Overview part F: Non-transferable utility

- Exchange economies
- The Nash solution

Overview "The Solow growth model"

- Introduction
- Budget
- Household optimum
- NTU coalition functions and the core
- Edgeworth boxes and coalition functions
- GET: decentralization through prices
- The marriage market

Introduction I

- transferable utility —> To every coalition $K \subseteq N$, a real number $v(K)$ is attributed.
- non-transferable utility $\longrightarrow>$ To every coalition $K \subseteq N$, a set of payoff vectors is attributed.

Set of coalitions
Set of payoff vectors

Introduction II

GET $=$ General Equilibrium Theory

- Agents observe prices and choose their good bundles accordingly.
- All agents (households and firms) are price takers.

The aim is to find prices such that

- all actors behave in a utility, or profit, maximizing way and
- the demand and supply schedules can be fulfilled simultaneously.
—> Walras equilibrium
- existence
- efficiency and core

Special case: marriage market

Budget

Money budget and budget line

Definition

The expenditure for a bundle of goods $x=\left(x_{1}, x_{2}, \ldots, x_{\ell}\right)$ at a vector of prices $p=\left(p_{1}, p_{2}, \ldots, p_{\ell}\right)$ is the dot product (or the scalar product):

$$
p \cdot x:=\sum_{g=1}^{\ell} p_{g} x_{g}
$$

Definition

For $p \in \mathbb{R}^{\ell}$ and $m \in \mathbb{R}_{+}$:

$$
B(p, m):=\left\{x \in \mathbb{R}_{+}^{\ell}: p \cdot x \leq m\right\}
$$

- the money budget.

$$
\left\{x \in \mathbb{R}_{+}^{\ell}: p \cdot x=m\right\}
$$

Budget

Money budget: A two goods case

Problem

Assume that the household consumes bundle A. Identify the "left-over" in terms of good 1, in terms of good 2 and in money terms.

Problem

What happens to the budget line if

- price p_{1} doubles;
- if both prices double?

Budget

Money budget

Lemma

For any number $\alpha>0$:

$$
B(\alpha p, \alpha m)=B(p, m)
$$

Problem

Fill in: For any number $\alpha>0$: $B(\alpha p, m)=B(p, ?)$.

Budget

Money budget

Lemma

The money budget is nonempty, closed and convex. If $p \gg 0$ holds, the budget is bounded.

Proof.

- $(0, \ldots, 0) \in \mathbb{R}_{+}^{\ell}$ and $0 \cdot p=0 \leq m \Rightarrow$ budget is nonempty;
- $x_{g} \geq 0, g=1, \ldots, \ell, x \cdot p \leq m \Rightarrow$ budget is closed;
- consider x and x^{\prime} and $k \in[0,1] \Rightarrow x \cdot p \leq m$ and $x^{\prime} \cdot p \leq m$ imply: $\left(k x+(1-k) x^{\prime}\right) \cdot p=k x \cdot p+(1-k) x^{\prime} \cdot p \leq k m+(1-k) m=m$ \Rightarrow budget is convex;
- If $p \gg 0,0 \leq x \leq\left(\frac{m}{p_{1}}, \ldots, \frac{m}{p_{\ell}}\right) \Rightarrow$ budget is bounded.

Budget

Marginal opportunity cost for two goods

Problem

Verify that the budget line's slope is given by $-\frac{p_{1}}{p_{2}}$ (in case of $p_{2} \neq 0$).

Definition

If $p_{1} \geqslant 0$ and $p_{2}>0$,

$$
\operatorname{MOC}\left(x_{1}\right)=\left|\frac{d x_{2}}{d x_{1}}\right|=\frac{p_{1}}{p_{2}}
$$

- the marginal opportunity cost of consuming one unit of good 1 in terms of good 2.

Budget

Marginal opportunity cost

Endowment budget

Definition

Definition

For $p \in \mathbb{R}^{\ell}$ and an endowment $\omega \in \mathbb{R}_{+}^{\ell}$:

$$
B(p, \omega):=\left\{x \in \mathbb{R}_{+}^{\ell}: p \cdot x \leq p \cdot \omega\right\}
$$

- the endowment budget.

Endowment budget

A two goods case

budget line: $p_{1} x_{1}+p_{2} x_{2}=p_{1} \omega_{1}+p_{2} \omega_{2}$
marginal opportunity cost: $M O C=\left|\frac{d x_{2}}{d x_{1}}\right|=\frac{p_{1}}{p_{2}}$

Problem

What happens to the budget line if

- price p_{1} doubles;
- if both prices double?

Application 1

Intertemporal consumption

Notation:

- ω_{1} and ω_{2}-monetary income in t_{1} and t_{2};
- x_{1} and x_{2} - consumption in t_{1} and t_{2};
- household can borrow $\left(x_{1}>\omega_{1}\right)$, lend $\left(x_{1}<\omega_{1}\right)$ or consume what it earns $\left(x_{1}=\omega_{1}\right)$;
- r - rate of interest.

Consumption in t_{2} :

$$
\begin{aligned}
x_{2} & =\underbrace{\omega_{2}}_{\begin{array}{c}
\text { second-period } \\
\text { income }
\end{array}}+\underbrace{\left(\omega_{1}-x_{1}\right)}_{\begin{array}{c}
\text { amount borrowed }(<0) \\
\text { or lended }(>0)
\end{array}}+\underbrace{r\left(\omega_{1}-x_{1}\right)}_{\begin{array}{c}
\text { interest payed }(<0) \\
\text { or earned }(>0)
\end{array}} \\
& =\omega_{2}+(1+r)\left(\omega_{1}-x_{1}\right)
\end{aligned}
$$

Application 1

```
Borrow versus lend
```

- borrow verwandt mit
- borgen und
- bergen (,,in Sicherheit bringen ") wie in Herberge (,„ein das Heer bergender Ort ")
- lend verwandt mit
- Lehen (,,zur Nutzung verliehener Besitz") und
- leihen, verwandt mit
- lateinischstämmig Relikt („Überrest") und Reliquie („Überbleibsel oder hochverehrte Gebeine von Heiligen ") und mit
- griechischstämmig Eklipse („Ausbleiben der Sonne oder des Mondes" > "Sonnen- bzw. Mondfinsternis") und auch mit
- griechischstämmig Ellipse (in der Geometrie ein Langkreis, bei dem die Höhe geringer ist als die Breite und insofern ein Mangel im Vergleich zum Kreis vorhanden ist - agr. elleipsis ($\varepsilon \lambda \lambda \varepsilon \imath \psi \iota \zeta)$ bedeutet „Ausbleiben" > "Mangel"

Application 1

Intertemporal consumption

2 ways to rewrite the budget equation:

- in future value terms:

$$
(1+r) x_{1}+x_{2}=(1+r) \omega_{1}+\omega_{2}
$$

- in present value terms:

$$
x_{1}+\frac{x_{2}}{1+r}=\omega_{1}+\frac{\omega_{2}}{1+r} .
$$

Application 1

Intertemporal consumption

budget line: $(1+r) x_{1}+x_{2}=(1+r) \omega_{1}+\omega_{2}$ marginal opportunity cost: MOC $=\left|\frac{d x_{2}}{d x_{1}}\right|=1+r$

Problem

What happens to the budget line if the interest rate decreases?

Application 2

Leisure versus consumption

Notation:

- x_{R} - recreational hours $\left(0 \leq x_{R} \leq 24=\omega_{R}\right) \rightarrow \operatorname{good} 1$;
- household works $24-x_{R}$ hours;
- x_{C} - real consumption \rightarrow good 2 ;
- w - the wage rate;
- ω_{C} - the real non-labor income;
- p - the price index.

Application 2

Leisure versus consumption

- Holdshold's consumption in nominal terms:

$$
p x_{C}=p \omega_{C}+w\left(24-x_{R}\right)
$$

- Holdshold's consumption in endowment-budget form:

$$
w x_{R}+p x_{C}=w 24+p \omega_{C}
$$

Application 2

Leisure versus consumption

budget line: $w x_{R}+p x_{C}=w 24+p \omega_{C}$ marginal opportunity cost: $M O C=\left|\frac{d x_{C}}{d x_{R}}\right|=\frac{w}{p}$

The household's decision situation

Definition

$$
\begin{aligned}
& \Delta=(B, \precsim) \text { with } \\
& B=B(p, m) \subseteq \mathbb{R}_{+}^{\ell} \text { or } B=B(p, \omega) \subseteq \mathbb{R}_{+}^{\ell}
\end{aligned}
$$

- household's decision situation with:
- $p \in \mathbb{R}^{\ell}$ - a vector of prices;
- \precsim - a preference relation on \mathbb{R}_{+}^{ℓ}.

The household's decision problem

Definition

$$
\Delta=(B, U)
$$

- the decision situation with utility function U on \mathbb{R}_{+}^{ℓ}

Definition

$$
x^{R}(\Delta):=\arg \max _{x \in B} U(x)
$$

- the best-response function.
- i.e., $x^{R}(\Delta)=\left\{x \in B\right.$: there is not $x^{\prime} \in B$ with $\left.x^{\prime} \succ x\right\}$

Any x^{*} from $x^{R}(\Delta)$ - a household optimum.

The household's decision problem

Lemma

Lemma

For any number $\alpha>0$:

$$
x^{R}(\alpha p, \alpha m)=x^{R}(p, m)
$$

The household's decision problem

Exercise 1

Problem

Assume

 monotonicity of preferences. Are the highlighted points A or B optima?
The household's decision problem

Exercise 2

Problem

Assume a household's decision problem with $\Delta=(B(p, \omega), \precsim)$. $x^{R}(\Delta)$ consists of the bundles x that fulfill the two conditions:
(1) The household can afford x :

$$
p \cdot x \leq p \cdot \omega
$$

(2) There is no other bundle y that the household can afford and that he prefers to x :

$$
y \succ x \Rightarrow ? ?
$$

Substitute the question marks by an inequality.

MRS versus MOC

Marginal willingness to pay: \quad MRS $=\left|\frac{d x_{2}}{d x_{1}}\right|$

If the household consumes
one additional unit of good 1 , how many units of good 2 can he forgo so as to remain indifferent.

> Marginal opportunity cost:
> If the household consumes one additional unit of good 1 , how many units of good 2 does he have to forgo so as to remain within his budget.

MRS versus MOC

MRS versus MOC

$M R S>M O C \Rightarrow$ increase x_{1} (if possible)

MRS versus MOC

Alternatively: the household tries to maximize $U\left(x_{1}, \frac{m}{p_{2}}-\frac{p_{1}}{p_{2}} x_{1}\right)$.

- Consume 1 additional unit of good 1
- utility increases by $\frac{\partial U}{\partial x_{1}}$
- reduction in x_{2} by $M O C=\left|\frac{d x_{2}}{d x_{1}}\right|=\frac{p_{1}}{p_{2}}$ and hence utility decrease by $\frac{\partial U}{\partial x_{2}}\left|\frac{d x_{2}}{d x_{1}}\right|$ (chain rule
- Thus, increase consumption of good 1 as long as

$$
\begin{aligned}
\underbrace{\frac{\partial U}{\partial x_{1}}}_{\begin{array}{c}
\text { marginal benefit } \\
\text { of increasing } x_{1}
\end{array}} & >\underbrace{\frac{\partial U}{\partial x_{2}}\left|\frac{d x_{2}}{d x_{1}}\right|}_{\begin{array}{c}
\text { marginal cost } \\
\text { of increasing } x_{1}
\end{array}} \\
\text { or MRS } & =\frac{\frac{\partial U}{\frac{\partial x_{1}}{\partial U}}>\left|\frac{d x_{2}}{\partial x_{2}}\right|}{d x_{1} \mid}=M O C
\end{aligned}
$$

Household optimum

Cobb-Douglas utility function

$U\left(x_{1}, x_{2}\right)=x_{1}^{a} x_{2}^{1-a}$ with $0<a<1$

The two optimality conditions

- $M R S=\frac{\frac{\partial U}{\partial x_{1}}}{\frac{\partial U}{\partial x_{2}}}=\frac{a}{1-a} \frac{x_{2}}{x_{1}} \stackrel{!}{=} \frac{p_{1}}{p_{2}}$ and
- $p_{1} x_{1}+p_{2} x_{2} \stackrel{!}{=} m$
yield the household optimum

$$
\begin{aligned}
x_{1}^{*}(m, p) & =a \frac{m}{p_{1}} \\
x_{2}^{*}(m, p) & =(1-a) \frac{m}{p_{2}} .
\end{aligned}
$$

Household optimum

Perfect substitutes

$U\left(x_{1}, x_{2}\right)=a x_{1}+b x_{2}$ with $a>0$ and $b>0$

An increase of good 1 enhances utility if

$$
\frac{a}{b}=M R S>M O C=\frac{p_{1}}{p_{2}}
$$

holds. Therefore

$$
x^{*}(m, p)= \begin{cases}\left(\frac{m}{p_{1}}, 0\right), & \frac{a}{b}>\frac{p_{1}}{p_{2}} \\ \left.\left(x_{1}, \frac{m}{p_{2}}-\frac{p_{1}}{p_{2}} x_{1}\right) \in \mathbb{R}_{+}^{2}: x_{1} \in\left[0, \frac{m}{p_{1}}\right]\right\} & \frac{a}{b}=\frac{p_{1}}{p_{2}} \\ \left.0, \frac{m}{p_{2}}\right) & \frac{a}{b}<\frac{p_{1}}{p_{2}}\end{cases}
$$

Household optimum

Concave preferences
$U\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$

An increase of good 1 enhances utility if

$$
\frac{x_{1}}{x_{2}}=\frac{2 x_{1}}{2 x_{2}}=\frac{\frac{\partial U}{\partial x_{1}}}{\frac{\partial U}{\partial x_{2}}}=M R S>M O C=\frac{p_{1}}{p_{2}}
$$

holds. Therefore, corner solution unless prices are equal:

$$
x^{*}(m, p)= \begin{cases}\left(\frac{m}{p_{1}}, 0\right), & p_{1} \leq p_{2} \\ \left\{\left(\frac{m}{p_{1}}, 0\right),\left(0, \frac{m}{p_{2}}\right)\right\} & p_{1}=p_{2} \\ \left(0, \frac{m}{p_{2}}\right) & p_{1} \geq p_{2}\end{cases}
$$

Household optimum and monotonicity

Lemma

Let x^{*} be a household optimum of $\Delta=(B(p, m), \precsim) \Rightarrow$

- local nonsatiation: $p \cdot x^{*}=m$ (Walras' law);
- strict monotonicity: $p \gg 0$;
- local nonsatiation and weak monotonicity: $p \geq 0$.

Proof.

- Assume: $p \cdot x^{*}<m \Rightarrow$ household can afford bundles close to x^{*}. Some of them are better than x^{*} (local nonsatiation). Contradiction!
- Assume $p_{g} \leq 0 \Rightarrow$ household can be made better off by consuming more of good g (strict monotonicity). Contradiction!
- Assume $p_{g}<0 \Rightarrow$ household can "buy" additional units of g without being worse off (weak monotonicity). Household has additional funding for preferred bundles (nonsatiation). Contradiction!

Definition of NTU coalition functions I

- v - coalition function with transferable utility
- V - coalition function without transferable utility
V attributes to every coalition $K \neq \varnothing$ a set of utility vectors

$$
u_{K}:=\left(u_{i}\right)_{i \in K} \in \mathbb{R}^{|K|}
$$

for K's members.

Problem

Depict

$$
\begin{aligned}
& V(\{\text { Peter, Otto }\}) \\
= & \left\{\left(u_{\text {Peter }}, u_{O t t o}\right): u_{\text {Peter }} \geq 2, u_{O t t o} \geq 1, u_{\text {Peter }}+u_{O t t o} \leq 4\right\} .
\end{aligned}
$$

Definition of NTU coalition functions II

Definition (coalition function)

A coalition function V on N for non-transferable utlity associates to every subset K of N a subset of $\mathbb{R}^{|K|}$ such that

- $V(\varnothing)=\varnothing$ and
- $V(K) \neq \varnothing$ for $K \neq \varnothing$
hold.

Problem

Which of the following expressions are formally correct?

- $V(\{1,2\})=1, V(\{1,2\})=\{1\}, V(\{1,2\})=(1,2)$
- $V(\{1,2\})=\varnothing, V(\{1,2\})=\{(1,2)\}$
- $V(\{1,2\})=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1} \leq 3, x_{2} \leq 4, x_{1}+x_{2} \leq 5\right\}$

Definition of NTU coalition functions III

Definition (superadditivity)

The coalition function V without transferable utility is called superadditive if, for all coalitions $S, T \subset N$

$$
\begin{aligned}
S \cap T & =\varnothing(S \text { and } T \text { are disjunct }) \\
u_{S} & \in V(S) \text { and } \\
u_{T} & \in V(T)
\end{aligned}
$$

imply

$$
\left(u_{S}, u_{T}\right) \in V(S \cup T) .
$$

Definition of NTU coalition functions IV

Problem

Is V_{2} defined on $N=\{1,2,3\}$ and given by
$V_{2}(K)= \begin{cases}\{i\}, & K=\{i\} \\ \left\{\left(x_{1}, x_{2}\right): x_{1} \leq 1, x_{2} \leq 4\right\}, & K=\{1,2\} \\ \left\{\left(x_{1}, x_{3}\right): x_{1} \leq 2, x_{3} \leq 2\right\}, & K=\{1,3\} \\ \left\{\left(x_{2}, x_{3}\right): x_{2} \leq 4, x_{3} \leq 5\right\}, & K=\{2,3\} \\ \left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}+x_{2}+x_{3} \leq 9\right\} & K=\{1,2,3\}\end{cases}$
superadditive?

The core

Definition (core)

The core of a NTU game V is the set all utility vectors $u=\left(u_{i}\right)_{i \in N} \in \mathbb{R}^{n}$ that obey feasibility and non-blockability:

- $u \in V(N)$.
- There is no coaliton K and no utility vector $u^{\prime}=\left(u_{i}^{\prime}\right)_{i \in N}$ such that $u_{K}^{\prime} \in V(K)$ holds and $u_{i} \leq u_{i}^{\prime}$ for all $i \in K$ with strict inequality for at least on $i \in K$.

Exchange theory: positive theory

exchange Edgeworth box: prices and equilibria

The low price p_{1}^{\prime} is not possible in a Walras equilibrium, because there is excess demand for good 1 at this price:

$$
x_{1}^{A}+x_{1}^{B}>\omega_{1}^{A}+\omega_{1}^{B}
$$

Exchange theory: positive theory

definition of an exchange economy

Definition (exchange economy)

An exchange economy is a tuple

$$
\mathcal{E}=\left(N, G,\left(\omega^{i}\right)_{i \in N},\left(U_{i}\right)_{i \in N}\right)
$$

consisting of

- the set of agents $N=\{1,2, \ldots, n\}$,
- the finite set of goods $G=\{1, \ldots, \ell\}$,
and for every agent $i \in N$
- an endowment $\omega^{i}=\left(\omega_{1}^{i}, \ldots, \omega_{\ell}^{i}\right) \in \mathbb{R}_{+}^{\ell}$, and
- a utility function $U_{i}: \mathbb{R}_{+}^{\ell} \rightarrow \mathbb{R}$.

Two-agents two-good case —> exchange Edgeworth box

Exchange theory: positive theory

Definition

Consider an exchange economy \mathcal{E}.

- A bundle $\left(y^{i}\right)_{i \in N} \in \mathbb{R}_{+}^{\ell \cdot n}$ is an allocation.
- An allocation $\left(y^{i}\right)_{i \in N}$ is called K-feasible if $\sum_{i \in K} y^{i} \leq \sum_{i \in K} \omega^{i}$ holds.
- An allocation $\left(y^{i}\right)_{i \in N}$ is called feasible if it is N-feasible.

Exchange theory: positive theory

The NTU coalition function of an exchange economy

For $K \neq \varnothing$, we let

$$
\begin{aligned}
& V(K) \\
: & =\left\{u_{K} \in \mathbb{R}^{|K|}: \exists K \text {-feasible allocation } x \text { with } u_{i} \leq U_{i}\left(x_{i}\right), i \in K\right\} .
\end{aligned}
$$

non-empty coalition K

$—>$ set of bundles that this coalition possesses
\longrightarrow every K-feasible allocation defines the maximal utility levels that the players from K can achieve.

Exchange theory: positive theory

Excess Demand and Market Clearance

Definition

Assume an exchange economy \mathcal{E}, a good $g \in G$ and a price vector $p \in \mathbb{R}^{\ell}$. If every household $i \in N$ has a unique household optimum $x^{i}\left(p, \omega^{i}\right)$, good g^{\prime} s excess demand is denoted by $z_{g}(p)$ and defined by

$$
z_{g}(p):=\sum_{i=1}^{n} x_{g}^{i}\left(p, \omega^{i}\right)-\sum_{i=1}^{n} \omega_{g}^{i} .
$$

The corresponding excess demand for all goods $g=1, \ldots, \ell$ is the vector

$$
z(p):=\left(z_{g}(p)\right)_{g=1, \ldots, \ell} .
$$

The value of the excess demand is given by

$$
p \cdot z(p)
$$

Exchange theory: positive theory

Excess Demand and Market Clearance

Lemma (Walras' law)

Every consumer demands a bundle of goods obeying $p \cdot x^{i} \leq p \cdot \omega^{i}$ where local nonsatiation implies equality. For all consumers together, we have

$$
p \cdot z(p)=\sum_{i=1}^{n} p \cdot\left(x^{i}-\omega^{i}\right) \leq 0
$$

and, assuming local-nonsatiation, $p \cdot z(p)=0$.

Definition

A market g is called cleared if excess demand $z_{g}(p)$ on that market is equal to zero.

Exchange theory: positive theory

Excess Demand and Market Clearance

Problem

Abba (A) and Bertha (B) consider buying two goods 1 and 2, and face the price p for good 1 in terms of good 2. Think of good 2 as the numeraire good with price 1. Abba's and Bertha's utility functions, u_{A} and u_{B}, respectively, are given by $u_{A}\left(x_{1}^{A}, x_{2}^{A}\right)=\sqrt{x_{1}^{A}}+x_{2}^{A}$ and $u_{B}\left(x_{1}^{B}, x_{2}^{B}\right)=\sqrt{x_{1}^{B}}+x_{2}^{B}$. Endowments are $\omega^{A}=(18,0)$ and $\omega^{B}=(0,10)$. Find the bundles demanded by these two agents. Then find the price p that fulfills $\omega_{1}^{A}+\omega_{1}^{B}=x_{1}^{A}+x_{1}^{B}$ and $\omega_{2}^{A}+\omega_{2}^{B}=x_{2}^{A}+x_{2}^{B}$.

Exchange theory: positive theory

Excess Demand and Market Clearance

Lemma (Market clearance)

In case of local nonsatiation,
(1) if all markets but one are cleared, the last one also clears or its price is zero,
(2) if at prices $p \gg 0$ all markets but one are cleared, all markets clear.

Proof.

If $\ell-1$ markets are cleared, the excess demand on these markets is 0 . Without loss of generality, markets $g=1, \ldots, \ell-1$ are cleared. Applying Walras's law we get

$$
0=p \cdot z(p)=p_{\ell} z_{\ell}(p)
$$

Exchange theory: positive theory

Walras equilibrium

Definition

A price vector \hat{p} and the corresponding demand system $\left(\widehat{x}^{i}\right)_{i=1, \ldots, n}=\left(x^{i}\left(\hat{p}, \omega^{i}\right)\right)_{i=1, \ldots, n}$ is called a Walras equilibrium if

$$
\sum_{i=1}^{n} \widehat{x}^{i} \leq \sum_{i=1}^{n} \omega^{i}
$$

or

$$
z(\widehat{p}) \leq 0
$$

holds.

Definition

A good is called free if its price is equal to zero.

Exchange theory: positive theory

Walras equilibrium

Lemma (free goods)

Assume local nonsatiation and weak monotonicity for all households. If $\left[\widehat{p},\left(\widehat{x}^{i}\right)_{i=1, \ldots, n}\right]$ is a Walras equilibrium and the excess demand for a good is negative, this good must be free.

Exchange theory: positive theory

Walras equilibrium

Proof.

Assume, to the contrary, that $p_{g}>0$ holds. We obtain a contradiction to Walras law for local nonsatiation:

$$
\begin{aligned}
p \cdot z(p) & =\underbrace{<g_{g}}_{<0} z_{g}(p)
\end{aligned}+\sum_{\substack{g^{\prime}=1, g^{\prime} \neq g}}^{\ell} p_{g^{\prime}} z_{g^{\prime}}(p)\left(z_{g}(p)<0\right) ~(\underbrace{\sum_{\substack{\text { (local nonsatiation and } \\
\text { weak monotonicity) }}}^{\ell}}_{\substack{\geq 0 \\
g^{\prime}=1, g^{\prime} \neq g}} \begin{array}{c}
\begin{array}{c}
\text { (definition } \\
\text { Walras equilibrium) }
\end{array} \\
\end{array}
$$

Exchange theory: positive theory

Walras equilibrium

Definition

A good is desired if the excess demand at price zero is positive.

Lemma (desiredness)

If all goods are desired and if local nonsatiation and weak monotonicity hold and if \widehat{p} is a Walras equilibrium, then $z(\widehat{p})=0$.

Proof.

Suppose that there is a good g with $z_{g}(\hat{p})<0$. Then g must be a free good according to the lemma on free goods and have a positive excess demand by the definition of desiredness, $z_{g}(\widehat{p})>0$.

Exchange theory: positive theory

Example: The Cobb-Douglas Exchange Economy with Two Agents

Parameters a_{1} and a_{2} and endowments $\omega^{1}=(1,0)$ and $\omega^{2}=(0,1)$

- Agent 1's demand for good 1 :
- Agent 2's demand for good 1 :

$$
\begin{array}{ll}
x_{1}^{1}\left(p_{1}, p_{2}, \omega^{1} \cdot p\right) & x_{1}^{2}\left(p_{1}, p_{2}, \omega^{2} \cdot p\right) \\
=a_{1} \frac{\omega^{1} \cdot p}{p_{1}}=a_{1} . & =a_{2} \frac{\omega^{2} \cdot p}{p_{1}} \\
& =a_{2} \frac{p_{2}}{p_{1}}
\end{array}
$$

Exchange theory: positive theory

Example: The Cobb-Douglas Exchange Economy with Two Agents

Parameters a_{1} and a_{2} and endowments $\omega^{1}=(1,0)$ and $\omega^{2}=(0,1)$

- Agent 1's demand for good 1 :
- Agent 2's demand for good 1:

$$
\begin{array}{ll}
x_{1}^{1}\left(p_{1}, p_{2}, \omega^{1} \cdot p\right) & x_{1}^{2}\left(p_{1}, p_{2}, \omega^{2} \cdot p\right) \\
=a_{1} \frac{\omega^{1} \cdot p}{p_{1}}=a_{1} . & \\
& =a_{2} \frac{\omega^{2} \cdot p}{p_{1}} \\
& =a_{2} \frac{p_{2}}{p_{1}}
\end{array}
$$

- Market 1 is cleared if

$$
a_{1}+a_{2} \frac{p_{2}}{p_{1}}=1 \text { or } \frac{p_{2}}{p_{1}}=\frac{1-a_{1}}{a_{2}}
$$

Exchange theory: positive theory

Example: The Cobb-Douglas Exchange Economy with Two Agents

Parameters a_{1} and a_{2} and endowments $\omega^{1}=(1,0)$ and $\omega^{2}=(0,1)$

- Agent 1's demand for good 1 :
- Agent 2's demand for good 1:

$$
\begin{array}{ll}
x_{1}^{1}\left(p_{1}, p_{2}, \omega^{1} \cdot p\right) & x_{1}^{2}\left(p_{1}, p_{2}, \omega^{2} \cdot p\right) \\
=a_{1} \frac{\omega^{1} \cdot p}{p_{1}}=a_{1} . & =a_{2} \frac{\omega^{2} \cdot p}{p_{1}} \\
& =a_{2} \frac{p_{2}}{p_{1}}
\end{array}
$$

- Market 1 is cleared if

$$
a_{1}+a_{2} \frac{p_{2}}{p_{1}}=1 \text { or } \frac{p_{2}}{p_{1}}=\frac{1-a_{1}}{a_{2}}
$$

- How about the market for good 2?

Exchange theory: positive theory

Example: The Cobb-Douglas Exchange Economy with Two Agents

Exchange theory: positive theory

Existence of the Walras equilibrium

Theorem (Existence of the Walras Equilibrium)

If aggregate excess demand is a continuous function (in prices), if the value of the excess demand is zero and if the preferences are strictly monotonic, there exists a price vector \widehat{p} such that $z(\widehat{p}) \leq 0$.

Theorem

Suppose $f: M \rightarrow M$ is a function on the nonempty, compact and convex set $M \subseteq \mathbb{R}^{\ell}$. If f is continuous, there exists $x \in M$ such that $f(x)=x$. x is called a fixed point.

Exchange theory: positive theory

Existence of the Walras equilibrium

Continuous function on the unit interval.

- $f(0)=0$ or $f(1)=1$
$\rightarrow>$ fixed point is found
- $f(0)>0$ and $f(1)<1$
$\rightarrow>$ the graph cuts the 45°-line
\rightarrow fixed point is found

Real-life examples:

- rumpling a handkerchief
- stirring cake dough

Exchange theory: positive theory

Existence of the Walras equilibrium

Problem

Assume, one of the requirements for the fixed-point theorem does not hold. Show, by a counter example, that there can be a function such that there is no fixed point. Specifically, assume that
a) M is not compact
b) M is not convex
c) f is not continuous.

Exchange theory: positive theory

Existence of the Walras equilibrium

Hans-Jürgen Podszuweit (found in Homo Oeconomicus, XIV (1997), p. 537):

Das Nilpferd hört perplex:
Sein Bauch, der sei konvex.
Und steht es vor uns nackt, sieht man: Er ist kompakt.
Nimmt man 'ne stetige Funktion
von Bauch
in Bauch

- Sie ahnen schon -,
dann nämlich folgt aus dem
Brouwer'schen Theorem:
Ein Fixpunkt muß da sein.
Dasselbe gilt beim Schwein
q.e.d.

Exchange theory: positive theory

Existence of the Walras equilibrium

- Constructing a convex and compact set: Norm prices of the ℓ goods such that the sum of the nonnegative (!, we have strict monotonicity) prices equals 1 . We can restrict our search for equilibrium prices to the $\ell-1$ - dimensional unit simplex:

$$
S^{\ell-1}=\left\{p \in \mathbb{R}_{+}^{\ell}: \sum_{g=1}^{\ell} p_{g}=1\right\}
$$

Exchange theory: positive theory

Existence of the Walras equilibrium

- Constructing a convex and compact set: Norm prices of the ℓ goods such that the sum of the nonnegative (!, we have strict monotonicity) prices equals 1 . We can restrict our search for equilibrium prices to the $\ell-1$ - dimensional unit simplex:

$$
S^{\ell-1}=\left\{p \in \mathbb{R}_{+}^{\ell}: \sum_{g=1}^{\ell} p_{g}=1\right\}
$$

- $S^{\ell-1}$ is nonempty, compact (closed and bounded as a subset of $\mathbb{R}^{\ell-1}$) and convex.

Exchange theory: positive theory

Existence of the Walras equilibrium

- Constructing a convex and compact set: Norm prices of the ℓ goods such that the sum of the nonnegative (!, we have strict monotonicity) prices equals 1 . We can restrict our search for equilibrium prices to the $\ell-1$ - dimensional unit simplex:

$$
S^{\ell-1}=\left\{p \in \mathbb{R}_{+}^{\ell}: \sum_{g=1}^{\ell} p_{g}=1\right\}
$$

- $S^{\ell-1}$ is nonempty, compact (closed and bounded as a subset of $\mathbb{R}^{\ell-1}$) and convex.
- problem: Draw $S^{1}=S^{2-1}$.

Exchange theory: positive theory

Existence of the Walras equilibrium

- The idea of the proof: First, we define a continuous function f on this (nonempty, compact and convex) set. Brouwer's theorem says that there is at least one fixed point of this function. Second, we show that such a fixed point fulfills the condition of the Walras equilibrium.

Exchange theory: positive theory

Existence of the Walras equilibrium

- The idea of the proof: First, we define a continuous function f on this (nonempty, compact and convex) set. Brouwer's theorem says that there is at least one fixed point of this function. Second, we show that such a fixed point fulfills the condition of the Walras equilibrium.
- The abovementioned continuous function

$$
f=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\cdot \\
\cdot \\
\cdot \\
f_{\ell}
\end{array}\right): S^{\ell-1} \rightarrow S^{\ell-1}
$$

is defined by

$$
f_{g}(p)=\frac{p_{g}+\max \left(0, z_{g}(p)\right)}{1+\sum_{g^{\prime}=1}^{\ell} \max \left(0, z_{g^{\prime}}(p)\right)}, g=1, \ldots, \ell
$$

Exchange theory: positive theory

Existence of the Walras equilibrium

- f is continuous because every $f_{g}, g=1, \ldots, \ell$, is continuous. The latter is continuous because z (according to our assumption) und max are continuous functions. Finally, we can confirm that f is well defined, i.e., that $f(p)$ lies in $S^{\ell-1}$ for all p from $S^{\ell-1}$:

$$
\begin{aligned}
\sum_{g=1}^{\ell} f_{g}(p) & =\sum_{g=1}^{\ell} \frac{p_{g}+\max \left(0, z_{g}(p)\right)}{1+\sum_{g^{\prime}=1}^{\ell} \max \left(0, z_{g^{\prime}}(p)\right)} \\
& =\frac{1}{1+\sum_{g^{\prime}=1}^{\ell} \max \left(0, z_{g^{\prime}}(p)\right)} \sum_{g=1}^{\ell}\left(p_{g}+\max \left(0, z_{g}(p)\right)\right) \\
& =\frac{1}{1+\sum_{g^{\prime}=1}^{\ell} \max \left(0, z_{g^{\prime}}(p)\right)}\left(1+\sum_{g=1}^{\ell} \max \left(0, z_{g}(p)\right)\right) \\
& =1 .
\end{aligned}
$$

Exchange theory: positive theory

Existence of the Walras equilibrium

- The function f increases the price of a good g in case of $f_{g}(p)>p_{g}$, only, i.e. if

$$
\frac{p_{g}+\max \left(0, z_{g}(p)\right)}{1+\sum_{g^{\prime}=1}^{\ell} \max \left(0, z_{g^{\prime}}(p)\right)}>p_{g}
$$

or

$$
\frac{\max \left(0, z_{g}(p)\right)}{\sum_{g^{\prime}=1}^{\ell} \max \left(0, z_{g^{\prime}}(p)\right)}>\frac{p_{g}}{\sum_{g^{\prime}=1}^{\ell} p_{g^{\prime}}}
$$

holds.

Exchange theory: positive theory

Existence of the Walras equilibrium

- The function f increases the price of a good g in case of $f_{g}(p)>p_{g}$, only, i.e. if

$$
\frac{p_{g}+\max \left(0, z_{g}(p)\right)}{1+\sum_{g^{\prime}=1}^{\ell} \max \left(0, z_{g^{\prime}}(p)\right)}>p_{g}
$$

or

$$
\frac{\max \left(0, z_{g}(p)\right)}{\sum_{g^{\prime}=1}^{\ell} \max \left(0, z_{g^{\prime}}(p)\right)}>\frac{p_{g}}{\sum_{g^{\prime}=1}^{\ell} p_{g^{\prime}}}
$$

holds.

- Interpretation: Increase price if its relative excess demand is greater than its relative price.
$\rightarrow f=$ Walras auctioneer
\rightarrow tâtonnement

Exchange theory: positive theory

Existence of the Walras equilibrium

- We now complete the proof: according to Brouwer's fixed-point theorem there is one \widehat{p} such that

$$
\widehat{p}=f(\widehat{p}),
$$

from which we have

$$
\widehat{p}_{g}=\frac{\widehat{p}_{g}+\max \left(0, z_{g}(\widehat{p})\right)}{1+\sum_{g^{\prime}=1}^{\ell} \max \left(0, z_{g^{\prime}}(\widehat{p})\right)}
$$

and finally

$$
\widehat{p}_{g} \sum_{g^{\prime}=1}^{\ell} \max \left(0, z_{g^{\prime}}(\widehat{p})\right)=\max \left(0, z_{g}(\widehat{p})\right)
$$

for all $g=1, \ldots, \ell$.

Exchange theory: positive theory

Existence of the Walras equilibrium

- Next we multiply both sides for all goods $g=1, \ldots, \ell$ by $z_{g}(\widehat{p})$:

$$
z_{g}(\widehat{p}) \widehat{p}_{g} \sum_{g^{\prime}=1}^{\ell} \max \left(0, z_{g^{\prime}}(\widehat{p})\right)=z_{g}(\widehat{p}) \max \left(0, z_{g}(\widehat{p})\right)
$$

and summing up over all g yields

$$
\sum_{g=1}^{\ell} z_{g}(\widehat{p}) \widehat{p}_{g} \sum_{g^{\prime}=1}^{\ell} \max \left(0, z_{g^{\prime}}(\widehat{p})\right)=\sum_{g=1}^{\ell} z_{g}(\widehat{p}) \max \left(0, z_{g}(\widehat{p})\right) .
$$

Exchange theory: positive theory

Existence of the Walras equilibrium

- Next we multiply both sides for all goods $g=1, \ldots, \ell$ by $z_{g}(\widehat{p})$:

$$
z_{g}(\widehat{p}) \widehat{p}_{g} \sum_{g^{\prime}=1}^{\ell} \max \left(0, z_{g^{\prime}}(\widehat{p})\right)=z_{g}(\widehat{p}) \max \left(0, z_{g}(\widehat{p})\right)
$$

and summing up over all g yields

$$
\sum_{g=1}^{\ell} z_{g}(\widehat{p}) \widehat{p}_{g} \sum_{g^{\prime}=1}^{\ell} \max \left(0, z_{g^{\prime}}(\widehat{p})\right)=\sum_{g=1}^{\ell} z_{g}(\widehat{p}) \max \left(0, z_{g}(\widehat{p})\right) .
$$

- By Walras' law, the left-hand expression is equal to zero. The right one consists of a sum of expressions, which are equal either to zero or to $\left(z_{g}(\hat{p})\right)^{2}$. Therefore, $z_{g}(\hat{p}) \leq 0$ for all $g=1, \ldots, \ell$. This is what we wanted to show.

Normative theory positive theory

General equilibrium analysis

Definition (blockable allocation, core)

Let $\mathcal{E}=\left(N, G,\left(\omega^{i}\right)_{i \in N},\left(U_{i}\right)_{i \in N}\right)$ be an exchange economy. A coalition $S \subseteq N$ is said to block an allocation $\left(y^{i}\right)_{i \in N}$, if an allocation $\left(z^{i}\right)_{i \in N}$ exists such that

- $U_{i}\left(z^{i}\right) \geq U_{i}\left(y^{i}\right)$ for all $i \in S, U_{i}\left(z^{i}\right)>U_{i}\left(y^{i}\right)$ for some $i \in S$ and
- $\sum_{i \in S} z^{i} \leq \sum_{i \in S} \omega^{i}$
hold.
An allocation is not blockable if there is no coalition can block it. The set of all feasible and non-blockable allocations is called the core of an exchange economy.

Normative theory positive theory

General equilibrium analysis

- Core in the Edgeworth box: Every household (considered a one-man coalition) blocks any allocation that lies below the indifference curve cutting his endowment point.

Normative theory positive theory

General equilibrium analysis

- Core in the Edgeworth box: Every household (considered a one-man coalition) blocks any allocation that lies below the indifference curve cutting his endowment point.
- Therefore, the core is contained inside the exchange lense.

Normative theory positive theory

General equilibrium analysis

- Core in the Edgeworth box: Every household (considered a one-man coalition) blocks any allocation that lies below the indifference curve cutting his endowment point.
- Therefore, the core is contained inside the exchange lense.
- Both households together block
 any allocation that is not Pareto efficient.

Normative theory positive theory

General equilibrium analysis

- Core in the Edgeworth box: Every household (considered a one-man coalition) blocks any allocation that lies below the indifference curve cutting his endowment point.
- Therefore, the core is contained inside the exchange lense.
- Both households together block
 any allocation that is not Pareto efficient.
- Thus, the core is the intersection of the exchange lense and the contract curve.

Normative theory positive theory

General equilibrium analysis

Abstract

Theorem Assume an exchange economy \mathcal{E} with local non-satiation and weak monotonicity. Every Walras allocation lies in the core.

Normative theory positive theory

General equilibrium analysis

- Consider a Walras allocation $\left(\widehat{x}^{i}\right)_{i \in N}$. A lemma from above implies

$$
\widehat{p} \ggg 0
$$

where \widehat{p} is the equilibrium price vector.

Normative theory positive theory

General equilibrium analysis

- Consider a Walras allocation $\left(\widehat{x}^{i}\right)_{i \in N}$. A lemma from above implies

$$
\widehat{p} \ggg 0
$$

where \widehat{p} is the equilibrium price vector.

- Assume, now, that $\left(\widehat{x}^{i}\right)_{i \in N}$ does not lie in the core. Since a Walras allocation is feasible, there exists a coalition $S \subseteq N$ that can block $\left(\widehat{x}^{i}\right)_{i \in N}$. I.e., there is an allocation $\left(z^{i}\right)_{i \in N}$ such that

Normative theory positive theory

General equilibrium analysis

- Consider a Walras allocation $\left(\widehat{x}^{i}\right)_{i \in N}$. A lemma from above implies

$$
\hat{p} \stackrel{(1)}{\gg} 0
$$

where \widehat{p} is the equilibrium price vector.

- Assume, now, that $\left(\widehat{x}^{i}\right)_{i \in N}$ does not lie in the core. Since a Walras allocation is feasible, there exists a coalition $S \subseteq N$ that can block $\left(\widehat{x}^{i}\right)_{i \in N}$. I.e., there is an allocation $\left(z^{i}\right)_{i \in N}$ such that
- $U_{i}\left(z^{i}\right) \geq U_{i}\left(\widehat{x}^{i}\right)$ for all $i \in S, U_{i}\left(z^{i}\right)>U_{i}\left(\widehat{x}^{i}\right)$ for some $i \in S$ and

Normative theory positive theory

General equilibrium analysis

- Consider a Walras allocation $\left(\widehat{x}^{i}\right)_{i \in N}$. A lemma from above implies

$$
\widehat{p}{ }^{(1)}>0
$$

where \widehat{p} is the equilibrium price vector.

- Assume, now, that $\left(\widehat{x}^{i}\right)_{i \in N}$ does not lie in the core. Since a Walras allocation is feasible, there exists a coalition $S \subseteq N$ that can block $\left(\widehat{x}^{i}\right)_{i \in N}$. I.e., there is an allocation $\left(z^{i}\right)_{i \in N}$ such that
- $U_{i}\left(z^{i}\right) \geq U_{i}\left(\widehat{x}^{i}\right)$ for all $i \in S, U_{i}\left(z^{i}\right)>U_{i}\left(\widehat{x}^{i}\right)$ for some $i \in S$ and
- $\sum_{i \in S} z^{i} \leq \sum_{i \in S} \omega^{i}$.

Normative theory positive theory

General equilibrium analysis

- The second point, together with (1), leads to the implication

$$
\widehat{p} \cdot\left(\sum_{i \in S} z^{i}-\sum_{i \in S} \omega^{i}\right) \leq 0
$$

Normative theory positive theory

General equilibrium analysis

- The second point, together with (1), leads to the implication

$$
\widehat{p} \cdot\left(\sum_{i \in S} z^{i}-\sum_{i \in S} \omega^{i}\right) \leq 0
$$

- The first point implies

$$
\begin{aligned}
& \widehat{p} \cdot z^{i} \stackrel{(2)}{\geq} \widehat{p} \cdot \widehat{x}^{i}=\widehat{p} \cdot \omega^{i} \text { for all } i \in S \text { (by local nonsatiation) and } \\
& \widehat{p} \cdot z^{j} \stackrel{(3)}{>} \widehat{p} \cdot \widehat{x}^{j}=\widehat{p} \cdot \omega^{j} \text { for some } j \in S \text { (otherwise, } \widehat{x}^{j} \text { is not an optim }
\end{aligned}
$$

Normative theory positive theory

General equilibrium analysis

- Summing over all these households from S yields

$$
\begin{aligned}
\widehat{p} \cdot \sum_{i \in S} z^{i} & =\sum_{i \in S} \widehat{p} \cdot z^{i} \text { (distributivity) } \\
& >\sum_{i \in S} \widehat{p} \cdot \omega^{i} \text { (above inequalities (2) and (3)) } \\
& =\widehat{p} \cdot \sum_{i \in S} \omega^{i} \text { (distributivity). }
\end{aligned}
$$

Normative theory positive theory

General equilibrium analysis

- Summing over all these households from S yields

$$
\begin{aligned}
\widehat{p} \cdot \sum_{i \in S} z^{i} & =\sum_{i \in S} \widehat{p} \cdot z^{i} \text { (distributivity) } \\
& >\sum_{i \in S} \widehat{p} \cdot \omega^{i} \text { (above inequalities (2) and (3)) } \\
& =\widehat{p} \cdot \sum_{i \in S} \omega^{i} \text { (distributivity). }
\end{aligned}
$$

- This inequality can be rewritten as

$$
\widehat{p} \cdot\left(\sum_{i \in S} z^{i}-\sum_{i \in S} \omega^{i}\right)>0
$$

contradicting the inequality noted above.

Normative theory positive theory

General equilibrium analysis

- Example where a Walras allocation does not lie in the core: The lower-left agent's preferences violate non-satiation.

Normative theory positive theory

General equilibrium analysis

- Example where a Walras allocation does not lie in the core: The lower-left agent's preferences violate non-satiation.
- The equilibrium point is the point of tangency between that price line and the upper-right agent's indifference curve.

Normative theory positive theory

General equilibrium analysis

- Example where a Walras allocation does not lie in the core: The lower-left agent's preferences violate non-satiation.
- The equilibrium point is the point of tangency between that price line and the upper-right agent's indifference curve.

- This point is not

Pareto-efficient. The lower-left agent could forego some units of both goods without harming himself.

The marriage market

matching and utility functions

Matching of

- employers and employees
- students and internships or
- men and women:

$$
M=\left\{m_{1}, \ldots, m_{k}\right\}, W=\left\{w_{1}, \ldots, w_{n}\right\}
$$

with utility functions

$$
U_{m}: W \cup\{m\} \rightarrow \mathbb{R}
$$

Problem

What does $U_{w_{1}}\left(m_{1}\right)>U_{w_{1}}\left(w_{1}\right)>U_{w_{1}}\left(m_{2}\right)$ mean?
Assumption: all the preferences are strict

The marriage market

 definition
Definition (marriage market)

A marriage market (M, W, \mathbf{U}) consists of disjunct sets of individuals M and W and utility functions $\mathbf{U}=\left(U_{i}\right)_{i \in M \cup W}$ with domain $W \cup\{m\}$ for every $m \in M$ and domain $M \cup\{w\}$ for every $w \in W$.

- the players themselves are the object of preferences, hence
- emotionality reigning in this market

The marriage market

 allocations
Definition (allocation)

For a marriage market (M, W, \mathbf{U}), the function

$$
\mu: M \cup W \rightarrow M \cup W
$$

is called an allocation if the two requirements

- $\mu(m) \in\{m\} \cup W$ for all $m \in M$ and
- $\mu(w) \in\{w\} \cup M$ for all $w \in W$
are fulfilled.
Thus, men can be singles or attached to a woman
\rightarrow Adam and Eve, not Adam and Steve.

Problem

Which players are characterized by $\mu(\mu(i))=i$?

The marriage market

Definition (consistent allocation)

For a marriage market (M, W, \mathbf{U}), an allocation μ is called consistent if $\mu(\mu(i))=i$ holds for all $i \in M \cup W$.

Single individuals i are defined by $\mu(i)=i$ and fulfull the consistency condition by

$$
\mu(\mu(i))=\mu(i)=i .
$$

Assume a feasible allocation μ and a man $m \in M$ who is not single. By $\mu(m) \in\{m\} \cup W$, he is attached to a women $w \in W(\mu(m)=w)$. Consistency then implies

$$
m=\mu(\mu(m))=\mu(w)
$$

so that the woman w is attached to the very same man - a marriage relation.

The marriage market

Definition

Consider a consistent allocation μ in a marriage market $(M, W, \mathbf{U}) . \mu$ is called K-feasible if $\mu(K) \subseteq K$ holds.
K-feasibility means that every individual from K is single or has a marriage partner in K. Similarly, a blocking coalition in an exchange economy can only redistribute goods this coalition possesses. Every consistent allocation μ is $M \cup W$-feasible.
Very similar to the exchange economy, we can define the associated NTU coalition function V by

$$
\begin{aligned}
& V(K) \\
: & =\left\{u_{K} \in \mathbb{R}^{|K|}: \exists \text { feasible allocation } \mu \text { with } u_{i} \leq U_{i}(\mu(i)), i \in K\right\} .
\end{aligned}
$$

The core

acceptability

Definition (acceptability)

An agent i finds another individual j acceptable if $U_{i}(j)>U_{i}(i)$ holds.
$—$ nobody can be married against his (or her) will However, if

- I fancy Sandra Bullock but
- she prefers another man,
the underlying allocation may well be stable.

The core

from individual rationality to the core I

Definition (from individual rationality to the core)

Let μ be a consistent (or $M \cup W$-feasible) allocation.

- μ is called individually rational if $U_{i}(\mu(i)) \geq U_{i}(i)$ holds for all $i \in N$ (non-blockability by one-man coalitions).
- μ is called pairwise rational if there is no pair of players $(m, w) \in M \times W$ such that

$$
\begin{aligned}
& U_{m}(w)>U_{m}(\mu(m)) \text { and } \\
& U_{w}(m)>U_{w}(\mu(w))
\end{aligned}
$$

hold (non-blockability by heterosexual pairs).

The core

from individual rationality to the core II

Definition

- μ is called Pareto optimal if there is no consistent allocation μ^{\prime} that fulfills

$$
\begin{aligned}
& U_{i}\left(\mu^{\prime}(i)\right) \geq U_{i}(\mu(i)) \text { for all } i \in M \cup W \text { and } \\
& U_{j}\left(\mu^{\prime}(j)\right)>U_{j}(\mu(j)) \text { for at least one } j \in M \cup W
\end{aligned}
$$

(non-blockability by the grand coalition).

- μ lies in the core if there is not coalition $K \subseteq M \cup W$ and no K-feasible allocation μ^{\prime} such that

$$
\begin{aligned}
& U_{i}\left(\mu^{\prime}(i)\right) \geq U_{i}(\mu(i)) \text { for all } i \in K \text { and } \\
& U_{j}\left(\mu^{\prime}(j)\right)>U_{j}(\mu(j)) \text { for at least one } j \in K
\end{aligned}
$$

holds (non-blockability by any coalition).

The core

comments

Pairwise rationality: no man and no woman exist such that both can improve their lot by marrying

- breaking off existing marriages or
- giving up celibacy

Pareto optimality is defined with reference to feasibility and non-blockability by the grand coalition.
K-feasibility $\longrightarrow>\mu^{\prime}(K) \subseteq K$

- individual rationality: every $\{i\}$-feasible allocation μ^{\prime} obeys $\mu^{\prime}(i)=i$
- pairwise rationality: the blocking coalition $\{m, w\}$ forms a pair.

Problem

What is the connection between individual rationality and acceptability?

The core

$=$ individual and pairwise rationality I

Theorem

Let (M, W, \mathbf{U}) be a marriage market. The set of consistent allocations that are individually rational and pairwise rational is the core.

First part of the proof: A consistent allocation that is both individually and pairwise rational belongs to the core.
Assume a consistent allocation μ outside the core. Thus, there exists a coalition K that can block μ by suggesting a K-feasible allocation μ^{\prime} that fulfills

$$
\begin{aligned}
& U_{i}\left(\mu^{\prime}(i)\right) \geq U_{i}(\mu(i)) \text { for all } i \in K \text { and } \\
& U_{j}\left(\mu^{\prime}(j)\right)>U_{j}(\mu(j)) \text { for at least one } j \in K .
\end{aligned}
$$

The core

= individual and pairwise rationality II

$$
\begin{aligned}
& U_{i}\left(\mu^{\prime}(i)\right) \geq U_{i}(\mu(i)) \text { for all } i \in K \text { and } \\
& U_{j}\left(\mu^{\prime}(j)\right)>U_{j}(\mu(j)) \text { for at least one } j \in K .
\end{aligned}
$$

Let us focus on individual j that is strictly better off under μ^{\prime} than under μ. We can distinguish two cases:

- j is single or married under μ and (re)marries under μ^{\prime}. In this case both j and his (or her) spouse $\mu^{\prime}(j) \in K(!)$ are strictly better off because we work with strict preferences. Then μ is not pairwise rational.
- j is married under μ and single under μ^{\prime}.

This second case implies that j is better off as a single contadicting individual rationality.

Further exercises

Sketch budget lines or the displacements of budget lines for the following examples:

- Time $T=18$ and money $m=50$ for football $F(\operatorname{good} 1)$ or basket ball B (good 2$)$ with prices
- $p_{F}=5, p_{B}=10$ in monetary terms,
- $t_{F}=3, t_{B}=2$ and temporary terms
- Two goods, bread (good 1) and other goods (good 2). Transfer in kind with and without probhibition to sell:
- $m=300, p_{B}=2, p_{\text {other }}=1$
- Transfer in kind: $B=50$

