocation that
improves the lot of its members and that can be afforded by S :

D�������
� XIX.15 (blockable allocation, core). Let E =
(
N,G,

(
ωi

)
i∈N , (Ui)i∈N

)

be an exchange economy. A coalition S ⊆ N is said to block an allocation

(yi)i∈N , if an allocation
(
zi
)
i∈N exists such that

• Ui
(
zi
)
≥ Ui

(
yi
)
for all i ∈ S, Ui

(
zi
)
> Ui

(
yi
)
for some i ∈ S and

• ∑
i∈S z

i ≤ ∑
i∈S ω

i

hold.

An allocation is not blockable if there is no coalition can block it. The set

of all feasible and non-blockable allocations is called the core of an exchange

economy.

Within the Edgeworth box, the core can be depicted graphically. We see
the endowment point and the associated exchange lense in fig. 14. Every
household (considered a one-man coalition) blocks any allocation that lies
below the indifference curve cutting his endowment point. Therefore, the
core is contained inside the exchange lense. Both households together block
any allocation that is not Pareto efficient. Thus, the core is the intersection
of the exchange lense and the contract curve, roughly speaking.

We now turn to a remarkable claim:

T �
��� XIX.3. Assume an exchange economy E with local non-satiation
and weak monotonicity. Every Walras allocation lies in the core.

P�

�. Consider a Walras allocation
(
x̂i

)
i∈N . Lemma XIX.4 (p. 356)

implies

p̂
(1)
>> 0

where p̂ is the equilibrium price vector.
Assume, now, that

(
x̂i

)
i∈N does not lie in the core. Since a Walras

allocation is feasible, there exists a coalition S ⊆ N that can block
(
x̂i

)
i∈N .

I.e., there is an allocation
(
zi
)
i∈N such that
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F����� 14. Exchange lense and core

• Ui
(
zi
)
≥ Ui

(
x̂i

)
for all i ∈ S, Ui

(
zi
)
> Ui

(
x̂i

)
for some i ∈ S and

• ∑
i∈S z

i ≤ ∑
i∈S ω

i.

The second point, together with (1), leads to the implication

p̂ ·
(
∑

i∈S
zi −

∑

i∈S
ωi

)
≤ 0. (XIX.1)

The first point implies

p̂ · zi
(2)

≥ p̂ · x̂i = p̂ · ωi for all i ∈ S (by local nonsatiation) and

p̂ · zj
(3)
> p̂ · x̂j = p̂ · ωj for some j ∈ S (otherwise, x̂j is not an optimum).

Summing over all these households from S yields

p̂ ·
∑

i∈S
zi =

∑

i∈S
p̂ · zi (distributivity)

>
∑

i∈S
p̂ · ωi (above inequalities (2) and (3))

= p̂ ·
∑

i∈S
ωi (distributivity).

This inequality can be rewritten as

p̂ ·
(
∑

i∈S
zi −

∑

i∈S
ωi

)
> 0

contradicting eq. XIX.1. �
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A

B

Ax1

Ax2

Bx2

Bx1

satiation
region

F����� 15. A non-efficient equilibrium

We now consider a case where a Walras allocation does not lie in the core.
Consider fig. 15. The lower-left agent’s preferences violate non-satiation. He
is indifferent between all the bundles in the shaded area that comprises the
highlighted endowment point and the price line. The equilibrium point is
the point of tangency between that price line and the upper-right agent’s
indifference curve. This point is not Pareto efficient. The lower-left agent
could forego some units of both goods without harming himself.

7. The marriage market

7.1. Consistent and feasible allocations and the NTU game.
Roth & Sotomayor (1992) present a marriage-market model that can also be
applied to other matching problems (for example, employers and employees).
Assume a set of men

M = {m1, ...,mk}
and a set of women

W = {w1, ..., wn} .
Each man m ∈M possesses a utility function Um :W ∪{m} → R where w1
means marrying woman 1 whilem stands for celibacy (singleness). Similarly,
every womand w ∈W has a utility function Uw on M ∪ {w} .

E������� XIX.17. What does Uw1 (m1) > Uw1 (w1) > Uw1 (m2) mean?

In order to simplify the analysis, we follow the authors in assuming that
all the preferences are strict. The tuple of all k + n utility functions is
denoted by U.
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D�������
� XIX.16 (marriage market). A marriage market (M,W,U)

consists of disjunct sets of individuals M and W and utility functions U =

(Ui)i∈M∪W with domain W ∪ {m} for every m ∈ M and domain M ∪ {w}
for every w ∈W .

In comparison with an exchange economy, the players themselves are the
object of preferences. This explains the emotionality reigning in this market
as many readers may know from their own experience.

An allocation in a goods market attaches good bundles to players. In
contrast, players show up in the domain and in the range of a marriage-
market allocation.

D�������
� XIX.17 (allocation). For a marriage market (M,W,U) , the

function

µ :M ∪W →M ∪W

is called an allocation if the two requirements

• µ (m) ∈ {m}∪W for all m ∈M and

• µ (w) ∈ {w}∪M for all w ∈W

are fulfilled.

Thus, men can be singles or attached to a woman — Adam and Eve, not
Adam and Steve.

E������� XIX.18. Which players are characterized by µ (µ (i)) = i?

Allocations as defined above do not reflect traditional marriages. After
all, we may have µ (m) = w but not µ (w) = m for some pair m ∈ M ,
w ∈W .

D�������
� XIX.18 (consistent allocation). For a marriage market (M,W,U) ,

an allocation µ is called consistent if µ (µ (i)) = i holds for all i ∈M ∪W .

Single individuals i are defined by µ (i) = i and fulfull the consistency
condition by

µ (µ (i)) = µ (i) = i.

Assume a feasible allocation µ and a man m ∈ M who is not single. By
µ (m) ∈ {m}∪W , he is attached to a women w ∈ W (µ (m) = w). Consis-
tency then implies

m = µ (µ (m)) = µ (w)

so that the woman w is attached to the very same man — a marriage relation.

D�������
� XIX.19. Consider a consistent allocation µ in a marriage

market (M,W,U). µ is called K-feasible if µ (K) ⊆ K holds.
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K-feasibility means that every individual from K is single or has a mar-
riage partner in K. Similarly, a blocking coalition in an exchange economy
can only redistribute goods this coalition possesses (K-feasibility, see p. ??).
Every consistent allocation µ is M ∪W -feasible.

Very similar to the exchange economy, we can define the associated NTU
coalition function V by

V (K) :=
{
uK ∈ R|K| : There is a feasible allocation µ with ui ≤ Ui (µ (i)) , i ∈ K

}
.

7.2. Core. We now turn to the question of whether a feasible allocation
is stable. One important point is that no (wo)man has a partner she (or he)
would rather like to do without.

D�������
� XIX.20 (acceptability). An agent i finds another individual
j acceptable if Ui (j) > Ui (i) holds.

The idea of the above definition is that nobody can be married against
his (or her) will. However, the fact a man m does not have his favorite
woman w as spouse does not speak against the stability of the underlying
allocation — w might find another man m′ more attrative to whom she is
actually married.

D�������
� XIX.21 (from individual rationality to the core). Let µ be
a consistent (or M ∪W -feasible) allocation.

• µ is called individually rational if Ui (µ (i)) ≥ Ui (i) holds for all

i ∈ N (non-blockability by one-man coalitions).

• µ is called pairwise rational if there is no pair of players (m,w) ∈
M ×W such that

Um (w) > Um (µ (m)) and

Uw (m) > Uw (µ (w))

hold (non-blockability by heterosexual pairs).

• µ is called Pareto optimal if there is no consistent allocation µ′ that
fulfills

Ui
(
µ′ (i)

)
≥ Ui (µ (i)) for all i ∈M ∪W and

Uj
(
µ′ (j)

)
> Uj (µ (j)) for at least one j ∈M ∪W

(non-blockability by the grand coalition).

• µ lies in the core if there is not coalition K ⊆ M ∪ W and no

K-feasible allocation µ′ such that

Ui
(
µ′ (i)

)
≥ Ui (µ (i)) for all i ∈ K and

Uj
(
µ′ (j)

)
> Uj (µ (j)) for at least one j ∈ K

holds (non-blockability by any coalition).
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Pairwise rationality means that there is no man and no woman such that
both of them could improve their lot by marrying. The improvement can
mean breaking off existing marriages or giving up celibacy. Pareto optimality
and the core are defined with reference to feasibility and non-blockability by
the grand or by any coalition, respectively.

Remember thatK-feasibility includes µ′ (K) ⊆ K — players from a block-
ing coalition K have to restrict their search of partners to players within K.
The inclusion µ′ (K) ⊆ K is also fulfilled by individual rationality. After all,
every {i}-feasible allocation µ′ obeys µ′ (i) = i. Also, pairwise rationality
underlies this inclusion — the blocking coalition {m,w} forms a pair.

E������� XIX.19. What is the connection between individual rationality
and acceptability?

T �
��� XIX.4. Let (M,W,U) be a marriage market. The set of con-

sistent allocations that are individually rational and pairwise rational is the

core.

P�

�. We first show that a consistent allocation is both individually
and pairwise rational belongs to the core. In order to do so, we assume an al-
location µ outside the core. We can assume that µ is consistent. Thus, there
exists a coalition K that can block µ by suggesting a K-feasible allocation
µ′ that fulfills

Ui
(
µ′ (i)

)
≥ Ui (µ (i)) for all i ∈ K and

Uj
(
µ′ (j)

)
> Uj (µ (j)) for at least one j ∈ K.

Let us focus on individual j that is strictly better off under µ′ than under
µ. We can distinguish two cases:

• j is single or married under µ and (re)marries under µ′.
In this case both j and his (or her) spouse µ′ (j) ∈ K (!) are

strictly better off because we work with strict preferences. Then µ

is not pairwise rational.
• j is married under µ and single under µ′.

This second case implies that j is better off as a single conta-
dicting individual rationality.

E������� XIX.20. Complete the proof by showing that every allocation
from the core is both individually and pairwise rational.
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8. Topics and literature

The main topics in this chapter are

• money budget
• endowment budget
• marginal opportunity cost
• feasibility
• objective function
• indirect utility function
• marginal utility of income
• labor supply
• intertemporal consumption
• demand function
• exchange economy
• excess demand
• market clearing
• Walras equilibrium
• first welfare theorem
• second welfare theorem
• Walras’ law
• free goods
• Brouwer’s fixed-point theorem
• positive theory
• non-transferable utility
• endowment
• Walras equilibrium
• Walras allocation
• marriage market
• core

We point to the careful but difficult survey of cooperative game theory
for non-transferable utility by McLean (2002). A careful introduction into
General Equilibrium Theory is presented by Hildenbrandt & Kirman (1988).

9. Solutions

Exercise XIX.1
For any number α > 0, we have B (αp,m) = B

(
p, mα

)
.

Exercise XIX.2
Fig. 16 shows the left-over in terms of good 1 and good 2. In order to

obtain the left-over in money terms, we need to multiply the left-over of
good 1 with p1 (or the left-over of good 2 with p2).
Exercise XIX.3
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1x

2x

1p

m

2p

m

left-over in terms of good 2

left-over in terms of good 1

F����� 16. The left-over

Solving p1x1 + p2x2 = m for x2 yields x2 = m
p2
− p1

p2
x1 so that the

derivative of x2 (as a function of x1) is −p1
p2
.

Exercise XIX.4
In subfigure (a), points A and B do not correspond to an optimum. The

preferences are strictly convex and every point between A and B is better
than A or B. Subfigure (b) depicts perfect substitutes. Point A is the
household optimum. In subfigure (c), points A and B are optima but so are
all the points in between. Turning to subfigure (c), the point of tangency
A is the worst bundle of all the bundles on the budget line. There are two
candidates for household optima in this case of concave preferences, the two

extreme bundles
(
m
p1
, 0

)
and

(
0, mp2

)
.

Exercise XIX.5
If y is better than x, the household optimum, the household cannot

afford y :

y ≻ x⇒ p · y > p · ω
Exercise XIX.6

The utility levels achievable by Peter and Otto are depicted in fig. ??
dargestellt.
Exercise XIX.7

V ({1, 2}) is a non-empty subset of R2 which is true for the two last
expressions, only.
Exercise XIX.8

All axis intercepts are v (K).
Exercise XIX.9

V1 is superadditive while V2 is not. We do not show superadditivity of
V1 but just consider a few examples. Take S = {1} and T = {2} . You
find 1 ∈ V1 ({1}) and 2 ∈ V1 ({2}) and, in line with superadditivity, (1, 2) ∈
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2 uPeter

uOtto

4

1

4

F����� 17. Payoff vectors

V1 ({1, 2}) . Similarly, for S = {1} and T = {2, 3} we have 1 ∈ V1 ({1}) ,
(4, 5) ∈ V1 ({2, 3}) and (1, 4, 5) ∈ V1 ({1, 2, 3}).

V2 is not superadditive because of 1 ∈ V2 ({1}) and 3 ∈ V2 ({3}) , but
(1, 3) /∈ V2 ({1, 3}) . Superadditivity can also be disproved by looking at
S = {1} and T = {2, 3} aufzeigen.
Exercise XIX.10

The individual is always free to consume ω. If he wants to consume
another bundle, the prices are relevant.
Exercise XIX.11

Markets clear for ph1 , but not for p
l
1. At price p

l
1, individuals A and B

want to consume more of good 1 than they possess together. Just note that
DA is to the right of DB. At price pl1, there is excess supply of good 2 :

xA2 + xB2 < ωA2 + ωB2 .

Exercise XIX.12
From

z1 (p) + z2 (p) + z3 (p) =
8

p
− 4 +

4

p
− 2 +

12

p
− 2

=
24

p
− 8

we obtain the market clearing price

p∗ = 3.

For individual 3, we have z3 (3) = 12
3 − 2 = 2. He is a buyer.
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Exercise XIX.13
Abba will find the household optimum by letting

pxA1 + xA2 = 18p and |MRS| = MU1
MU2

=

1

2
√
xA1

1
=

p

1
.

Solving the second equation for xA1 , we obtain

xA1 =
1

4p2
.

Substituting into the first yields

p
1

4p2
+ xA2 = 18p and hence

xA2 = 18p− 1

4p
.

Bertha’s optimal bundle is

xB1 =
1

4p2
, xB2 = 10− 1

4p
.

Equation ωA1 + ωB1 = xA1 + xB1 can be written as

18 = xA1 + xB1 =
2

4p2

and we find

p =
1

6
.

The same price obtains from

10 = xA2 + xB2 = 18p− 1

4p
+ 10− 1

4p
.

Exercise XIX.14
We can rewrite

n∑

i=1

xi
(
p̂, ωi

)
≤

n∑

i=1

ωi

as
n∑

i=1

(
xi1

(
p̂, ωi

)
, ..., xiℓ

(
p̂, ωi

))
≤

n∑

i=1

(
ωi1, ..., ω

i
ℓ

)

which just means
n∑

i=1

xig
(
p̂, ωi

)
≤

n∑

i=1

ωig for all g = 1, ..., ℓ.

Exercise XIX.15
a) There are two cases for whichM is not compact: IfM is not bounded,

e.g. M = R, the function f (x) = x + 1 maps M onto M but is does not
have a fixed point. For M being open, e.g. the function f (x) = 1+x

2 with
M = (0, 1) has no fixed point.
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1p1

1

2p

F����� 18. The 1- dimensional unit simplex

b) With M =
[
0, 13

]
∪

[
2
3 , 1

]
, the function f (x) = 1

2 has no fixed point.

c) Let M = [0, 1] . Then f =
{1, if 0≤x≤ 2

3

0, if 2
3
<x≤1has no fixed point.

Exercise XIX.16
S1 is the one-dimensional segment as shown in fig. 18.

Exercise XIX.17
Woman 1 would rather marry man 1 than stay single, but would prefer

to stay alone over marrying man 2.
Exercise XIX.18

For single individuals or for individuals with a spouse (read on!).
Exercise XIX.19

Individual rationality means that every married individual has an ac-
ceptable partner.
Exercise XIX.20

Let µ be an allocation from the core of the marriage game (M,W,U).
Then µ is consistent and there is no allocation K ⊆M ∪W that can block
µ. In particular, this is true for one-man (one-woman) coalitions and for
heterosexual pairs. Thus, we obtain individual rationality (no individual
can be married although he prefers to be single) and pairwise rationality
(no pair can be prevented from marrying if both of them so prefer).
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10. Further exercises without solutions

P�
+"�� XIX.1.

Sketch budget lines or the displacements of budget lines for the following
examples:

• Time T = 18 and money m = 50 for football F (good 1) or basket
ball B (good 2) with prices
— pF = 5, pB = 10 in monetary terms,
— tF = 3, tB = 2 and temporary terms

• Two goods, bread (good 1) and other goods (good 2). Transfer in
kind with and without prohibition to sell:
— m = 20, pB = 2, pother = 1

— Transfer in kind: B = 5





CHAPTER XX

Die Nash-Lösung

1. Introduction

Eines der berühmtesten Konzepte der Koalitionsfunktion ohne trans-
ferierbaren Nutzen ist die Nash-Lösung (oder Nash-Verhandlungslösung).
Sie hat mit dem Begriff des Nash-Gleichgewichtes, das in die nichtkoopera-
tive Spieltheorie gehört, außer dem Bezug zu John Nash, nichts zu tun. Die
hier folgenden Ausführungen sind durch Thomson (1994) und Peters (1992)
inspiriert. Nash (1953) selbst hat seine Theorie für zwei Personen expliziert.
Die Verallgemeinerung auf n Personen ist jedoch nicht schwer.

2. Threat points

V (K) determines the payoffs that a player from K can obtain only in
relation to the payoffs of the other players. For future reference, we are
interested in the payoffs a player might possibly get:

D�������
� XX.1 (maximal payoff). Let K be a coalition and i a player
from K. Player i’s maximal payoff for K and V is denoted by mK

i (V ) and

given by

mK
i (V ) := max

{
xi ∈ R : There is a payoff vector u ∈ V (K) ⊆ R|K| with ui = xi

}
.

We sometimes write mK
i rather than m

K
i (V ).

We will assume that mK
i (V ) always exists (which is true if V (K) is

closed).

E������� XX.1. Determine m{1,2}
1 for

V ({1, 2}) =
{
(x1, x2) ∈ R2 : x1 ≤ 3, x2 ≤ 4, x1 + x2 ≤ 5

}
.

Die Besonderheit der Nash-Lösung besteht darin, dass die Auszahlun-
gen V (K), die Koalitionen K mit 1 < |K| < n erzielen können, keine
Rolle spielen. Es kommt nur darauf an, was die große Koalition und die
Einerkoalitionen erzielen können. Für die Einerkoalitionen beschränkt man
sich zudem auf ihre maximale Auszahlungen:

di := m
{i}
i , i ∈ N.

d = (di)i∈N nennt man auch den Drohpunkt oder Status-quo-Punkt. Er
gibt diejenigen Nutzen an, die die Agenten bei Abbruch der Verhandlungen
erreichen können.

383
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Wir definieren nun ein Verhandlungsspiel (N,V ) als ein spezielles Koali-
tionsspiel bei nichttransferierbarem Nutzen (siehe McLean (2002, S. 2080)):

D�������
� XX.2. Ein Verhandlungsspiel (N,V ) ist ein Koalitionsspiel

bei nichttransferierbarem Nutzen, das die folgenden Bedingungen erfüllt:

• (di)i∈N ist zulässig: (di)i∈N ∈ V (N).

• In V (N) existiert mindestens ein Vektor x mit x >> d.

Häufig setzt man U := V (N) (die so genannte Verhandlungsmenge)

und schreibt dann auch (U, d) anstelle von V . Die Menge der n-Personen-

Verhandlungsspiele bezeichnet man mit Vn.

In Abb. 1, die sich auf den Zwei-Personen-Fall bezieht, gibt es offen-
bar viele Nutzenvektoren, die beide Spieler im Vergleich zu d besser stellen.
Von besonderer Wichtigkeit ist die Nutzengrenze (die so genannte Nutzen-
möglichkeitenkurve), die die Menge der Pareto-optimalen Nutzenkombina-
tionen wiedergibt. Streng genommen bräuchten wir noch einige weitere
„technische” Bedingungen (u.a. Konvexität); wir wollen sie jedoch nicht
näher erläutern. Eine ausführlichere Einführung in die Nash-Verhandlungs-
Lösung bietet Binmore (1992, Kap. 5).

Bevor Sie sich an die nächste Aufgabe machen, wollen wir den so genan-
nten Idealpunkt definieren:

D�������
� XX.3. Idealpunkt heißt der durch

a (U, d) = (ai (U, d))i∈N

und

ai (U, d) := max {ui ∈ R : Es gibt einen Nutzenvektor u in U mit u ≥ d}

definierte Punkt aus Rn.

ai (U, d) ist die maximale Auszahlung, die Spieler i unter all denjeni-
gen Punkten aus U erreichen kann, die alle Spieler gegenüber dem Droh-
punkt vorziehen („rechts oberhalb” des Drohpunktes). Im Allgemeinen liegt
a (U, d) nicht in U .

E������� XX.2. Skizzieren Sie den Kern der zu Abbildung 1 gehöri-
gen charakteristischen Funktion ohne transferierbaren Nutzen. Zeichnen Sie

auch a1 (U, d) , a2 (U, d) und a (U, d) ein.

3. Axiome für Verhandlungslösungen

Das Ziel dieses und des nächsten Abschnittes besteht darin, Verhand-
lungsspielen Auszahlungsvektoren zuordnen zu können. Dazu definieren wir
zunächst allgemein eine solche Lösung:
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U

d1

d2

u2

u1

F����� 1. Ausgangssituation für die Nash-Verhandlungslösung

D�������
� XX.4. Die Abbildung

ψ : Vn → Rn

heißt punktwertige Verhandlungslösung auf N .

E������� XX.3. Wie sollte Ihrer Meinung nach eine Lösung auf {1, 2}
von d1 abhängen?

Wir präsentieren zunächst Axiome, die Verhandlungslösungen erfüllen
könnten oder sollten. Dabei beschränken wir uns auf den Fall N = {1, 2} ;
die Verallgemeinerung auf n Spieler ist jedoch leicht.
Pareto-Axiom: Die Auszahlung (ψ1 (U, d) , ψ2 (U, d)) ist zulässig und durch
{1, 2} nicht blockierbar:

• (ψ1 (U, d) , ψ2 (U, d)) ∈ U und
• (u1, u2) > (ψ1 (U, d) , ψ2 (U, d)) impliziert (u1, u2) /∈ U .

E������� XX.4. Welche Auszahlungen in Abb. 1 auf S. 385 sind Pareto-
effizient?

Symmetrie-Axiom: Für zwei Verhandlungsprobleme

(U, d) und
(
U ′, d′

)

gelte

d′1 = d2, d
′
2 = d1

und

U ′ = {(u1, u2) : (u2, u1) ∈ U} .
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Dann folgen

ψ1
(
U ′, d′

)
= ψ2 (U, d) und

ψ2
(
U ′, d′

)
= ψ1 (U, d) .

Die Lösung darf also nicht von der Benennung der Spieler abhängen. Das
Symmetrieaxiom ist insofern angreifbar, als es in Verhandlungen sicherlich
Aspekte gibt, die nicht in U und d „eingefangen” sind: die Persönlichkeit der
Verhandelnden, ein möglicher „Heimvorteil” eines Spielers oder Ähnliches.
Axiom über die Invarianz bei affinen Transformationen: Für a1, a2 >
0, b1, b2 beliebig und zwei Verhandlungsprobleme

(U, d) und
(
U ′, d′

)

gelte

d′1 = a1 · d1 + b1,

d′2 = a2 · d2 + b2

und

U ′ = {(a1 · u1 + b1, a2 · u2 + b2) : (u1, u2) ∈ U} .
Dann folgen

ψ1
(
U ′, d′

)
= a1ψ1 (U, d) + b1 und

ψ2
(
U ′, d′

)
= a2ψ2 (U, d) + b2.

Wir erinnern daran (siehe Abschnitt ?? auf S. ?? ff.), dass von Neumann-
Morgenstern-Nutzenfunktionen u nur bis auf positive affine Transformatio-
nen eindeutig bestimmt sind. Diese Invarianz, so fordert das Axiom, soll sich
auch auf die Verhandlungslösung übertragen. Allerdings ist die vorange-
hende Begründung nur für von Neumann-Morgenstern-Nutzenfunktionen
stichhaltig. Beispielsweise kann man nicht die Nutzenwerte einer Cobb-
Douglas-Nutzenfunktion im Falle einer Tauschökonomie nehmen.
Axiom über die Unabhängigkeit irrelevanter Alternativen: Für
zwei Verhandlungsprobleme

(U, d) und
(
U ′, d′

)

gelte

d′1 = d1, d
′
2 = d2

und

U ′ ⊆ U .

Dann folgt aus

(ψ1 (U, d) , ψ2 (U, d)) ∈ U ′

bereits (
ψ1

(
U ′, d′

)
, ψ2

(
U ′, d′

))
= (ψ1 (U, d) , ψ2 (U, d)) .
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u2

u1

U´

U

F����� 2. Irrelevante Alternativen?

Falls sich bei einem Verhandlungsproblem eine bestimmte Verhandlungslö-
sung ergibt, so sollte diese Verhandlungslösung also nach Möglichkeit auch
dann weiter bestehen bleiben, wenn die Menge der erreichbaren Nutzenkom-
binationen kleiner wird.

Dieses Axiom ist vielleicht am problematischsten: Betrachten wir dazu
Abb. 2. Die Menge U enthält die Menge U ′. Wenn der hervorgehobene
Punkt, der sowohl in U als auch in U ′ liegt, die Lösung bei U ist, gilt dies
auch für U ′. Intuitiv sollte man allerdings meinen, dass sich die Verhand-
lungsposition für Spieler 2 bei U ′ schlechter darstellt als bei U .

Schließlich präsentieren wir zwei recht plausible Monotonie-Axiome. Das
erste bezieht sich auf die Verhandlungsmenge, das zweite auf den Droh-
punkt. Intuitiv besagt das Verhandlungsmengen-Monotonie-Axiom Folgen-
des: Wenn man für jeden Nutzenwert u2 die u1-Nutzenwerte erhöht, erhält
Spieler 1 eine höhere Auszahlung. Formal schreiben wir dies so:
Axiom über die Verhandlungsmengen-Monotonie: Für N = {1, 2}
und i, j ∈ N, i �= j, erhält bei

U ′ ⊇ U und

aj
(
U ′, d

)
= aj (U, d)

Spieler i bei U ′ mindestens so viel wie bei U :

ψi
(
U ′, d

)
≥ ψi (U, d) .

(Die aj (U, d) haben wir auf S. 384 definiert.)
Dieses Axiom ist in Abb. 3 angedeutet, wobei wir i = 1 und j = 2

gesetzt haben.
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d

U

u2

u1

a(U,d)

U´

a(U´,d)

( ) ( )d,U'dU, 11 ϕϕ <

F����� 3. Monotonie-Axiom

Axiom über die Drohpunkt-Monotonie: Für N = {1, 2} und i, j ∈ N,

i �= j, erhält bei

d′i ≥ di und dj = d′j

Spieler i bei d′ mindestens so viel wie bei d :

ψi
(
U, d′

)
≥ ψi (U, d) .

4. Die Nash-Verhandlungslösung

Ähnlich wie bei der Shapley-Lösung kann man auch für Verhandlungs-
Lösungen zeigen, dass bestimmte Axiome äquivalent zu einer bestimmten
Berechnungsart sind. Es stellt sich heraus, dass einige Axiome gleichbedeu-
tend damit sind, dass man nach demjenigen Nutzenbündel (u1, u2) sucht,
das

(u1 − d1) (u2 − d2)

maximiert. Hierbei sind allerdings nur Nutzenbündel „rechts oberhalb”
von d zulässig; ansonsten wäre die individuelle Rationalität verletzt. Wir
setzen zudem voraus, dass es genau ein Nutzentupel gibt, das diese Max-
imierungsaufgabe löst.

T �
��� XX.1. Genau dann, wenn eine Lösung auf V2 die Axiome

• Pareto-Axiom,
• Symmetrie-Axiom,
• Axiom über die Invarianz bei affinen Transformationen und
• Axiom über die Unabhängigkeit irrelevanter Alternativen
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d1
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1 ϕϕ

F����� 4. Die Nash-Verhandlungslösung

erfüllt, lautet sie

argmax
(u1,u2)∈U,
u1≥d1,u2≥d2

(u1 − d1) (u2 − d2) .

Diese Lösung nennen wir die (symmetrische) Nash-Verhandlungslösung und

bezeichnen sie mit ϕN .

Dieses Theorem lässt sich ohne weiteres auf n Spieler übertragen. Man
hat dann für das Produkt aus n Faktoren das Maximum zu suchen. Einen
Beweis liefern wir nicht und verweisen stattdessen wiederum auf das Lehrbuch
von Binmore (1992).

Es gibt eine einfache graphische Veranschaulichung der Nash-Verhand-
lungslösung. Wir betrachten die Iso-Produkt-Kurven, d.h. die Menge der-
jenigen Tupel (u1, u2), für die

(u1 − d1) (u2 − d2) = k

für verschiedene Konstanten k gilt. Dies sind Hyperbeln mit nach (d1, d2)

verschobenemUrsprung. Die Nash-Verhandlungslösung ist diejenige Nutzenkom-
bination, bei der eine Hyperbel die Verhandlungsmenge U genau einmal
berührt (siehe Abbildung 4).

Betrachten wir ein sehr einfaches Beispiel: Ein Kuchen der Größe 1 sei
zwischen zwei Spielern aufzuteilen. Damit haben wir

U = {(u1, u2) : u1 + u2 ≤ 1, u1, u2 ≥ 0} .
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Der Status-quo-Punkt d sei ein Punkt aus U mit

d1 + d2 < 1.

Sind die vier Axiome erfüllt, erhalten wir

(
ϕN1 (U, d) , ϕN2 (U, d)

)
= argmax

(u1,u2)∈U,
u1≥d1,u2≥d2

(u1 − d1) (u2 − d2)

=

(
1

2
+

1

2
(d1 − d2) ,

1

2
+

1

2
(d2 − d1)

)
.

E������� XX.5. Stimmt das?

Die Interpretation dieses Ergebnisses ist offensichtlich: Jeder Spieler
profitiert von einem eigenen hohen Drohpunkt (er hat „nicht viel zu ver-
lieren”) und von einem niedrigen Drohpunkt des Verhandlungspartners (dieser
ist auf den Handel angewiesen). Die Drohpunkt-Monotonie ist für die Nash-
Verhandlungslösung also erfüllt.

Man könnte nun das obige Kuchen-Aufteilungsbeispiel so variieren, dass
einer der Spieler risikoavers ist, während der andere risikoneutral bleibt. Wir
werden sehen, dass der risikoneutrale Agent einen größeren Teil des Kuchens
erhält als der risikoaverse. Ein Beispiel für eine Risikoaversion ausdrückende
von Neumann-Morgenstern-Nutzenfunktion ist die Wurzelfunktion.

E������� XX.6. Bestimmen Sie die Nash-Verhandlungslösung im Falle
von

U = {(u1, u2) : x1 + x2 ≤ 1, u1 =
√
x1, u2 = x2, x1 ≥ 0, x2 ≥ 0}

und

d1 = 0, d2 = 0.

Hinweis: Bestimmen Sie zunächst die Nutzenmöglichkeitenkurve, also u2 als

Funktion von u1.

Eine Frage bezüglich der Axiomatisierung haben wir offen gelassen. Wie
steht es mit der Verhandlungsmengen-Monotonie auf S. 387? Lässt sie sich
vielleicht aus den anderen Axiomen folgern? Nein! Sie ist nicht erfüllt.
Diese Behauptung kann man aus Abb. 5 ablesen. Offenbar ist hier U ′ eine
echte Obermenge von U und auch a2 (U ′, d) = a2 (U, d) ist erfüllt. Trotzdem
erhält Spieler 1 bei U ′ weniger als bei U .

Dass die Nash-LösungMonotonie verletzt, ist sicherlich ein großer Nachteil
dieses Lösungskonzeptes. Wir werden in Abschnitt 6 monotone Alternativen
zur Nash-Lösung präsentieren.
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F����� 5. Verletzung der Verhandlungsmengen-Monotonie

5. Asymmetrische Nash-Lösungen

5.1. Definition. In der Literatur findet sich neben der symmetrischen
Nash-Lösung (die wir in den vorangehenden Abschnitten erläutert haben)
auch eine asymmetrische Lösung, die auf Harsanyi & Selten (1972) zurück-
geht. In diese Lösung gehen neben der Verhandlungsmenge U ⊆ Rn und
dem Drohpunkt d ∈ Rn Gewichte ω = (ω1, ..., ωn) > 0 ein. (Man hat ωi ≥ 0

für alle i ∈ N und ωi > 0 für mindestens ein i ∈ N.)

D�������
� XX.5. Die asymmetrische Nash-Lösung ist durch

ϕNi (U, d, ω) :=





argimaxu∈U,
u≥d

(u1 − d1)
ω1 (u2 − d2)

ω2 , ωi > 0

di, ωi = 0

definiert.

Falls ein Spieler i ∈ N das Gewicht Null aufweist, erhält er also als
Auszahlung nur seinen Drohwert di. Falls sein Gewicht positiv ist, erhält
er aus dem Auszahlungsvektor, der das obige Produkt maximiert, seine
Komponente (daher das i neben arg). Die Gewichte müssen sich nicht
zu 1 ergänzen, man kann dies jedoch ohne Beschränkung der Allgemein-
heit fordern. Denn (u1 − d1)

ω1 (u2 − d2)
ω2 wird für genau dieselben (u1, u2)

maximiert wie

[(u1 − d1)
ω1 (u2 − d2)

ω2 ]
1

ω1+ω2 = (u1 − d1)
ω1

ω1+ω2 (u2 − d2)
ω2

ω1+ω2 .

Axiomatisch lässt sich die asymmetrische Nash-Lösung so wie die sym-
metrische Nash-Lösung charakterisieren. Lediglich das Symmetrie-Axiom
muss nicht mehr erfüllt sein.
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Als Beispiel betrachten wir

U = {(u1, u2) : x1 + x2 ≤ 1, u1 =
√
x1, u2 = x2, x1 ≥ 0, x2 ≥ 0}

mit der dazugehörigen Nutzenmöglichkeitenkurve

u2 = x2 = 1− x1 = 1− (u1)
2 ,

dem Drohpunkt d = (0, 0) und dem Gewichtsvektor ω = (1, 2).
Damit erhält man das zu maximierende Produkt

(u1 − d1)
1 (u2 − d2)

2

= u1
(
1− u21

)2

= u1 + u51 − 2u31.

Differenzieren und Nullsetzen ergeben

1 + 5u41 − 6u21
!
= 0

bzw.

u41 −
6

5
u21 +

1

5
!
= 0,

woraus sich zunächst (Anwendung der quadratischen Lösung auf u21)

u21 = 1 oder u21 =
1

5

und dann die Lösungen

1,−1, 1√
5
,− 1√

5

ergeben. Die negativen Nutzenwerte fallen wegen d = 0 weg. u1 = 1 können
wir ausschließen, weil dadurch u2 = 0 impliziert wird und sich damit ein
Nash-Produkt von Null ergibt, während das Nash-Produkt bei 1√

5

u1
(
1− u21

)2
=

1√
5

(
1− 1

5

)2
=

16

53

√
5 > 0

ist. Wir erhalten also (mit 1√
5
=

√
5
5 )

ϕN (U, d, ω) =

(√
5

5
,
4

5

)
.

Gegenüber der symmetrischen Lösung (siehe Aufg. XX.6), hat sich Spieler
2 von 2

3 auf
4
5 verbessert, dies ist eine Auswirkung seines höheren Gewichtes.

E������� XX.7. Berechnen Sie die asymmetrische Nash-Lösung für
ω1 = 2 und ω2 = 1. Ist die Auszahlung für Spieler 1 dieses Mal höher

als
√
3
3 ? Hinweis: Die Aufgabe ist leichter als die obige Beispielrechnung!
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5.2. Interpretation der Gewichte. Wie kann es nun zu unterschiedlichen
Gewichten kommen? In der Literatur wird in der Regel darauf verwiesen,
dass die Spieler über unterschiedliches Verhandlungsgeschick oder unter-
schiedliche Verhandlungsmacht verfügten. Das ist natürlich noch recht vage.
Hinter den unterschiedlichen Gewichten kann sich durchaus Konkretes ver-
bergen; wir zitieren hierzu drei unterschiedliche Ansätze:

Kalai (1977) generiert die Asymmetrie zwischen zwei Spielern dadurch,
dass einer der Spieler eine größere Familie repräsentiert als der andere. Der
Verhandlungspartner mit der großen Familie hat dann ein größeres Gewicht.
Vielleicht verhandelt er härter, weil sein Anteil durch viele Köpfe geteilt
werden muss, oder er ist mächtiger, weil er eine größere Familie zur Unter-
stützung im Rücken hat. Die Verhandlungsmacht eines Spielers ist nun mit
seiner Familiengröße zu gewichten.

Rubinstein (1982) ist es gelungen, ein nichtkooperatives Kuchen-Verhandlungsspiel
für zwei Spieler zu definieren, dessen Auszahlungen im teilspielperfekten Gle-
ichgewicht gleich der asymmetrischen Nash-Lösung sind. Die beiden Verhan-
delnden machen Angebot und Gegenangebot; sie werden jedoch dadurch,
dass der „Kuchen” in jeder Verhandlungsrunde schrumpft, unter Druck
gesetzt, sich schnell zu einigen. Und diese Schrumpfungsfaktoren, so kann
Rubinstein zeigen, sind gerade die Gewichte der Nash-Verhandlungslösung!
Der ungeduldige Spieler (mit kleinem Schrumpffaktor) wird einen geringeren
Teil des Kuchens bekommen als der geduldige Spieler. Der Rubinstein’sche
Aufsatz bietet zudem ein schönes Beispiel für das Nash-Programm; die
mithilfe der kooperativen Spieltheorie gewonnenen Auszahlungen werden
dabei durch die Auszahlungen im Gleichgewicht eines geeigneten nichtkoop-
erativen Spiels repliziert. Eine leicht verständliche Darstellung des Rubinstein-
Modells bietet Wiese (2002, S. 323 ff.).

Der dritte Ansatz führt die Nash-Lösung mit der Shapley-Lösung zusam-
men. Diesen Ansatz wollen wir im nächsten Abschnitt etwas ausführlicher
darstellen. Bisher gibt es lediglich ein Arbeitspapier dazu, die Autoren sind
Laruelle & Valenciano (2003). Federico Valenciano hat den Ansatz während
der „14th Conference on Game Theory at Stony Brook” im Juli 2003 präsen-
tiert, auf der übrigens sowohl John Nash als auch Lloyd Shapley anwesend
waren. Robert Aumann (siehe S. ??) fasste das Lösungskonzept mit den
Worten „Nash to the power of Shapley” zusammen.

5.3. Shapley-Indizes als Gewichte.
5.3.1. Vorgehen. Laruelle & Valenciano (2003) verknüpfen in wunder-

barer Weise die Nash-Lösung mit der Shapley-Lösung: Die Verhandlungen
über den zu wählenden Auszahlungspunkt in U finden, und das ist die Grun-
didee des Beitrags der Autoren, „unter dem Schatten einer Wahlregel” statt.
Man wird dadurch auf die asymmetrische Nash-Lösung geführt, wobei die
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Gewichte gerade die Shapley-Auszahlungen der die Wahlregel darstellenden
einfachen Koalitionsfunktion sind.

Wir werden nun in fünf Schritten vorgehen:

• Zunächst haben wir einige wenige formale Festlegungen zu treffen.
• Dann präsentieren wir die Formalisierung der Wahlregel.
• Anschließend definieren wir eine Koalitionsfunktion ohne trans-
ferierbaren Nutzen, die sowohl auf der Verhandlungsmenge U und
dem Drohpunkt d als auch auf der Wahlregel beruht.

• Dann deuten wir kurz an, welche Axiome wir für die einzuführende
Lösung benötigen.

• Schließlich präsentieren wir die Laruelle-Valenciano-Lösung.

5.3.2. Eine kurze formale Vorbemerkung. Laruelle & Valenciano (2003)
gehen davon aus, dass die Spieler einem Nash’schen Tupel

(U, d)

gegenüberstehen, wobei U eine (hinreichend schöne) Teilmenge des Rn, die
Verhandlungsmenge, und d ∈ Rn den Drohpunkt darstellen. Wir benötigen
nun die Festlegungen

UK : =
{
xK ∈ R|K| : x ∈ U

}
und

H
(
dK

)
: =

{
xK ∈ R|K| : xK ≤ dK

}
.

UK ist also eine Teilmenge von R|K|, die dadurch gebildet wird, dass man
die Auszahlungen der Spieler aus N\K streicht. H

(
dK

)
ist die so genannte

umfassende Hülle von dK = (di)i∈K , die neben dK selbst alle Auszahlungen
„links unterhalb” von dK enthält.

5.3.3. Die Wahlregel. Die Wahlregel wird durch ein einfaches Spiel v
repräsentiert. Koalitionen K mit v (K) = 1 heißen Gewinnkoalitionen und
können „sich durchsetzen”. Die Autoren treffen folgende zwei Annahmen:

• Die große Koalition kann durchsetzen, was sie möchte, v (N) = 1.
• v ist nicht widersprüchlich; das Komplement jeder Gewinnkoalition
ist also unterlegen.

Die Menge der einfachen Spiele, die diese Eigenschaften haben, nennen
wir GW

n .

5.3.4. Die Koalitionsfunktion ohne transferierbaren Nutzen. Die durch
v repräsentierte Wahlregel dient nun dazu, eine Koalitionsfunktion ohne
transferierbaren Nutzen zu definieren. Dazu setzt man für K ⊆ N

V(U,d,v) (K) :=

{
UK , v (K) = 1

H
(
dK

)
, v (K) �= 1.

Die Spieler aus K können also eine Auszahlungsmenge UK realisieren,
falls sie eine Gewinnkoalition darstellen. Ansonsten können sie lediglich ihre
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Drohauszahlungen realisieren. Diese Definition ist das zentrale Element im
Ansatz der beiden Autoren. Sie zeigen, dass diese Koalitionsfunktion eine
Verallgemeinerung sowohl der Nash’schen Verhandlungsspiele als auch der
einfachen Spiele darstellt:

• Nimmt man nun als Spezialfall die Wahlregel v, bei der nur die
große Koalition eine Gewinnkoalition ist, ergibt sich

V(U,d,v) (K) :=

{
U, K = N

H
(
dK

)
, sonst.

Dann hat man ein Nash’sches Verhandlungsspiel.
• Laruelle & Valenciano (2003) begründen, dass man für

U =

{
x ∈ Rn :

∑

i∈N
xi ≤ 1

}
und

d = (0, ..., 0)

eine Koalitionsfunktion ohne transferierbaren Nutzen erhält, die
der Koalitionsfunktion v (mit transferierbarem Nutzen) entspricht.

5.3.5. Lösungen und Axiome. Laruelle und Valenciano suchen nach einer
Lösung in Abhängigkeit von U ⊆ Rn, d ∈ Rn und v ∈ GW

n :

D�������
� XX.6. Die Abbildung

ψ : Vn ×GW
n → Rn

heißt punktwertige Verhandlungslösung auf N .

Den Autoren gelingt es, ihre Lösung durch sechs Axiome zu charakter-
isieren. Diese Axiome sind im Wesentlichen diejenigen, die für die Nash-
Lösung bzw. die Shapley-Lösung benötigt werden. Wir deuten sie hier an,
ohne sie formal präzise wiederzugeben:

• ψ soll das Pareto-Axiom der Nash-Lösung (S. 385) erfüllen.
• ψ soll unabhängig davon sein, wie die Spieler benannt sind.
• ψ soll von irrelevanten Alternativen unabhängig sein (S. 386).
• ψ soll die Invarianz bei affinen Transformationen (S. 386) erfüllen.
• Ein Nullspieler i ∈ N in v ∈ GW

n soll die Auszahlung di erhalten.
• Schließlich soll das Transferaxiom (bzw. eine Variante dieses Ax-
ioms) bezüglich der (einfachen!) Spiele aus GW

n erfüllt sein (siehe
Kap. ??, S. ??).

5.3.6. Die Laruelle-Valenciano-Lösung. Nun endlich präsentieren wir die
Laruelle-Valenciano-Lösung samt ihrer Axiomatisierung:

D�������
� XX.7. Sei eine Verhandlungsmenge U ⊆ Rn, ein Drohpunkt
d ∈ Rn und eine Wahlregel v ∈ GW

n mit ϕi (v) > 0 für alle i ∈ N gegeben.
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Die Laruelle-Valenciano-Lösung ϕLV ist gleich der asymmetrischen Nash-

Lösung für (U, d), wobei die Gewichte gleich den Shapley-Auszahlungen für

v sind:

ϕLV (U, d, v) = ϕN (U, d, ϕ (v)) .

T �
��� XX.2. Eine Lösung

ψ : Vn ×GW
n → Rn

erfüllt genau dann die sechs Axiome aus Abschnitt 5.3.5, wenn ψ = ϕLV

gilt.

Zudem ist ϕLV eine Verallgemeinerung der Nash- und der Shapley-
Lösung:

• Ist v eine symmetrische Koalitionsfunktion, ist die Laruelle-Valenciano-
Lösung gleich der symmetrischen Nash-Lösung,

ϕLV (U, d, v) = ϕN (U, d) .

• Für

U =

{
x ∈ Rn :

∑

i∈N
xi ≤ 1

}
und

d = (0, ..., 0)

erhält man

ϕLV (U, d, v) = ϕ (v) .

Die Laruelle-Valenciano-Lösung verbindet also auf äußerst elegante Art
und Weise die Nash-Lösung mit der Shapley-Lösung. Zu Recht bezeichnete
Robert Aumann während der auf S. 393 erwähnten Konferenz dieses Resul-
tat als „mind blowing”. Man könnte es auch als Hinweis dafür nehmen, dass
die Shapley-Lösung im Bereich des transferierbaren Nutzens und die Nash-
Lösung im Bereich des nichttransferierbaren Nutzens ihre Vorrangstellungen
verdient haben. Beispielsweise bezeichnet auch Myerson (1994, S. 69) diese
beiden Lösungen als „the most conceptually elegant and appealing solution
theories in cooperative game theory”.

6. Alternativen zur Nash-Lösung

Es gibt eine Vielzahl von Alternativen zur Nash-Lösung. Aber lediglich
die Kalai-Smorodinsky-Lösung ( Kalai & Smorodinsky (1975)) werden wir
etwas ausführlicher darstellen. Bei diesem Lösungskonzept spielt der durch

ai (U, d) := max {ui ∈ R : Es gibt einen Nutzenvektor u in U mit u ≥ d}
definierte Punkt a (U, d) = (ai (U, d))i∈N eine zentrale Rolle (siehe S. 384).
Dieser so genannte Idealpunkt und die Kalai-Smorodinsky-Lösung sind in
Abb. 6 für zwei Spieler eingezeichnet. Die Kalai-Smorodinsky-Lösung erhält
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F����� 6. Die Kalai-Smorodinsky-Lösung

man als Schnittpunkt der Nutzengrenze von U mit der Strecke, die a (U, d)
mit d verbindet. Wir bezeichnen sie mit ϕKS .

T �
��� XX.3. Genau dann, wenn eine Lösung ψ auf V2 die Axiome

• Pareto-Axiom,
• Symmetrie-Axiom,
• Axiom über die Invarianz bei affinen Transformationen und
• Axiom über die individuelle Monotonie für zwei Spieler

erfüllt, gilt

ψ = ϕKS .

Während sich die Axiomatisierungen im Falle der Nash-Lösung und auch
bei der asymmetrischen Nash-Lösung ohne weiteres auf n Spieler erweitern
lassen, gilt die Axiomatisierung der Kalai-Smorodinsky-Lösung nur für den
Zwei-Personen-Fall. Die Berechnung von ϕKS lässt sich jedoch ohne größere
Schwierigkeiten auch für beliebige Spielermengen bewerkstelligen.

Man beachte, dass die Axiome für die Kalai-Smorodinsky-Lösung sich
von denjenigen für die Nash-Lösung nur im vierten Axiom unterscheiden.
Anstelle des Axioms über die Unabhängigkeit irrelevanter Alternativen bei
Nash tritt bei Kalai und Smorodinsky das Axiom über die individuelle
Monotonie für zwei Spieler. Beide Lösungskonzepte erfüllen die Drohpunkt-
Monotonie (S. 388).

Nun nehmen wir wieder unser Kuchen-Beispiel. Die Verhandlungsmenge
sei also

U = {(u1, u2) : u1 + u2 ≤ 1, u1 ≥ 0, u2 ≥ 0}
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und der Drohpunkt d erfülle

d1 + d2 < 1.

Der Idealpunkt ist durch

a1 (U, d) = max {u1 ∈ R : Es gibt einen Nutzenvektor u in U mit u ≥ d}
= max {u1 ∈ R : u1 + u2 ≤ 1 und u2 ≥ d2}
= 1− d2 > d1

und analog durch

a2 (U, d) = 1− d1

gegeben.
Aus Gründen der Schreibökonomie verwenden wir nun ai für ai (U, d).

Wir haben den Schnittpunkt der Nutzengrenze mit der d und a verbindenden
Strecke zu finden. Die Nutzengrenze erfüllt u2 = 1−u1; die Verbindungsstrecke
zwischen d und a kannmanmithilfe der Punkt-Steigungs-Formel beschreiben,
wobei wir vom Punkt d ausgehen und von dort (a1 − d1) > 0 Einheiten in
Richtung u1 und (a2 − d2) > 0 Einheiten in Richtung u2 „marschieren”:

(
d1
d2

)
+ β

(
a1 − d1
a2 − d2

)

︸ ︷︷ ︸
durch β parametrisierter Punkt

auf der Linie von d zu a

=

(
u1

1− u1

)
.

︸ ︷︷ ︸
Punkt auf der
Nutzengrenze

Wir haben somit zwei Gleichungen mit den zwei Unbekannten u1 und β.

Nach Substitution von a1 = 1− d2 und a2 = 1− d1 kann man diese folgen-
dermaßen schreiben:

d1 + (1− d2 − d1)β = u1 und

d2 + (1− d1 − d2)β = 1− u1.

Setzt man die obere in die untere ein, erhält man zunächst

d2 + (1− d1 − d2)β = 1− (d1 + (1− d2 − d1)β)

und sodann

β =
1

2
.

Hieraus ergibt sich die Kalai-Smorodinsky-Lösung für unser Kuchen-Beispiel
als

ϕKS (U, d) = (d1 + β (a1 − d1) , d2 + β (a2 − d2))

=

(
d1 +

1

2
(1− d2 − d1) , d2 +

1

2
β (1− d1 − d2)

)

=

(
1

2
+

1

2
(d1 − d2) ,

1

2
+

1

2
(d2 − d1)

)
.
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Für dieses Beispiel stimmen ϕKS und ϕN überein. Die Übereinstimmung
ist jedoch im Falle von

U ′ = {(u1, u2) : x1 + x2 ≤ 1, u1 =
√
x1, u2 = x2, x1 ≥ 0, x2 ≥ 0}

und

d1 = 0, d2 = 0

nicht mehr gegeben, wie wir nun zeigen wollen. Bevor die tatsächliche Rech-
nung erfolgt (siehe die nächste Übung), können wir jedoch das Monotonie-
Axiom anwenden. Die Nutzengrenze für U ′ ist durch u2 = x2 = 1 − x1 =

1 − (u1)
2 gegeben. Wegen (u1)

2 ≤ u1, 0 ≤ x1 ≤ 1, und − (u1)
2 ≥ −u1 ist

U ′ eine Obermenge von U . Gleichheit ergibt sich bei 0 und 1, sodass alle
Voraussetzungen für das Monotonie-Axiom (S. 387) erfüllt sind. Wir wissen
also, dass die Kalai-Smorodinsky-Lösung für beide Spieler eine Auszahlung
von mindestens 1

2 vorsehen muss.

E������� XX.8. Berechnen Sie die Kalai-Smorodinsky-Lösung für das
variierte Kuchen-Beispiel. Hinweis: Die quadratische Gleichung (u1)

2+u1−
1 = 0 hat die zwei Lösungen −1

2 +
1
2

√
5 ≈ 0, 62 und −1

2 − 1
2

√
5.

Neben der Nash-Lösung und der Kalai-Smorodinsky-Lösung gibt es

• die egalitäre Lösung (ausgehend von d gewinnt jeder Spieler gleich
viel hinzu),

• die diktatorische Lösung (ein Spieler i ∈ N , der Diktator, erhält
ai (U, d) , während sich die übrigen Spieler mit dj , j �= i, zu begnü-
gen haben),

• die utilitaristische Lösung (die Summe der Auszahlungen wird max-
imiert) und

• etliche andere Lösungen (siehe Thomson (1994) und die dort angegebene
Literatur).

7. Neue Begriffe

• Koalitionsfunktion ohne transferierbaren Nutzen
• Maximal erreichbarer Nutzen
• Superadditivität
• Anfangsausstattung
• Allokationen
• Walras-Gleichgewicht
• Walras-Allokation
• Heiratsmarkt
• Kern (Zulässigkeit, Nicht-Blockade)
• 1. Hauptsatz der Wohlfahrtstheorie
• Nash-Verhandlungs-Lösung
• Drohpunkt
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d1

U

K
ern

d2

a2

u2

a1 u1

a(U,d)

F����� 7. Der Kern des Verhandlungsproblems

• Verhandlungsmenge
• Verhandlungsspiel
• Nutzenmöglichkeitenkurve
• Idealpunkt
• Punktwertige Verhandlungslösung
• Axiome

— Invarianz bei affinen Transformationen
— Unabhängigkeit irrelevanter Alternativen
— Individuelle Monotonie für zwei Spieler
— Verhandlungsmengen-Monotonie
— Drohpunkt-Monotonie

• Asymmetrische Nash-Lösung
• Laruelle-Valenciano-Lösung
• Kalai-Smordinsky-Lösung

8. Lösungen zu den Übungen

Exercise XX.1
Have you found m

{1,2}
1 = 3?

8.0.7. XX.2. Der Kern umfasst die Nutzenkombinationen, gegen die keine
Koalition Einwand erhebt. Die große Koalition, also beide Spieler zusam-
men, besteht auf einen Punkt auf der Nutzenmöglichkeitskurve, während
Spieler 1 eine Auszahlung unterhalb von d1 und Spieler 2 eine Auszahlung
unterhalb von d2 nicht akzeptieren werden. Der Kern, der in Abbildung
7 eingezeichnet ist, ist also gleich der Nutzengrenze zwischen a1 (U, d) und
a2 (U, d) .
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8.0.8. XX.3. Je weniger ein Spieler auf Verhandlungen angewiesen ist,
desto stärker ist seine Verhandlungsposition. Deshalb sollte man erwarten,
dass der in Verhandlungen erreichbare Nutzen mit d1 ansteigt.

8.0.9. XX.4. Die gesamte Nutzenmöglichkeitenkurve ist Pareto-effizient,
nicht nur der Kern.

8.0.10. XX.5. Ja, das ist richtig. Nach Einsetzen von u2 = 1−u1 haben
wir

(u1 − d1) (1− u1 − d2)

= −u21 + u1 (1 + d1 − d2)− d1 + d1d2

zu maximieren. Durch Differenzieren und Nullsetzen erhält man

ϕN1 (U, d) =
1

2
+

1

2
(d1 − d2)

und dann unter Beachtung von u2 = 1− u1

ϕN2 (U, d) =
1

2
+

1

2
(d2 − d1) .

8.0.11. XX.6. Die Nutzenmöglichkeitenkurve ergibt sich so:

u2 = x2 = 1− x1 = 1− (u1)
2 .

Damit erhält man das zu maximierende Produkt

(u1 − d1) (u2 − d2)

= (u1)
(
1− u21

)

= u1 − u31.

Differenzieren und Nullsetzen ergeben

u21 =
1

3

und

u2 = x2 = 1− u21 =
2

3
.

Man erhält also wegen 1√
3
=

√
3
3 die Nash-Lösung

(√
3

3
,
2

3

)
.

8.0.12. XX.7. Wir erhalten das zu maximierende Produkt

(u1 − d1)
2 (u2 − d2)

1 = u21
(
1− u21

)
= u21 − u41

Differenzieren und Nullsetzen ergeben

u1
(
2− 4u21

) !
= 0,

woraus

u1
!
= 0, u1

!
=

√
2

2
oder u1

!
= −

√
2

2
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folgen. Wie im Haupttext ausgeführt, kommt nur
√
2
2 in Frage:

ϕN (U, d, ω) =

(√
2

2
,
1

2

)
.

Gegenüber der symmetrischen Lösung hat sich Spieler 1 von
√
3
3 ≈ 0, 58 auf√

2
2 ≈ 0, 71 verbessert, während sich Spieler 2 von 2

3 auf 1
2 verschlechtert

hat.
8.0.13. XX.8. Der Idealpunkt ist durch

a1
(
U ′, d

)
= max {u1 ∈ R : Es gibt einen Nutzenvektor u in U mit u ≥ (0, 0)}
= max

{
u1 ∈ R : (u1)

2 + u2 ≤ 1 und u2 ≥ 0
}

= 1

und durch

a2
(
U ′, d

)
= max {u2 ∈ R : Es gibt einen Nutzenvektor u in U mit u ≥ (0, 0)}
= max

{
u2 ∈ R : (u1)

2 + u2 ≤ 1 und u1 ≥ 0
}

= 1

definiert.
Nun geht es ganz ähnlich weiter wie im Haupttext. Zunächst ergibt sich,

mit anders definiertem Idealpunkt, wiederum
(
0

0

)
+ β

(
1− 0

1− 0

)

︸ ︷︷ ︸
durch β parametrisierter Punkt

auf der Linie von d = (0, 0) zu a = (1, 1)

=

(
u1

1− (u1)
2

)

︸ ︷︷ ︸
.

Punkt auf der
Nutzengrenze

Damit ergeben sich die beiden Gleichungen

β = u1 und

β = 1− (u1)
2 ,

woraus

u1 = −1

2
+

1

2

√
5

wegen −1
2− 1

2

√
5 < 0 folgt. Somit erhält man die Kalai-Smorodinsky-Lösung

für U ′ und d = 0 als

ϕKS (U, d) =
(
u1, 1− (u1)

2
)

=

(
−1

2
+

1

2

√
5, 1−

(
−1

2
+

1

2

√
5

)2)

=

(
−1

2
+

1

2

√
5,−1

2
+

1

2

√
5

)

≈ (0, 62, 0, 62) .
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