Overview part F: Non-transferable utility

- Exchange economies
- The Nash solution

Overview "The Solow growth model"

- Introduction
- Budget
- Household optimum
- NTU coalition functions and the core
- Edgeworth boxes and coalition functions
- GET: decentralization through prices
- The marriage market

Introduction I

- transferable utility —> To every coalition K ⊆ N, a real number v (K) is attributed.
- non-transferable utility —> To every coalition K ⊆ N, a set of payoff vectors is attributed.

Set of coalitions

Set of payoff vectors

Introduction II

- GET = General Equilibrium Theory
 - Agents observe prices and choose their good bundles accordingly.
 - All agents (households and firms) are price takers.
- The aim is to find prices such that
 - all actors behave in a utility, or profit, maximizing way and
 - the demand and supply schedules can be fulfilled simultaneously.
- —> Walras equilibrium
 - existence
 - efficiency and core

Special case: marriage market

Definition

The expenditure for a bundle of goods $x = (x_1, x_2, ..., x_\ell)$ at a vector of prices $p = (p_1, p_2, ..., p_\ell)$ is the dot product (or the scalar product):

$$p \cdot x := \sum_{g=1}^{\ell} p_g x_g.$$

Definition

For
$$p \in \mathbb{R}^{\ell}$$
 and $m \in \mathbb{R}_+$:

$$B(p,m) := \left\{ x \in \mathbb{R}^{\ell}_+ : p \cdot x \leq m \right\}$$

- the money budget.

$$\left\{x\in \mathbb{R}^\ell_+: p\cdot x=m
ight\}$$

Problem

Assume that the household consumes bundle A. Identify the "left-over" in terms of good 1, in terms of good 2 and in money terms.

Problem

What happens to the budget line if

- price p₁ doubles;
- if both prices double?

Lemma

For any number $\alpha > 0$:

$$B(\alpha p, \alpha m) = B(p, m)$$

Problem

Fill in: For any number $\alpha > 0$: B ($\alpha p, m$) = B (p, ?).

3 🕨 🖌 3

Image: A matrix

Lemma

The money budget is nonempty, closed and convex. If p >> 0 holds, the budget is bounded.

Proof.

- $(0,...,0)\in \mathbb{R}^\ell_+$ and $0\cdot p=0\leq m\Rightarrow$ budget is nonempty;
- $x_g \geq$ 0, $g=1,...,\ell$, $x\cdot p\leq m \Rightarrow$ budget is closed;
- consider x and x' and $k \in [0, 1] \Rightarrow x \cdot p \le m$ and $x' \cdot p \le m$ imply: $(kx + (1 - k)x') \cdot p = kx \cdot p + (1 - k)x' \cdot p \le km + (1 - k)m = m$ \Rightarrow budget is convex;

• If
$$p >> 0$$
, $0 \le x \le \left(\frac{m}{p_1}, ..., \frac{m}{p_\ell}\right) \Rightarrow$ budget is bounded.

(日) (同) (三) (三)

Problem

Verify that the budget line's slope is given by $-\frac{p_1}{p_2}$ (in case of $p_2 \neq 0$).

Definition

If $p_1 \ge 0$ and $p_2 > 0$,

$$MOC(x_1) = \left| \frac{dx_2}{dx_1} \right| = \frac{p_1}{p_2}$$

 the marginal opportunity cost of consuming one unit of good 1 in terms of good 2.

A B F A B F

Image: Image:

э

Endowment budget

Definition

Definition

For $p \in \mathbb{R}^{\ell}$ and an endowment $\omega \in \mathbb{R}^{\ell}_+$:

$$B(p, \omega) := \left\{ x \in \mathbb{R}^{\ell}_{+} : p \cdot x \leq p \cdot \omega \right\}$$

- the endowment budget.

Endowment budget

A two goods case

budget line: $p_1x_1 + p_2x_2 = p_1\omega_1 + p_2\omega_2$ marginal opportunity cost: $MOC = \left|\frac{dx_2}{dx_1}\right| = \frac{p_1}{p_2}$

Problem

What happens to the budget line if

- price p₁ doubles;
- if both prices double?

Notation:

- ω_1 and ω_2 monetary income in t_1 and t_2 ;
- x_1 and x_2 consumption in t_1 and t_2 ;
- household can borrow $(x_1 > \omega_1)$, lend $(x_1 < \omega_1)$ or consume what it earns $(x_1 = \omega_1)$;
- r rate of interest.

Consumption in t_2 :

- *borrow* verwandt mit
 - borgen und
 - *bergen* ("in Sicherheit bringen") wie in *Herberge* ("ein das Heer bergender Ort")
- lend verwandt mit
 - Lehen ("zur Nutzung verliehener Besitz") und
 - leihen, verwandt mit
 - lateinischstämmig *Relikt* ("Überrest") und *Reliquie* ("Überbleibsel oder hochverehrte Gebeine von Heiligen") und mit
 - griechischstämmig *Eklipse* ("Ausbleiben der Sonne oder des Mondes"
 "Sonnen- bzw. Mondfinsternis") und auch mit
 - griechischstämmig *Ellipse* (in der Geometrie ein Langkreis, bei dem die Höhe geringer ist als die Breite und insofern ein Mangel im Vergleich zum Kreis vorhanden ist – agr. *elleipsis* (έλλειψις) bedeutet "Ausbleiben" > "Mangel"

2 ways to rewrite the budget equation:

• in future value terms:

$$(1+r) x_1 + x_2 = (1+r) \omega_1 + \omega_2,$$

• in present value terms:

$$x_1 + \frac{x_2}{1+r} = \omega_1 + \frac{\omega_2}{1+r}.$$

Application 1 Intertemporal consumption

budget line: $(1 + r) x_1 + x_2 = (1 + r) \omega_1 + \omega_2$ marginal opportunity cost: $MOC = \left| \frac{dx_2}{dx_1} \right| = 1 + r$

Notation:

- x_R recreational hours ($0 \le x_R \le 24 = \omega_R$) \rightarrow good 1;
- household works $24 x_R$ hours;
- x_C real consumption \rightarrow good 2;
- w the wage rate;
- ω_c the real non-labor income;
- p the price index.

• Holdshold's consumption in nominal terms:

$$px_{C} = p\omega_{C} + w(24 - x_{R})$$

• Holdshold's consumption in endowment-budget form:

$$wx_R + px_C = w24 + p\omega_C$$

Application 2 Leisure versus consumption

budget line: $wx_R + px_C = w24 + p\omega_C$ marginal opportunity cost: $MOC = \left| \frac{dx_C}{dx_R} \right| = \frac{w}{p}$

Harald Wiese (Chair of Microeconomics)

Junel 2010 19 / 80

The household's decision situation

Definition

$$\begin{array}{lll} \Delta & = & (B,\precsim) \text{ with} \\ B & = & B\left(p,m\right) \subseteq \mathbb{R}_{+}^{\ell} \text{ or } B = B\left(p,\omega\right) \subseteq \mathbb{R}_{+}^{\ell} \end{array}$$

- household's decision situation with:

•
$$oldsymbol{
ho}\in \mathbb{R}^\ell$$
 – a vector of prices;

•
$$\precsim$$
 – a preference relation on \mathbb{R}^{ℓ}_+ .

Definition

$$\Delta = (B, U)$$

– the decision situation with utility function U on \mathbb{R}^ℓ_+

Definition

$$x^{R}\left(\Delta
ight):=rg\max_{x\in B}U\left(x
ight)$$

- the best-response function. - i.e., $x^{R}(\Delta) = \{x \in B: \text{ there is not } x' \in B \text{ with } x' \succ x\}$ Any x^{*} from $x^{R}(\Delta)$ - a household optimum.

Lemma

Lemma

For any number $\alpha > 0$:

$$x^{R}(\alpha p, \alpha m) = x^{R}(p, m)$$

.∃ >

Exercise 1

Harald Wiese (Chair of Microeconomics)

Junel 2010 23 / 80

Exercise 2

Problem

Assume a household's decision problem with $\Delta = (B(p, \omega), \preceq)$. $x^{R}(\Delta)$ consists of the bundles x that fulfill the two conditions:

1 The household can afford x:

 $p \cdot x \leq p \cdot \omega$

There is no other bundle y that the household can afford and that he prefers to x:

$$y \succ x \Rightarrow ??$$

Substitute the question marks by an inequality.

Marginal willingness to pay: $MRS = \begin{vmatrix} dx_2 \\ dx_1 \end{vmatrix}$

If the household consumes one additional unit of good 1, how many units of good 2 can he forgo so as to remain indifferent.

movement on the indifference curve

Marginal opportunity cost:

If the household consumes one additional unit of good 1, how many units of good 2 does he have to forgo so as to remain within his budget.

$$MOC = \left| \frac{dx_2}{dx_1} \right|$$

movement on the budget line

MRS versus MOC

MRS =

= MOC

absolute value

absolute value

of the slope of

of the slope of

the indifference curve

the budget line

\Rightarrow increase x_1 (if possible)

Harald Wiese (Chair of Microeconomics)

Applied cooperative game theory:

Junel 2010 26 / 80

MRS versus MOC

$MRS > MOC \Rightarrow$ increase x_1 (if possible)

MRS versus MOC

Alternatively: the household tries to maximize $U\left(x_1, \frac{m}{p_2} - \frac{p_1}{p_2}x_1\right)$.

- Consume 1 additional unit of good 1
 - utility increases by $\frac{\partial U}{\partial x_1}$

• reduction in
$$x_2$$
 by $MOC = \left| \frac{dx_2}{dx_1} \right| = \frac{p_1}{p_2}$ and hence
utility decrease by $\frac{\partial U}{\partial x_2} \left| \frac{dx_2}{dx_1} \right|$ (chain rule

• Thus, increase consumption of good 1 as long as

Household optimum

Cobb-Douglas utility function

$$U(x_1, x_2) = x_1^a x_2^{1-a}$$
 with $0 < a < 1$

The two optimality conditions

•
$$MRS = \frac{\frac{\partial U}{\partial x_1}}{\frac{\partial U}{\partial x_2}} = \frac{a}{1-a} \frac{x_2}{x_1} \stackrel{!}{=} \frac{p_1}{p_2}$$
 and
• $p_1 x_1 + p_2 x_2 \stackrel{!}{=} m$

yield the household optimum

$$x_1^*(m, p) = a \frac{m}{p_1},$$

 $x_2^*(m, p) = (1-a) \frac{m}{p_2}.$

Household optimum

Perfect substitutes

$$U(x_1, x_2) = ax_1 + bx_2$$
 with $a > 0$ and $b > 0$

An increase of good 1 enhances utility if

$$rac{a}{b} = MRS > MOC = rac{p_1}{p_2}$$

holds. Therefore

$$x^{*}(m,p) = \begin{cases} \left(\frac{m}{p_{1}},0\right), & \frac{a}{b} > \frac{p_{1}}{p_{2}} \\ \left\{\left(x_{1},\frac{m}{p_{2}} - \frac{p_{1}}{p_{2}}x_{1}\right) \in \mathbb{R}^{2}_{+} : x_{1} \in \left[0,\frac{m}{p_{1}}\right] \right\} & \frac{a}{b} = \frac{p_{1}}{p_{2}} \\ \left(0,\frac{m}{p_{2}}\right) & \frac{a}{b} < \frac{p_{1}}{p_{2}} \end{cases}$$

Household optimum

Concave preferences

$$U(x_1, x_2) = x_1^2 + x_2^2$$

An increase of good 1 enhances utility if

$$\frac{x_1}{x_2} = \frac{2x_1}{2x_2} = \frac{\frac{\partial U}{\partial x_1}}{\frac{\partial U}{\partial x_2}} = MRS > MOC = \frac{p_1}{p_2}$$

holds. Therefore, corner solution unless prices are equal:

$$x^*(m,p) = \begin{cases} \left(\frac{m}{p_1},0\right), & p_1 \leq p_2\\ \left\{\left(\frac{m}{p_1},0\right),\left(0,\frac{m}{p_2}\right)\right\} & p_1 = p_2\\ \left(0,\frac{m}{p_2}\right) & p_1 \geq p_2 \end{cases}$$

Household optimum and monotonicity

Lemma

Let x^* be a household optimum of $\Delta = (B(p,m),\precsim) \Rightarrow$

- local nonsatiation: $p \cdot x^* = m$ (Walras' law);
- strict monotonicity: p >> 0;
- local nonsatiation and weak monotonicity: $p \ge 0$.

Proof.

- Assume: p ⋅ x^{*} < m ⇒ household can afford bundles close to x^{*}. Some of them are better than x^{*} (local nonsatiation). Contradiction!
- Assume p_g ≤ 0 ⇒ household can be made better off by consuming more of good g (strict monotonicity). Contradiction!
- Assume $p_g < 0 \Rightarrow$ household can "buy" additional units of g without being worse off (weak monotonicity). Household has additional funding for preferred bundles (nonsatiation). Contradiction!

Definition of NTU coalition functions I

- v coalition function with transferable utility
- V coalition function without transferable utility
- V attributes to every coalition $K \neq \emptyset$ a set of utility vectors

$$u_{\mathcal{K}} := (u_i)_{i \in \mathcal{K}} \in \mathbb{R}^{|\mathcal{K}|}$$

for K's members.

Problem
Depict

$$V (\{Peter, Otto\})$$

$$= \{(u_{Peter}, u_{Otto}) : u_{Peter} \ge 2, u_{Otto} \ge 1, u_{Peter} + u_{Otto} \le 4\}.$$

Definition (coalition function)

A coalition function V on N for non-transferable utility associates to every subset K of N a subset of $\mathbb{R}^{|K|}$ such that

- $V(\emptyset) = \emptyset$ and
- $V(K) \neq \emptyset$ for $K \neq \emptyset$

hold.

Problem

Which of the following expressions are formally correct?

•
$$V(\{1,2\}) = 1$$
, $V(\{1,2\}) = \{1\}$, $V(\{1,2\}) = (1,2)$

•
$$V(\{1,2\}) = \emptyset, V(\{1,2\}) = \{(1,2)\}$$

• $V(\{1,2\}) = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 \le 3, x_2 \le 4, x_1 + x_2 \le 5\}$

Definition (superadditivity)

The coalition function V without transferable utility is called superadditive if, for all coalitions S, $T \subset N$

$$S \cap T = \emptyset$$
 (S and T are disjunct),
 $u_S \in V(S)$ and
 $u_T \in V(T)$

imply

 $(u_S, u_T) \in V(S \cup T).$

Definition of NTU coalition functions IV

Problem

$$Is V_2 \text{ defined on } N = \{1, 2, 3\} \text{ and given by}$$

$$V_2 (K) = \begin{cases} \{i\}, & K = \{i\} \\ \{(x_1, x_2) : x_1 \le 1, x_2 \le 4\}, & K = \{1, 2\} \\ \{(x_1, x_3) : x_1 \le 2, x_3 \le 2\}, & K = \{1, 3\} \\ \{(x_2, x_3) : x_2 \le 4, x_3 \le 5\}, & K = \{2, 3\} \\ \{(x_1, x_2, x_3) : x_1 + x_2 + x_3 \le 9\} & K = \{1, 2, 3\} \end{cases}$$
superadditive?
The core

Definition (core)

The core of a NTU game V is the set all utility vectors $u = (u_i)_{i \in \mathbb{N}} \in \mathbb{R}^n$ that obey feasibility and non-blockability:

- $u \in V(N)$.
- There is no coaliton K and no utility vector $u' = (u'_i)_{i \in N}$ such that $u'_K \in V(K)$ holds and $u_i \leq u'_i$ for all $i \in K$ with strict inequality for at least on $i \in K$.

exchange Edgeworth box: prices and equilibria

The low price p'_1 is not possible in a Walras equilibrium, because there is excess demand for good 1 at this price:

$$x_1^A + x_1^B > \omega_1^A + \omega_1^B$$

Exchange theory: positive theory definition of an exchange economy

Definition (exchange economy)

An exchange economy is a tuple

$$\mathcal{E} = \left(\textit{N},\textit{G},\left(\omega^{i}
ight)_{i\in\textit{N}},(\textit{U}_{i})_{i\in\textit{N}}
ight)$$

consisting of

- the set of agents $N = \{1, 2, ..., n\}$,
- the finite set of goods $\mathit{G} = \{1,...,\ell\}$,

and for every agent $i \in N$

- ullet an endowment $\omega^i=\left(\omega^i_1,...,\omega^i_\ell
 ight)\in\mathbb{R}^\ell_+$, and
- a utility function $U_i : \mathbb{R}^{\ell}_+ \to \mathbb{R}$.

Two-agents two-good case —> exchange Edgeworth box

Exchange theory: positive theory feasible allocations

Definition

Consider an exchange economy \mathcal{E} .

- A bundle $(y^i)_{i \in \mathbb{N}} \in \mathbb{R}^{\ell \cdot n}_+$ is an allocation.
- An allocation $(y^i)_{i \in N}$ is called *K*-feasible if $\sum_{i \in K} y^i \leq \sum_{i \in K} \omega^i$ holds.
- An allocation $(y^i)_{i \in N}$ is called feasible if it is *N*-feasible.

For $K \neq \emptyset$, we let

$$V(K)$$

: = $\left\{ u_{K} \in \mathbb{R}^{|K|} : \exists K \text{-feasible allocation } x \text{ with } u_{i} \leq U_{i}(x_{i}), i \in K \right\}.$

non-empty coalition K

 $-\!\!\!-\!\!\!>$ set of bundles that this coalition possesses

—> every K-feasible allocation defines the maximal utility levels that the players from K can achieve.

Definition

Assume an exchange economy \mathcal{E} , a good $g \in G$ and a price vector $p \in \mathbb{R}^{\ell}$. If every household $i \in N$ has a unique household optimum $x^i (p, \omega^i)$, good g's excess demand is denoted by $z_g (p)$ and defined by

$$z_{g}\left(p
ight):=\sum_{i=1}^{n}x_{g}^{i}\left(p,\omega^{i}
ight)-\sum_{i=1}^{n}\omega_{g}^{i}.$$

The corresponding excess demand for all goods $g=1,...,\ell$ is the vector

$$z(p) := (z_g(p))_{g=1,\ldots,\ell}.$$

The value of the excess demand is given by

 $p\cdot z(p)$.

Lemma (Walras' law)

Every consumer demands a bundle of goods obeying $p \cdot x^i \leq p \cdot \omega^i$ where local nonsatiation implies equality. For all consumers together, we have

$$p \cdot z(p) = \sum_{i=1}^{n} p \cdot (x^{i} - \omega^{i}) \leq 0$$

and, assuming local-nonsatiation, $p \cdot z(p) = 0$.

Definition

A market g is called cleared if excess demand $z_g(p)$ on that market is equal to zero.

Problem

Abba (A) and Bertha (B) consider buying two goods 1 and 2, and face the price p for good 1 in terms of good 2. Think of good 2 as the numeraire good with price 1. Abba's and Bertha's utility functions, u_A and u_B , respectively, are given by $u_A(x_1^A, x_2^A) = \sqrt{x_1^A + x_2^A}$ and $u_B(x_1^B, x_2^B) = \sqrt{x_1^B + x_2^B}$. Endowments are $\omega^A = (18, 0)$ and $\omega^B = (0, 10)$. Find the bundles demanded by these two agents. Then find the price p that fulfills $\omega_1^A + \omega_1^B = x_1^A + x_1^B$ and $\omega_2^A + \omega_2^B = x_2^A + x_2^B$.

Lemma (Market clearance)

In case of local nonsatiation,

- if all markets but one are cleared, the last one also clears or its price is zero,
- 2) if at prices $p \gg 0$ all markets but one are cleared, all markets clear.

Proof.

If $\ell-1$ markets are cleared, the excess demand on these markets is 0. Without loss of generality, markets $g=1,...,\ell-1$ are cleared. Applying Walras's law we get

$$0=\boldsymbol{p}\cdot\boldsymbol{z}\left(\boldsymbol{p}\right)=\boldsymbol{p}_{\ell}\boldsymbol{z}_{\ell}\left(\boldsymbol{p}\right).$$

Image: Image:

Exchange theory: positive theory Walras equilibrium

Definition

A price vector \hat{p} and the corresponding demand system $(\hat{x}^i)_{i=1,\dots,n} = (x^i (\hat{p}, \omega^i))_{i=1,\dots,n}$ is called a Walras equilibrium if

$$\sum_{i=1}^{n} \widehat{x}^{i} \le \sum_{i=1}^{n} \omega^{i}$$

or

 $z\left(\widehat{p}\right)\leq 0$

holds.

Definition

A good is called free if its price is equal to zero.

Harald Wiese (Chair of Microeconomics)

A D > A A P >

Lemma (free goods)

Assume local nonsatiation and weak monotonicity for all households. If $\left[\hat{p}, \left(\hat{x}^{i}\right)_{i=1,...,n}\right]$ is a Walras equilibrium and the excess demand for a good is negative, this good must be free.

Exchange theory: positive theory Walras equilibrium

Proof.

Assume, to the contrary, that $p_g > 0$ holds. We obtain a contradiction to Walras law for local nonsatiation:

$$p \cdot z(p) = \underbrace{p_g z_g(p)}_{<0} + \sum_{\substack{g'=1, \\ g' \neq g}}^{\ell} p_{g'} z_{g'}(p) \ (z_g(p) < 0)$$

$$< \sum_{\substack{g'=1, \\ g' \neq g}}^{\ell} \underbrace{p_{g'}}_{\geq 0} \underbrace{z_{g'}(p)}_{\leq 0}$$
(local nonsatiation and (definition weak monotonicity) Walras equilibrium)
$$< 0$$

Walras equilibrium

Definition

A good is desired if the excess demand at price zero is positive.

Lemma (desiredness)

If all goods are desired and if local nonsatiation and weak monotonicity hold and if \hat{p} is a Walras equilibrium, then $z(\hat{p}) = 0$.

Proof.

Suppose that there is a good g with $z_g(\hat{p}) < 0$. Then g must be a free good according to the lemma on free goods and have a positive excess demand by the definition of desiredness, $z_g(\hat{p}) > 0$.

Example: The Cobb-Douglas Exchange Economy with Two Agents

Parameters a_1 and a_2 and endowments $\omega^1=(1,0)$ and $\omega^2=(0,1)$

Agent 1's demand for good
 Agent 2's demand for good
 1:

$$x_1^1 \left(p_1, p_2, \omega^1 \cdot p \right)$$
$$= a_1 \frac{\omega^1 \cdot p}{p_1} = a_1.$$

$$x_1^2 (p_1, p_2, \omega^2 \cdot p)$$
$$= a_2 \frac{\omega^2 \cdot p}{p_1}$$
$$= a_2 \frac{p_2}{p_1}.$$

Example: The Cobb-Douglas Exchange Economy with Two Agents

Parameters a_1 and a_2 and endowments $\omega^1=(1,0)$ and $\omega^2=(0,1)$

Agent 1's demand for good
 Agent 2's demand for good
 1:

$$x_1^1(p_1, p_2, \omega^1 \cdot p) \qquad \qquad x_1^2(p_1, p_2, \omega^2 \cdot p)$$
$$= a_1 \frac{\omega^1 \cdot p}{p_1} = a_1. \qquad \qquad = a_2 \frac{\omega^2 \cdot p}{p_1}$$
$$= a_2 \frac{p_2}{p_1}.$$

• Market 1 is cleared if

$$a_1 + a_2 rac{p_2}{p_1} = 1 ext{ or } rac{p_2}{p_1} = rac{1-a_1}{a_2}$$

Example: The Cobb-Douglas Exchange Economy with Two Agents

Parameters a_1 and a_2 and endowments $\omega^1=(1,0)$ and $\omega^2=(0,1)$

Agent 1's demand for good
 Agent 2's demand for good
 1:

$$x_{1}^{1}(p_{1}, p_{2}, \omega^{1} \cdot p) \qquad x_{1}^{2}(p_{1}, p_{2}, \omega^{2} \cdot p)$$

$$= a_{1} \frac{\omega^{1} \cdot p}{p_{1}} = a_{1}. \qquad = a_{2} \frac{\omega^{2} \cdot p}{p_{1}}$$

$$= a_{2} \frac{p_{2}}{p_{1}}.$$

• Market 1 is cleared if

$$a_1 + a_2 rac{p_2}{p_1} = 1 ext{ or } rac{p_2}{p_1} = rac{1-a_1}{a_2}$$

• How about the market for good 2?

Example: The Cobb-Douglas Exchange Economy with Two Agents

Theorem (Existence of the Walras Equilibrium)

If aggregate excess demand is a continuous function (in prices), if the value of the excess demand is zero and if the preferences are strictly monotonic, there exists a price vector \hat{p} such that $z(\hat{p}) \leq 0$.

Theorem

Suppose $f : M \to M$ is a function on the nonempty, compact and convex set $M \subseteq \mathbb{R}^{\ell}$. If f is continuous, there exists $x \in M$ such that f(x) = x. x is called a fixed point.

Existence of the Walras equilibrium

Continuous function on the unit interval.

- f (0) = 0 or f (1) = 1
 —> fixed point is found
- f (0) > 0 and f (1) < 1
 —> the graph cuts the 45°-line
 —> fixed point is found

Real-life examples:

- rumpling a handkerchief
- stirring cake dough

Problem

Assume, one of the requirements for the fixed-point theorem does not hold. Show, by a counter example, that there can be a function such that there is no fixed point. Specifically, assume that a) M is not compact b) M is not convex c) f is not continuous. Hans-Jürgen Podszuweit (found in Homo Oeconomicus, XIV (1997), p. 537):

Das Nilpferd hört perplex: Sein Bauch. der sei konvex. Und steht es vor uns nackt. sieht man: Er ist kompakt. Nimmt man 'ne stetige Funktion von Bauch in Bauch - Sie ahnen schon -. dann nämlich folgt aus dem Brouwer'schen Theorem: Ein Fixpunkt muß da sein. Dasselbe gilt beim Schwein q.e.d.

 Constructing a convex and compact set: Norm prices of the ℓ goods such that the sum of the nonnegative (!, we have strict monotonicity) prices equals 1. We can restrict our search for equilibrium prices to the ℓ - 1- dimensional unit simplex:

$$S^{\ell-1} = \left\{ p \in \mathbb{R}^\ell_+ : \sum_{g=1}^\ell p_g = 1
ight\}.$$

• Constructing a convex and compact set: Norm prices of the ℓ goods such that the sum of the nonnegative (!, we have strict monotonicity) prices equals 1. We can restrict our search for equilibrium prices to the $\ell - 1$ - dimensional unit simplex:

$$S^{\ell-1} = \left\{ p \in \mathbb{R}^\ell_+ : \sum_{g=1}^\ell p_g = 1
ight\}$$

• $S^{\ell-1}$ is nonempty, compact (closed and bounded as a subset of $\mathbb{R}^{\ell-1}$) and convex.

 Constructing a convex and compact set: Norm prices of the ℓ goods such that the sum of the nonnegative (!, we have strict monotonicity) prices equals 1. We can restrict our search for equilibrium prices to the ℓ - 1- dimensional unit simplex:

$$S^{\ell-1} = \left\{ p \in \mathbb{R}^\ell_+ : \sum_{g=1}^\ell p_g = 1
ight\}$$

- $S^{\ell-1}$ is nonempty, compact (closed and bounded as a subset of $\mathbb{R}^{\ell-1}$) and convex.
- problem: Draw $S^1 = S^{2-1}$.

• The idea of the proof: First, we define a continuous function *f* on this (nonempty, compact and convex) set. Brouwer's theorem says that there is at least one fixed point of this function. Second, we show that such a fixed point fulfills the condition of the Walras equilibrium.

- The idea of the proof: First, we define a continuous function f on this (nonempty, compact and convex) set. Brouwer's theorem says that there is at least one fixed point of this function. Second, we show that such a fixed point fulfills the condition of the Walras equilibrium.
- The abovementioned continuous function

$$f = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ \vdots \\ f_\ell \end{pmatrix} : S^{\ell-1} \to S^{\ell-1}$$

is defined by

$$f_{g}\left(p
ight)=rac{p_{g}+\max\left(0,z_{g}\left(p
ight)
ight)}{1+\sum_{g^{\prime}=1}^{\ell}\max\left(0,z_{g^{\prime}}\left(p
ight)
ight)},g=1,...,\ell$$

 f is continuous because every fg, g = 1, ..., ℓ, is continuous. The latter is continuous because z (according to our assumption) und max are continuous functions. Finally, we can confirm that f is well defined, i.e., that f (p) lies in S^{ℓ-1} for all p from S^{ℓ-1}:

$$\begin{split} \sum_{g=1}^{\ell} f_g(p) &= \sum_{g=1}^{\ell} \frac{p_g + \max(0, z_g(p))}{1 + \sum_{g'=1}^{\ell} \max(0, z_{g'}(p))} \\ &= \frac{1}{1 + \sum_{g'=1}^{\ell} \max(0, z_{g'}(p))} \sum_{g=1}^{\ell} (p_g + \max(0, z_g(p))) \\ &= \frac{1}{1 + \sum_{g'=1}^{\ell} \max(0, z_{g'}(p))} \left(1 + \sum_{g=1}^{\ell} \max(0, z_g(p))\right) \\ &= 1. \end{split}$$

• The function f increases the price of a good g in case of $f_{g}\left(p\right)>p_{g},$ only, i.e. if

$$\frac{p_{g}+\max\left(0,z_{g}\left(p\right)\right)}{1+\sum_{g'=1}^{\ell}\max\left(0,z_{g'}\left(p\right)\right)}>p_{g}$$

or

$$\frac{\max\left(0, z_{g}\left(p\right)\right)}{\sum_{g'=1}^{\ell} \max\left(0, z_{g'}\left(p\right)\right)} > \frac{p_{g}}{\sum_{g'=1}^{\ell} p_{g'}}$$

holds.

• The function f increases the price of a good g in case of $f_{g}\left(p\right)>p_{g},$ only, i.e. if

$$\frac{p_{g} + \max\left(0, z_{g}\left(p\right)\right)}{1 + \sum_{g'=1}^{\ell} \max\left(0, z_{g'}\left(p\right)\right)} > p_{g}$$

or

$$\frac{\max\left(0, z_{g}\left(p\right)\right)}{\sum_{g'=1}^{\ell} \max\left(0, z_{g'}\left(p\right)\right)} > \frac{p_{g}}{\sum_{g'=1}^{\ell} p_{g'}}$$

holds.

- Interpretation: Increase price if its relative excess demand is greater than its relative price.
 - -> f = Walras auctioneer
 - —> tâtonnement

• We now complete the proof: according to Brouwer's fixed-point theorem there is one \hat{p} such that

$$\widehat{p}=f\left(\widehat{p}
ight)$$
 ,

from which we have

$$\widehat{p}_{g} = \frac{\widehat{p}_{g} + \max\left(0, z_{g}\left(\widehat{p}\right)\right)}{1 + \sum_{g'=1}^{\ell} \max\left(0, z_{g'}\left(\widehat{p}\right)\right)}$$

and finally

$$\widehat{p}_{g}\sum_{g'=1}^{\ell}\max\left(0,z_{g'}\left(\widehat{p}
ight)
ight)=\max\left(0,z_{g}\left(\widehat{p}
ight)
ight)$$

for all
$$g = 1, ..., \ell$$

• Next we multiply both sides for all goods $g = 1, ..., \ell$ by $z_g(\hat{p})$:

$$z_{g}(\widehat{\rho})\widehat{\rho}_{g}\sum_{g'=1}^{\ell}\max\left(0,z_{g'}\left(\widehat{\rho}\right)\right)=z_{g}(\widehat{\rho})\max\left(0,z_{g}\left(\widehat{\rho}\right)\right)$$

and summing up over all g yields

$$\sum_{g=1}^{\ell} z_g(\widehat{p}) \widehat{p}_g \sum_{g'=1}^{\ell} \max\left(0, z_{g'}\left(\widehat{p}\right)\right) = \sum_{g=1}^{\ell} z_g(\widehat{p}) \max\left(0, z_g\left(\widehat{p}\right)\right).$$

• Next we multiply both sides for all goods $g = 1, ..., \ell$ by $z_g(\widehat{p})$:

$$z_{g}(\widehat{\rho})\widehat{\rho}_{g}\sum_{g'=1}^{\ell}\max\left(0,z_{g'}\left(\widehat{\rho}\right)\right)=z_{g}(\widehat{\rho})\max\left(0,z_{g}\left(\widehat{\rho}\right)\right)$$

and summing up over all g yields

$$\sum_{g=1}^{\ell} z_g(\widehat{p}) \widehat{p}_g \sum_{g'=1}^{\ell} \max\left(0, z_{g'}\left(\widehat{p}\right)\right) = \sum_{g=1}^{\ell} z_g(\widehat{p}) \max\left(0, z_g\left(\widehat{p}\right)\right).$$

• By Walras' law, the left-hand expression is equal to zero. The right one consists of a sum of expressions, which are equal either to zero or to $(z_g(\widehat{p}))^2$. Therefore, $z_g(\widehat{p}) \leq 0$ for all $g = 1, ..., \ell$. This is what we wanted to show.

General equilibrium analysis

Definition (blockable allocation, core)

Let $\mathcal{E} = (N, G, (\omega^i)_{i \in N}, (U_i)_{i \in N})$ be an exchange economy. A coalition $S \subseteq N$ is said to block an allocation $(y^i)_{i \in N}$, if an allocation $(z^i)_{i \in N}$ exists such that

• $U_i(z^i) \ge U_i(y^i)$ for all $i \in S$, $U_i(z^i) > U_i(y^i)$ for some $i \in S$ and • $\sum_{i \in S} z^i \le \sum_{i \in S} \omega^i$

hold.

An allocation is not blockable if there is no coalition can block it. The set of all feasible and non-blockable allocations is called the core of an exchange economy.

- A I I I A I I I I

General equilibrium analysis

• Core in the Edgeworth box: Every household (considered a one-man coalition) blocks any allocation that lies below the indifference curve cutting his endowment point.

General equilibrium analysis

- Core in the Edgeworth box: Every household (considered a one-man coalition) blocks any allocation that lies below the indifference curve cutting his endowment point.
- Therefore, the core is contained inside the exchange lense.

General equilibrium analysis

- Core in the Edgeworth box: Every household (considered a one-man coalition) blocks any allocation that lies below the indifference curve cutting his endowment point.
- Therefore, the core is contained inside the exchange lense.
- Both households together block any allocation that is not Pareto efficient.

General equilibrium analysis

- Core in the Edgeworth box: Every household (considered a one-man coalition) blocks any allocation that lies below the indifference curve cutting his endowment point.
- Therefore, the core is contained inside the exchange lense.
- Both households together block any allocation that is not Pareto efficient.
- Thus, the core is the intersection of the exchange lense and the contract curve.

General equilibrium analysis

Theorem

Assume an exchange economy \mathcal{E} with local non-satiation and weak monotonicity. Every Walras allocation lies in the core.

General equilibrium analysis

• Consider a Walras allocation $(\widehat{x}^i)_{i \in N}$. A lemma from above implies

 $\hat{\mathbf{n}} > 0$

where \hat{p} is the equilibrium price vector.

General equilibrium analysis

• Consider a Walras allocation $(\widehat{x}^i)_{i \in N}$. A lemma from above implies

 $\hat{p} >> 0$

where \hat{p} is the equilibrium price vector.

• Assume, now, that $(\widehat{x}^i)_{i\in N}$ does not lie in the core. Since a Walras allocation is feasible, there exists a coalition $S \subseteq N$ that can block $(\widehat{x}^i)_{i\in N}$. I.e., there is an allocation $(z^i)_{i\in N}$ such that

General equilibrium analysis

• Consider a Walras allocation $(\widehat{x}^i)_{i \in N}$. A lemma from above implies

 $\widehat{p} \geq 0$

where \hat{p} is the equilibrium price vector.

- Assume, now, that $(\hat{x}^i)_{i \in N}$ does not lie in the core. Since a Walras allocation is feasible, there exists a coalition $S \subseteq N$ that can block $(\hat{x}^i)_{i \in N}$. I.e., there is an allocation $(z^i)_{i \in N}$ such that
 - $U_{i}\left(z^{i}\right) \geq U_{i}\left(\widehat{x}^{i}\right)$ for all $i \in S$, $U_{i}\left(z^{i}\right) > U_{i}\left(\widehat{x}^{i}\right)$ for some $i \in S$ and

General equilibrium analysis

• Consider a Walras allocation $(\widehat{x}^i)_{i \in N}$. A lemma from above implies

$$\widehat{p} \stackrel{(1)}{>>} 0$$

where \hat{p} is the equilibrium price vector.

- Assume, now, that $(\widehat{x}^i)_{i\in N}$ does not lie in the core. Since a Walras allocation is feasible, there exists a coalition $S \subseteq N$ that can block $(\widehat{x}^i)_{i\in N}$. I.e., there is an allocation $(z^i)_{i\in N}$ such that
 - $U_i(z^i) \ge U_i(\widehat{x}^i)$ for all $i \in S$, $U_i(z^i) > U_i(\widehat{x}^i)$ for some $i \in S$ and • $\sum_{i \in S} z^i \le \sum_{i \in S} \omega^i$.

General equilibrium analysis

• The second point, together with (1), leads to the implication

$$\widehat{p} \cdot \left(\sum_{i \in S} z^i - \sum_{i \in S} \omega^i\right) \leq 0.$$

General equilibrium analysis

• The second point, together with (1), leads to the implication

$$\widehat{p} \cdot \left(\sum_{i \in S} z^i - \sum_{i \in S} \omega^i\right) \leq 0.$$

• The first point implies

$$\widehat{p} \cdot z^{i} \stackrel{(2)}{\geq} \widehat{p} \cdot \widehat{x}^{i} = \widehat{p} \cdot \omega^{i}$$
 for all $i \in S$ (by local nonsatiation) and
 $\widehat{p} \cdot z^{j} \stackrel{(3)}{>} \widehat{p} \cdot \widehat{x}^{j} = \widehat{p} \cdot \omega^{j}$ for some $j \in S$ (otherwise, \widehat{x}^{j} is not an optime

General equilibrium analysis

• Summing over all these households from S yields

$$\begin{split} \widehat{p} \cdot \sum_{i \in S} z^{i} &= \sum_{i \in S} \widehat{p} \cdot z^{i} \text{ (distributivity)} \\ &> \sum_{i \in S} \widehat{p} \cdot \omega^{i} \text{ (above inequalities (2) and (3))} \\ &= \widehat{p} \cdot \sum_{i \in S} \omega^{i} \text{ (distributivity).} \end{split}$$

General equilibrium analysis

• Summing over all these households from S yields

$$\begin{split} \widehat{p} \cdot \sum_{i \in S} z^{i} &= \sum_{i \in S} \widehat{p} \cdot z^{i} \text{ (distributivity)} \\ &> \sum_{i \in S} \widehat{p} \cdot \omega^{i} \text{ (above inequalities (2) and (3))} \\ &= \widehat{p} \cdot \sum_{i \in S} \omega^{i} \text{ (distributivity).} \end{split}$$

• This inequality can be rewritten as

$$\widehat{p} \cdot \left(\sum_{i \in S} z^i - \sum_{i \in S} \omega^i\right) > 0,$$

contradicting the inequality noted above.

General equilibrium analysis

 Example where a Walras allocation does not lie in the core: The lower-left agent's preferences violate non-satiation.

General equilibrium analysis

- Example where a Walras allocation does not lie in the core: The lower-left agent's preferences violate non-satiation.
- The equilibrium point is the point of tangency between that price line and the upper-right agent's indifference curve.

General equilibrium analysis

- Example where a Walras allocation does not lie in the core: The lower-left agent's preferences violate non-satiation.
- The equilibrium point is the point of tangency between that price line and the upper-right agent's indifference curve.
- This point is not Pareto-efficient. The lower-left agent could forego some units of both goods without harming himself.

Matching of

- employers and employees
- students and internships or
- men and women:

$$M = \{m_1, ..., m_k\}$$
, $W = \{w_1, ..., w_n\}$

with utility functions

 $U_m: W \cup \{m\} \to \mathbb{R}$

Problem

What does
$$U_{w_1}(m_1) > U_{w_1}(w_1) > U_{w_1}(m_2)$$
 mean?

Assumption: all the preferences are strict

Definition (marriage market)

A marriage market (M, W, \mathbf{U}) consists of disjunct sets of individuals M and W and utility functions $\mathbf{U} = (U_i)_{i \in M \cup W}$ with domain $W \cup \{m\}$ for every $m \in M$ and domain $M \cup \{w\}$ for every $w \in W$.

- the players themselves are the object of preferences, hence
- emotionality reigning in this market

The marriage market

allocations

Definition (allocation)

For a marriage market (M, W, \mathbf{U}) , the function

 $\mu: M \cup W \to M \cup W$

is called an allocation if the two requirements

•
$$\mu\left(m
ight)\in\left\{m
ight\}\cup W$$
 for all $m\in M$ and

•
$$\mu(w) \in \{w\} \cup M$$
 for all $w \in W$

are fulfilled.

Thus, men can be singles or attached to a woman

 $-\!\!\!\!-\!\!\!>$ Adam and Eve, not Adam and Steve.

Problem

Which players are characterized by $\mu(\mu(i)) = i$?

Harald Wiese (Chair of Microeconomics)

consistent allocations

Definition (consistent allocation)

For a marriage market (M, W, \mathbf{U}) , an allocation μ is called consistent if $\mu(\mu(i)) = i$ holds for all $i \in M \cup W$.

Single individuals i are defined by $\mu\left(i\right)=i$ and fulfull the consistency condition by

$$\mu\left(\mu\left(i\right)\right)=\mu\left(i\right)=i.$$

Assume a feasible allocation μ and a man $m \in M$ who is not single. By $\mu(m) \in \{m\} \cup W$, he is attached to a women $w \in W$ ($\mu(m) = w$). Consistency then implies

$$m = \mu \left(\mu \left(m \right) \right) = \mu \left(w \right)$$

so that the woman w is attached to the very same man – a marriage relation.

Harald Wiese (Chair of Microeconomics)

Definition

Consider a consistent allocation μ in a marriage market (M, W, \mathbf{U}) . μ is called K-feasible if $\mu(K) \subseteq K$ holds.

K-feasibility means that every individual from K is single or has a marriage partner in K. Similarly, a blocking coalition in an exchange economy can only redistribute goods this coalition possesses. Every consistent allocation μ is $M \cup W$ -feasible.

Very similar to the exchange economy, we can define the associated NTU coalition function V by

$$V(K)$$

: = $\left\{ u_{K} \in \mathbb{R}^{|K|} : \exists \text{ feasible allocation } \mu \text{ with } u_{i} \leq U_{i}(\mu(i)), i \in K \right\}.$

Definition (acceptability)

An agent *i* finds another individual *j* acceptable if $U_i(j) > U_i(i)$ holds.

 \longrightarrow nobody can be married against his (or her) will However, if

- I fancy Sandra Bullock but
- she prefers another man,

the underlying allocation may well be stable.

Definition (from individual rationality to the core)

Let μ be a consistent (or $M \cup W$ -feasible) allocation.

- µ is called individually rational if U_i (µ (i)) ≥ U_i (i) holds for all i ∈ N (non-blockability by one-man coalitions).
- μ is called pairwise rational if there is no pair of players $(m, w) \in M \times W$ such that

hold (non-blockability by heterosexual pairs).

Definition

• μ is called Pareto optimal if there is no consistent allocation μ' that fulfills

$$\begin{array}{rcl} U_i\left(\mu'\left(i\right)\right) & \geq & U_i\left(\mu\left(i\right)\right) \ \text{for all} \ i \in M \cup W \ \text{and} \\ U_j\left(\mu'\left(j\right)\right) & > & U_j\left(\mu\left(j\right)\right) \ \text{for at least one} \ j \in M \cup W \end{array}$$

(non-blockability by the grand coalition).

• μ lies in the core if there is not coalition $K \subseteq M \cup W$ and no K-feasible allocation μ' such that

$$\begin{array}{rcl} U_{i}\left(\mu'\left(i\right)\right) & \geq & U_{i}\left(\mu\left(i\right)\right) \ \text{for all} \ i \in K \ \text{and} \\ U_{j}\left(\mu'\left(j\right)\right) & > & U_{j}\left(\mu\left(j\right)\right) \ \text{for at least one} \ j \in K \end{array}$$

holds (non-blockability by any coalition).

Pairwise rationality: no man and no woman exist such that both can improve their lot by marrying

- breaking off existing marriages or
- giving up celibacy

Pareto optimality is defined with reference to feasibility and non-blockability by the grand coalition. *K*-feasibility —> $\mu'(K) \subseteq K$

- individual rationality: every $\{i\}$ -feasible allocation μ' obeys $\mu'(i) = i$
- pairwise rationality: the blocking coalition $\{m, w\}$ forms a pair.

Problem

What is the connection between individual rationality and acceptability?

Theorem

Let (M, W, \mathbf{U}) be a marriage market. The set of consistent allocations that are individually rational and pairwise rational is the core.

First part of the proof: A consistent allocation that is both individually and pairwise rational belongs to the core.

Assume a consistent allocation μ outside the core. Thus, there exists a coalition K that can block μ by suggesting a K-feasible allocation μ' that fulfills

$$\begin{array}{rcl} U_i\left(\mu'\left(i\right)\right) & \geq & U_i\left(\mu\left(i\right)\right) \ \text{for all} \ i \in K \ \text{and} \\ U_j\left(\mu'\left(j\right)\right) & > & U_j\left(\mu\left(j\right)\right) \ \text{for at least one} \ j \in K. \end{array}$$

$$\begin{array}{rcl} U_{i}\left(\mu'\left(i\right)\right) & \geq & U_{i}\left(\mu\left(i\right)\right) \ \text{for all} \ i \in K \ \text{and} \\ U_{j}\left(\mu'\left(j\right)\right) & > & U_{j}\left(\mu\left(j\right)\right) \ \text{for at least one} \ j \in K. \end{array}$$

Let us focus on individual j that is strictly better off under μ' than under $\mu.$ We can distinguish two cases:

- *j* is single or married under µ and (re)marries under µ'.
 In this case both *j* and his (or her) spouse µ' (*j*) ∈ K (!) are strictly better off because we work with strict preferences. Then µ is not pairwise rational.
- *j* is married under μ and single under μ'. This second case implies that *j* is better off as a single contadicting individual rationality.

Sketch budget lines or the displacements of budget lines for the following examples:

- Time T = 18 and money m = 50 for football F (good 1) or basket ball B (good 2) with prices
 - $p_F = 5$, $p_B = 10$ in monetary terms,
 - $t_F = 3$, $t_B = 2$ and temporary terms
- Two goods, bread (good 1) and other goods (good 2). Transfer in kind with and without probhibition to sell:

•
$$m = 300$$
, $p_B = 2$, $p_{other} = 1$

• Transfer in kind: B = 50