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Two game theories

Noncooperative game theory
= strategy-oriented game theory

Strategies, payo¤ functions

Nash equilibrium

Cooperative game theory
= payo¤-oriented game theory

Coalition functions

Core, Shapley value
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Two game theories
but only one evolutionary game theory

By evolutionary game theory, we normally understand
evolutionary noncooperative game theory:

Players are drawn at random from a large population.
They are programmed to play a certain (mixed) strategy and
the strategy that does better than other strategies grows faster

i.e., more players use the successful strategies.

How about an evolutionary cooperative game theory?
John Nash received a grant from the NSF to develop a new
�evolutionary�solution concept for cooperative games.
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Evolutionary cooperative game theory
overview I

Idea: Agents are programmed to assume a certain player role.

Agents�payo¤ � > �tness � > proliferation

(s1 (0) , ..., sn (0)) � > payo¤s � > (s1 (1) , ..., sn (1)) � >

Problem: si (t) will not be natural numbers
Solution:

extended coalition function de�ned for coalitions (s1 (t) , ..., sn (t))

we use the Lovasz extension v ` (u`T (s) = mini2T si )

Problem: extensions cannot be an input for the (standard) Shapley value.
Solution:

continuous Shapley value introduced by Aumann and Shapley (1974)

which uses derivatives
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Evolutionary cooperative game theory
overview II

Problem: Lovasz extensions v ` are not di¤erentiable
Solution:

approximation with di¤erentiable functions

leading to continuous Shapley payo¤s and

their limits that feed into

a replicator dynamic = di¤erential equation which is

Problem: not solvable by standard means
Solution:

consider discrete version of replicator dynamic,

increase number of steps and decrease step length and

let go towards in�nity and zero, respectively.
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Results
unanimity game for three players: the two productive players 1 and 2 win

2 time periods with step length 1
600

(x1 (0) , x2 (0) , x3 (0)) =
� 1
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2
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1
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1
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Results
apex game: the apex player teams up with player 4

2 time periods with step length 1
600
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Results
apex game: the three unimportant players trump the apex player

2 time periods with step length 1
600

(x1 (0) , x2 (0) , x3 (0) , x4 (0)) =
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Results
apex game with identical starting shares

2 time periods with step length 1
600

(x1 (0) , x2 (0) , x3 (0) , x4 (0)) =
� 1
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And now the mathematical details

Coalition functions as vectors

Measuring agents

The Lovasz extension and its approximation

The continuous Shapley value

The replicator dynamics
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Payo¤ vectors

A payo¤ vector x for N is an element of RN or a function N ! R. We
de�ne

RN
+ :=

�
x 2 RN : xi � 0 for all i 2 N

	
,

RN
++ :=

�
x 2 RN : xi > 0 for all i 2 N

	
,

∆ := ∆ (N) :=
�
x 2 RN

+ : ∑ xi = 1
	
and

int (∆) := int (∆ (N)) =
�
x 2 RN

++ : ∑ xi = 1
	
.
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Agents and measures
intervals of agents

s = (s1, ..., sn) 2 RN
+

In case of s 2 f0, 1gN , we identify s with the coalition
K (s) := fi 2 N : si = 1g .

λ = Lebesgues-Borel measure on R

Choose n non-intersecting intervals Ii � R with λ (Ii ) = si
I := [i2N Ii = set of all agents
B = set of Borel sets of I
µsi de�ned by

µsi (K ) := λ (K \ Ii ) ,K 2 B,
is a measure on (I ,B).
µs = ∏

i2N
µsi : B ! RN , K 7! (µsi (K ))i2N = Cartesian product of

these measures
µs (K ) distributes the agents in K among the n players (player types)
and attributes a measure to each player.
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Agents and measures
an example

N = f1, 2g
s =

� 1
2 , 2
�
and intervals I1 =

�
0, 12
�
and I2 = [2, 4] .

For K :=
�
0, 14
�
[
� 5
2 , 3
�
2 B we obtain

µs1 (K ) = λ (K \ I1) = λ

��
0,
1
4

��
=
1
4
and similarly for µs2





∪
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Lovasz extension
Approximation

Let s� := minT (s) := mini2T si be the minimum player size of the
T -players and
let T� := fj 2 N jsj = s�g be the set of T -players with minimal size.

For ∅ 6= T � N and m 2 N, we de�ne u`,mT = minmT : RN
+ ! R by

minmT (s) :=

8><>:
0, s� = 0

jT j
1
m�

∑i2T
1
smi

� 1
m
, else.

s 2 RN
+, and have

lim
m!∞

minmT (s) = minT (s)

De�ne v `,m by

v `,m (s) := ∑
∅ 6=T�N

mv (T ) �minmT (s) , m 2 N
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Vector measure games

In our setting, vector measures games are given by

v `,s : = v ` � µs : B ! R and

v `,m,s : = v `,m � µs : B ! R

Given a coalition K 2 B,
µs (K ) speci�es how to devide K among the n groups and how to
measure these subgroups.

v ` or v `,m then yield the worth in accordance with the underlying TU
game v .
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Shapley value for vector measure games

Aumann/Shapley 1974 (Theorem B) = diagonal formula:
Let K 2 B be any continuous coalition of agents. They receive

Sh v `,m,s (K ) =
n

∑
j=1

µsj (K )
Z 1

0

∂v `,m

∂sj

����
τs
dτ

Aanalogue of player j�s marginal contribution in the discrete Shapley
formula
= derivative of the coalition�s worth with respect to the measure of
agents of player j .

Evaluation at τs = (τs1, ..., τsn) (diagonal formula):

Draw a subset of agents by chance.
More likely than not, the composition in this subset (how many agents
of player 1, player 2 etc.) will not deviate much from the composition
in the overall population.
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Shapley value for the agents of player i

Lemma
We have

Sh u`,m,sT (Ii ) =

8><>:
0, i /2 T
0, s� = 0

jT j
1
m s�mi

�
∑j2T s

�m
j

��m+1
m
, i 2 T and s� 6= 0

and

Sh u`,sT (Ii ) := lim
m!∞

Sh u`,m,sT (Ii ) =

(
s�
jT�j , i 2 T�, s� 6= 0
0, otherwise

De�nition
The averge payo¤ accruing to agents from Ii is also called agent i�s payo¤

and is given by Sh i
�
v `,s
�

:= Sh v `,s (Ii )
si

.
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Shapley value for the agents of player i
example apex game

�
Sh 1

�
h`,s
�
, Sh 2

�
h`,s
�
, Sh 3

�
h`,s
�
, Sh 4

�
h`,s
��

=

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

(0, 1, 0, 0) , s1 < s2 < s3 < s4�
0, 12 ,

1
2 , 0
�

s1 < s2 = s3 < s4�
0, 13 ,

1
3 ,
1
3

�
s1 < s2 = s3 = s4� 1

2 ,
1
2 , 0, 0

�
s1 = s2 < s3 < s4� 2

3 ,
1
6 ,
1
6 , 0
�
s1 = s2 = s3 < s4

...
(0, 0, 0, 1) s2 < s3 < s4 < s1�
0, 0, 12 ,

1
2

�
s2 < s3 = s4 < s1�

0, 13 ,
1
3 ,
1
3

�
s2 = s3 = s4 < s1

(0, 0, 0, 1) s2 = s3 < s4 < s1
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Replicator dynamics

the agents�Shapley payo¤s = �tness
a constant birthrate β

a constant death rate δ

� > evolution of si is de�ned by

ṡi =
h

β+ Sh i

�
v `,s
�
� δ
i
si .

In terms of population shares

xi :=
si

∑n
j=1 sj

we obtain the replicator dynamics

ẋi =

 
Sh i

�
v `,s
�
�

n

∑
j=1

Sh j

�
v `,s
�
xj

!
xi
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Replicator dynamics
from discrete to continuous I

Existence not guaranteed by standard methods. Therefore:

xi (t) = xi (t � 1) + xi (t � 1)
"

Sh i

�
v `,x (t�1)

�
�

n

∑
j=1

Sh j

�
v `,x (t�1)

�
xj

#

In order to smooth out the solution orbit, we introduce a (very small) step
length σ > 0 and work with the replicator dynamics

xi (t) = xi (t � 1)+ xi (t � 1) σ

"
Sh i

�
v `,x (t�1)

�
�

n

∑
j=1

Sh j

�
v `,x (t�1)

�
xj

#
, t � 1

In a continuous case, σ would a¤ect the velocity of change but not the
solution orbit.
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Replicator dynamics
from discrete to continuous I

We use the formula

number of time periods = number of steps times step length

De�nition
The Euler replicator dynamic for T time periods is de�ned by the discrete
replicator dynamics obeying 0 � t � S , σ = T

S and S ! ∞.
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Steady states, asymptotic stability

De�nition
A vector of population shares x̂ = (x̂1, ..., x̂n) 2 ∆ is a steady state if there
exists a population share vector x (0) = (x1 (0) , ..., xn (0)) 2 ∆ such that
the Euler replicator dynamics yields

lim
T!∞

xi (t) = x̂i

for all i = 1, ..., n.

De�nition
A steady state x̂ = (x̂1, ..., x̂n) is called asymptotically stable if there exists
some ε > 0 such that for all population vectors x (0) obeying
kx (0)� x̂k2 < ε we have

lim
T!∞

x (t) = x̂ .
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Negative results
Dominant players need not vanish

De�nition
Player i 2 N strictly dominates player j 2 N if v (K[ fig) > v (K[ fjg)
holds for all K � Nn fi , jg.

Example: N = f1, 2g , v (1) = 1, v (2) = 0 and v (1, 2) = 3 :

1

2
1, 2

Figure: Player 2 is dominated but does not vanish.
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Simple games
De�nition

A game v 2 V (N) is called simple if it is
monotonic,
obeys v (K ) = 0 or v (K ) = 1 for every coalition K � N and
v (N) = 1.

Set of minimal winning coalitions M

Examples: Unanimity games, apex games, contradictory games
(where there is a coalition K such that both K and NnK are winning
coalitions)
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Simple games
Lovasz extension and derived simple game

For s 2 RN
+, we have

v ` (s) = max
K2M

min
i2K

si .

where the arguments are

Mmaxmin � M and
Nmaxmin � N.

Given M and s, we de�ne the derived simple game v (M, s)

on the player set Nmaxmin

by specifying:
W � Nmaxmin is a winning coalition if there exists a coalition
K 2 Mmaxmin s.t. W = K \Nmaxmin
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Simple games
An agent�s Shapley payo¤ = his player�s Shapley payo¤ in derived game

v 2 V (N) � > v (M, s) derived simple game

The agents�Shapley values for players i 2 N are given by

Sh i

�
v `,s
�
=

�
Sh i (v (M, s)) , i 2 Nmaxmin
0, otherwise

,

Thus, in a simple game, a player obtains a non-zero payo¤ zero if and
only if

he belongs to minimal winning coalition,
his size is minimal within at least one minimal winning coalition, and
this minimal size is at least as large as the minimal sizes found in any
other winning coalition.
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Simple games
Characterization of asymptotically stable states

v 2 V (N) simple game with M.

Asymptotically stable states x̂ = (x̂1, ..., x̂n) are characterized by
minimal wining coalitions W 2 M and

x̂i =

(
1
jW j , i 2 W
0, otherwise

Example: apex game
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Conclusions
Interpretation and application

ENGT�s basic model:

pairwise contests

monomorphic population playing a symmetric game

selection of equilibrium strategies

ECGT�basic model (as presented here):

playing the �eld and

polymorphic

selection of players and coalitions
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Conclusions
Filar and Petrosjan�s dynamic cooperative games

In our model, the agents�shares change.
Alternatively, players themselves could grow:

Depending on their pro�ts, �rms grow in an organic fashion (rather
than grow by mergers and acquisitions).

Filar and Petrosjan (2000) present dynamic cooperative games where
they de�ne a sequence of games (in discrete or in continuous time) so
that one TU game is determined

by the previous one and
by the payo¤s achieved under some solution concept.
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Conclusions
Future work

Selection = evolution for a given set of parameters
Mutation = change of parameters

We may consider small changes of the coalition function v .

Other players could be added with very small sizes such that the
worths for the other players stays the same for a zero size of the new
arrival.
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Results
apex game with nearly identical starting shares

2 time periods with step length 1
600

(x1 (0) , x2 (0) , x3 (0) , x4 (0)) =
� 1
4 + ε, 14 �

ε
3 ,
1
4 �

ε
3 ,
1
4 �

ε
3

�
!
�
0, 13 ,

1
3 ,
1
3

�
discreteness problem!

2, 3, 4

1
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Two di¤erent non-zero shares

Consider N = f1, 2, 3g, v 2 V (N) given by
v (1) = v (2) = v (3) = 0,
v (1, 3) = 2,
v (1, 2) = v (2, 3) = 1 and
v (1, 2, 3) = 3.

1

23

1, 3
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