Towards an evolutionary cooperative game theory

Andre Casajus and Harald Wiese

March 2010

Andre Casajus and Harald Wiese () Towards an evolutionary cooperative game th

March 2010 1 / 32

Two game theories

- Noncooperative game theory
 strategy-oriented game theory
- Strategies, payoff functions
- Nash equilibrium

- Cooperative game theory
 payoff-oriented game theory
- Coalition functions
- Core, Shapley value

By evolutionary game theory, we normally understand evolutionary noncooperative game theory:

- Players are drawn at random from a large population.
- They are programmed to play a certain (mixed) strategy and
- the strategy that does better than other strategies grows faster
- i.e., more players use the successful strategies.

By evolutionary game theory, we normally understand evolutionary noncooperative game theory:

- Players are drawn at random from a large population.
- They are programmed to play a certain (mixed) strategy and
- the strategy that does better than other strategies grows faster
- i.e., more players use the successful strategies.

• How about an evolutionary cooperative game theory?

By evolutionary game theory, we normally understand evolutionary noncooperative game theory:

- Players are drawn at random from a large population.
- They are programmed to play a certain (mixed) strategy and
- the strategy that does better than other strategies grows faster
- i.e., more players use the successful strategies.

- How about an evolutionary cooperative game theory?
- John Nash received a grant from the NSF to develop a new 'evolutionary' solution concept for cooperative games.

Evolutionary cooperative game theory overview I

Idea: Agents are programmed to assume a certain player role.

- Agents' payoff —> fitness —> proliferation
- $\bullet \ \left(\textit{s}_{1} \left(0 \right) \textit{, ..., s}_{n} \left(0 \right) \right) \longrightarrow \mathsf{payoffs} \longrightarrow \left(\textit{s}_{1} \left(1 \right) \textit{, ..., s}_{n} \left(1 \right) \right) \longrightarrow$

Problem: $s_i(t)$ will not be natural numbers Solution:

- extended coalition function defined for coalitions $(s_{1}(t), ..., s_{n}(t))$
- we use the Lovasz extension v^{ℓ} $(u_{T}^{\ell}(s) = \min_{i \in T} s_{i})$

Problem: extensions cannot be an input for the (standard) Shapley value. Solution:

- continuous Shapley value introduced by Aumann and Shapley (1974)
- which uses derivatives

イロト イポト イヨト イヨト 二日

Evolutionary cooperative game theory overview II

Problem: Lovasz extensions v^{ℓ} are not differentiable Solution:

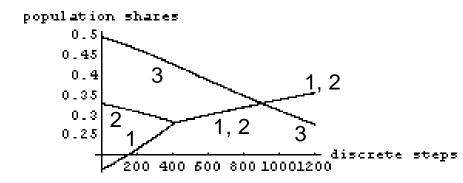
- approximation with differentiable functions
- leading to continuous Shapley payoffs and
- their limits that feed into
- a replicator dynamic = differential equation which is

Problem: not solvable by standard means Solution:

- consider discrete version of replicator dynamic,
- increase number of steps and decrease step length and
- let go towards infinity and zero, respectively.

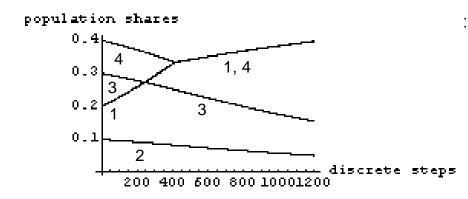
unanimity game for three players: the two productive players 1 and 2 win

2 time periods with step length $\frac{1}{600}$ $(x_1(0), x_2(0), x_3(0)) = \left(\frac{1}{6}, \frac{2}{6}, \frac{1}{2}\right) \rightarrow \left(\frac{1}{2}, \frac{1}{2}, 0\right)$



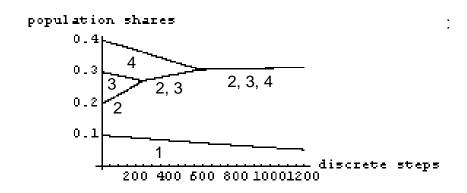
apex game: the apex player teams up with player 4

2 time periods with step length $\frac{1}{600}$ (x₁ (0), x₂ (0), x₃ (0), x₄ (0)) = $\left(\frac{2}{10}, \frac{1}{10}, \frac{3}{10}, \frac{4}{10}\right) \rightarrow \left(\frac{1}{2}, 0, 0, \frac{1}{2}\right)$



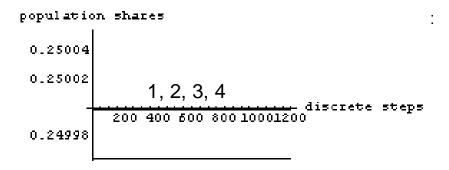
apex game: the three unimportant players trump the apex player

2 time periods with step length $\frac{1}{600}$ (x₁ (0), x₂ (0), x₃ (0), x₄ (0)) = $(\frac{1}{10}, \frac{2}{10}, \frac{3}{10}, \frac{4}{10}) \rightarrow (0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3})$



apex game with identical starting shares

2 time periods with step length $\frac{1}{600}$ (x₁ (0), x₂ (0), x₃ (0), x₄ (0)) = $(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}) \rightarrow (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$



And now the mathematical details

- Coalition functions as vectors
- Measuring agents
- The Lovasz extension and its approximation
- The continuous Shapley value
- The replicator dynamics

Payoff vectors

A payoff vector x for N is an element of \mathbb{R}^N or a function $N \to \mathbb{R}$. We define

•
$$\mathbb{R}_{+}^{N} := \{x \in \mathbb{R}^{N} : x_{i} \geq 0 \text{ for all } i \in N\}$$
,
• $\mathbb{R}_{++}^{N} := \{x \in \mathbb{R}^{N} : x_{i} > 0 \text{ for all } i \in N\}$,
• $\Delta := \Delta(N) := \{x \in \mathbb{R}_{+}^{N} : \sum x_{i} = 1\}$ and
• $int(\Delta) := int(\Delta(N)) = \{x \in \mathbb{R}_{++}^{N} : \sum x_{i} = 1\}$.

Agents and measures

intervals of agents

- $\mathbf{s} = (\mathbf{s}_1, ..., \mathbf{s}_n) \in \mathbb{R}^N_+$
- In case of $s \in \{0,1\}^N$, we identify s with the coalition

$$\mathbf{K}(s) := \{i \in \mathbf{N} : s_i = 1\}$$
.

- $\lambda = Lebesgues$ -Borel measure on ${\mathbb R}$
- Choose *n* non-intersecting intervals $I_i \subseteq \mathbb{R}$ with $\lambda(I_i) = s_i$
- $I := \bigcup_{i \in N} I_i$ = set of all agents
- $\mathcal{B} = \text{set of Borel sets of } I$
- μ_i^s defined by

$$\mu_{i}^{s}\left(K
ight) :=\lambda\left(K\cap I_{i}
ight)$$
 , $K\in\mathcal{B}$,

is a measure on (I, \mathcal{B}) .

• $\mu^{s} = \prod_{i \in \mathbb{N}} \mu^{s}_{i} : \mathcal{B} \to \mathbb{R}^{\mathbb{N}}, \ \mathcal{K} \mapsto (\mu^{s}_{i}(\mathcal{K}))_{i \in \mathbb{N}} = \text{Cartesian product of}$

these measures

 µ^s (K) distributes the agents in K among the n players (player types) and attributes a measure to each player.

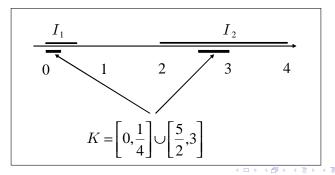
March 2010 12 / 32

Agents and measures

an example

•
$$N = \{1, 2\}$$

• $s = (\frac{1}{2}, 2)$ and intervals $I_1 = [0, \frac{1}{2}]$ and $I_2 = [2, 4]$.
• For $K := [0, \frac{1}{4}] \cup [\frac{5}{2}, 3] \in \mathcal{B}$ we obtain
 $\mu_1^s(K) = \lambda (K \cap I_1) = \lambda \left(\left[0, \frac{1}{4} \right] \right) = \frac{1}{4}$ and similarly for μ_2^s



March 2010 13 / 32

Lovasz extension

Approximation

 Let s₋ := min_T (s) := min_{i∈T} s_i be the minimum player size of the T-players and

• let $T_- := \{j \in N | s_j = s_-\}$ be the set of T-players with minimal size.

For $\emptyset \neq T \subseteq N$ and $m \in \mathbb{N}$, we define $u_T^{\ell,m} = \min_T^m : \mathbb{R}^N_+ \to \mathbb{R}$ by

$$\min_{T}^{m}(s) := \begin{cases} 0, & s_{-} = 0\\ \frac{|T|^{\frac{1}{m}}}{\left(\sum_{i \in T} \frac{1}{s_{i}^{m}}\right)^{\frac{1}{m}}}, & \text{else.} \end{cases}$$

 $s \in \mathbb{R}^{N}_{+}$, and have

$$\lim_{m\to\infty}\min_T^m(s)=\min_T(s)$$

Define $v^{\ell,m}$ by

$$v^{\ell,m}\left(s
ight):=\sum_{arnothing
eq T\subseteq N}m_{v}\left(T
ight)\cdot\min_{T}^{m}\left(s
ight),\qquad m\in\mathbb{N}$$

Vector measure games

In our setting, vector measures games are given by

$$\begin{array}{ll} v^{\ell,s} & : & = v^{\ell} \circ \mu^{s} : \mathcal{B} \to \mathbb{R} \text{ and} \\ v^{\ell,m,s} & : & = v^{\ell,m} \circ \mu^{s} : \mathcal{B} \to \mathbb{R} \end{array}$$

Given a coalition $K \in \mathcal{B}$,

- $\mu^{s}(K)$ specifies how to devide K among the n groups and how to measure these subgroups.
- v^l or v^{l,m} then yield the worth in accordance with the underlying TU game v.

Shapley value for vector measure games

Aumann/Shapley 1974 (Theorem B) = diagonal formula: Let $K \in B$ be any continuous coalition of agents. They receive

Sh
$$v^{\ell,m,s}\left(\mathcal{K}\right) = \sum_{j=1}^{n} \mu_{j}^{s}\left(\mathcal{K}\right) \int_{0}^{1} \left. \frac{\partial v^{\ell,m}}{\partial s_{j}} \right|_{\tau s} d\tau$$

• Aanalogue of player j's marginal contribution in the discrete Shapley formula

= derivative of the coalition's worth with respect to the measure of agents of player j.

- Evaluation at $\tau s = (\tau s_1, ..., \tau s_n)$ (diagonal formula):
 - Draw a subset of agents by chance.
 - More likely than not, the composition in this subset (how many agents of player 1, player 2 etc.) will not deviate much from the composition in the overall population.

Shapley value for the agents of player i

Lemma

We have

Sh
$$u_{T}^{\ell,m,s}(I_{i}) = \begin{cases} 0, & i \notin T \\ 0, & s_{-} = 0 \\ |T|^{\frac{1}{m}} s_{i}^{-m} \left(\sum_{j \in T} s_{j}^{-m}\right)^{-\frac{m+1}{m}}, & i \in T \text{ and } s_{-} \neq 0 \end{cases}$$

and

$$\operatorname{Sh} u_{T}^{\ell,s}\left(I_{i}\right) := \lim_{m \to \infty} \operatorname{Sh} u_{T}^{\ell,m,s}\left(I_{i}\right) = \begin{cases} \frac{s_{-}}{|\mathcal{T}_{-}|}, & i \in \mathcal{T}_{-}, s_{-} \neq 0\\ 0, & otherwise \end{cases}$$

Definition

The averge payoff accruing to agents from I_i is also called agent *i*'s payoff and is given by $\operatorname{Sh}_i(v^{\ell,s}) := \frac{\operatorname{Sh} v^{\ell,s}(I_i)}{s_i}$.

Shapley value for the agents of player i example apex game

$$\left(\begin{array}{c} \operatorname{Sh}_1\left(h^{\ell,s}\right), \ \operatorname{Sh}_2\left(h^{\ell,s}\right), \ \operatorname{Sh}_3\left(h^{\ell,s}\right), \ \operatorname{Sh}_4\left(h^{\ell,s}\right) \right) \\ \left(\begin{array}{c} \left(0,1,0,0\right), \ s_1 < s_2 < s_3 < s_4 \\ \left(0,\frac{1}{2},\frac{1}{2},0\right) \ s_1 < s_2 = s_3 < s_4 \\ \left(0,\frac{1}{3},\frac{1}{3},\frac{1}{3}\right) \ s_1 < s_2 = s_3 = s_4 \\ \left(\frac{1}{2},\frac{1}{2},0,0\right) \ s_1 = s_2 < s_3 < s_4 \\ \left(\frac{2}{3},\frac{1}{6},\frac{1}{6},0\right) \ s_1 = s_2 = s_3 < s_4 \\ \left(\frac{2}{3},\frac{1}{6},\frac{1}{6},0\right) \ s_1 = s_2 < s_3 < s_4 \\ \cdots \\ \left(0,0,0,1\right) \ s_2 < s_3 < s_4 < s_1 \\ \left(0,\frac{1}{3},\frac{1}{3},\frac{1}{3}\right) \ s_2 = s_3 = s_4 < s_1 \\ \left(0,0,0,1\right) \ s_2 = s_3 < s_4 < s_1 \\ \left(0,0,0,1\right) \ s_2 = s_3 < s_4 < s_1 \end{array} \right)$$

(日) (同) (三) (三)

Replicator dynamics

- the agents' Shapley payoffs = fitness
- a constant birthrate β
- ullet a constant death rate δ

—> evolution of s_i is defined by

$$\dot{s}_i = \left[\beta + \operatorname{Sh}_i\left(v^{\ell,s}\right) - \delta\right]s_i.$$

In terms of population shares

$$x_i := rac{s_i}{\sum_{j=1}^n s_j}$$

we obtain the replicator dynamics

$$\dot{x}_{i} = \left(\operatorname{Sh}_{i} \left(v^{\ell,s} \right) - \sum_{j=1}^{n} \operatorname{Sh}_{j} \left(v^{\ell,s} \right) x_{j} \right) x_{i}$$

Existence not guaranteed by standard methods. Therefore:

$$x_{i}(t) = x_{i}(t-1) + x_{i}(t-1) \left[\operatorname{Sh}_{i}\left(v^{\ell,x(t-1)}\right) - \sum_{j=1}^{n} \operatorname{Sh}_{j}\left(v^{\ell,x(t-1)}\right) x_{j} \right]$$

In order to smooth out the solution orbit, we introduce a (very small) step length $\sigma > 0$ and work with the replicator dynamics

$$x_{i}(t) = x_{i}(t-1) + x_{i}(t-1)\sigma\left[Sh_{i}\left(v^{\ell,x(t-1)}\right) - \sum_{j=1}^{n}Sh_{j}\left(v^{\ell,x(t-1)}\right)x_{j}\right],$$

In a continuous case, σ would affect the velocity of change but not the solution orbit.

from discrete to continuous I

We use the formula

number of time periods = number of steps times step length

Definition

The Euler replicator dynamic for T time periods is defined by the discrete replicator dynamics obeying $0 \le t \le S$, $\sigma = \frac{T}{S}$ and $S \to \infty$.

Definition

A vector of population shares $\hat{x} = (\hat{x}_1, ..., \hat{x}_n) \in \Delta$ is a steady state if there exists a population share vector $x(0) = (x_1(0), ..., x_n(0)) \in \Delta$ such that the Euler replicator dynamics yields

$$\lim_{T\to\infty}x_i(t)=\hat{x}_i$$

for all i = 1, ..., n.

Definition

A steady state $\hat{x} = (\hat{x}_1, ..., \hat{x}_n)$ is called asymptotically stable if there exists some $\varepsilon > 0$ such that for all population vectors x(0) obeying $\|x(0) - \hat{x}\|_2 < \varepsilon$ we have

$$\lim_{t\to\infty}x(t)=\hat{x}.$$

Definition

Player $i \in N$ strictly dominates player $j \in N$ if $v(K \cup \{i\}) > v(K \cup \{j\})$ holds for all $K \subseteq N \setminus \{i, j\}$.

Example:
$$\mathit{N}=\{1,2\}$$
 , $\mathit{v}\left(1
ight)=1$, $\mathit{v}\left(2
ight)=0$ and $\mathit{v}\left(1,2
ight)=3$:

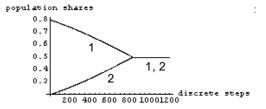


Figure: Player 2 is dominated but does not vanish.

Simple games

• A game $v \in V(N)$ is called simple if it is

- monotonic,
- obeys v(K) = 0 or v(K) = 1 for every coalition $K \subseteq N$ and
- v(N) = 1.
- ullet Set of minimal winning coalitions ${\mathbb M}$
- Examples: Unanimity games, apex games, contradictory games (where there is a coalition K such that both K and $N \setminus K$ are winning coalitions)

Simple games

Lovasz extension and derived simple game

• For
$$s \in \mathbb{R}^N_+$$
, we have

$$v^{\ell}\left(s
ight)=\max_{K\in\mathbb{M}}\min_{i\in K}s_{i}.$$

where the arguments are

- $\bullet \ \mathbb{M}^{\mathsf{max}\,\mathsf{min}} \subseteq \mathbb{M}$ and
- $N^{\max\min} \subseteq N$.

• Given \mathbb{M} and s, we define the derived simple game $v(\mathbb{M}, s)$

- on the player set N^{max min}
- by specifying: $W \subseteq N^{\max \min}$ is a winning coalition if there exists a coalition $K \in \mathbb{M}^{\max \min}$ s.t. $W = K \cap N^{\max \min}$

March 2010 25 / 32

Simple games An agent's Shapley payoff = his player's Shapley payoff in derived game

- $v \in V(N) \longrightarrow v(\mathbb{M}, s)$ derived simple game
- The agents' Shapley values for players $i \in N$ are given by

$$\mathrm{Sh}_{i}\left(\mathbf{v}^{\ell,s}
ight)=\left\{egin{array}{cc} \mathrm{Sh}_{i}\left(\mathbf{v}\left(\mathbb{M},s
ight)
ight), & i\in \mathit{N}^{\max\min}\ 0, & ext{otherwise} \end{array}
ight.$$

- Thus, in a simple game, a player obtains a non-zero payoff zero if and only if
 - he belongs to minimal winning coalition,
 - his size is minimal within at least one minimal winning coalition, and
 - this minimal size is at least as large as the minimal sizes found in any other winning coalition.

- $v \in V(N)$ simple game with \mathbb{M} .
- Asymptotically stable states x̂ = (x̂₁, ..., x̂_n) are characterized by minimal wining coalitions W ∈ M and

$$\hat{x}_i = \left\{ egin{array}{cc} rac{1}{|W|}, & i \in W \ 0, & ext{otherwise} \end{array}
ight.$$

• Example: apex game

ENGT's basic model:

- pairwise contests
- monomorphic population playing a symmetric game
- selection of equilibrium strategies

ECGT' basic model (as presented here):

- playing the field and
- polymorphic
- selection of players and coalitions

In our model, the agents' shares change. Alternatively, players themselves could grow:

- Depending on their profits, firms grow in an organic fashion (rather than grow by mergers and acquisitions).
- Filar and Petrosjan (2000) present dynamic cooperative games where they define a sequence of games (in discrete or in continuous time) so that one TU game is determined
 - by the previous one and
 - by the payoffs achieved under some solution concept.

Conclusions

Future work

Selection = evolution for a given set of parameters Mutation = change of parameters

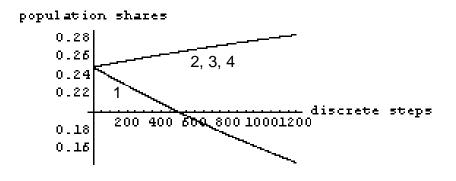
- We may consider small changes of the coalition function v.
- Other players could be added with very small sizes such that the worths for the other players stays the same for a zero size of the new arrival.

apex game with nearly identical starting shares

2 time periods with step length
$$\frac{1}{600}$$

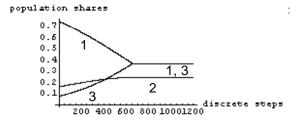
 $(x_1 (0), x_2 (0), x_3 (0), x_4 (0)) = (\frac{1}{4} + \varepsilon, \frac{1}{4} - \frac{\varepsilon}{3}, \frac{1}{4} - \frac{\varepsilon}{3}, \frac{1}{4} - \frac{\varepsilon}{3})$
 $\rightarrow (0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3})$
discreteness problem!

ŀ



Two different non-zero shares

Consider
$$N = \{1, 2, 3\}, v \in V(N)$$
 given by
• $v(1) = v(2) = v(3) = 0$,
• $v(1, 3) = 2$,
• $v(1, 2) = v(2, 3) = 1$ and
• $v(1, 2, 3) = 3$.



▶ < ≣ ▶ 불 ∽ ९ ୯ March 2010 32 / 32

-

- 一司