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Introduction

Solow-type model with two new features:

the population of worker-capitalists is divided in m groups which
di¤er in s, δ, n, and k0
non-constant returns

� >
Problem: marginal-product payments do not exhaust the product
Solution: continuous Shapley value introduced by Aumann and Shapley
(1974)
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The population and its structure I

not n players but by m intervals of workers
~L = (L1, ..., Lm) 2 Rm

+ where Li
λ = Lebesgues-Borel measure on R

m intervals Ii � R, such that λ (Ii ) = Li holds for every i = 1, ...,m

I := [mi=1Ii = set of all workers with cardinality L := ∑m
i=1 Li = λ (I )

B = set of Borel sets of I
de�ne µ

~L
i by µ

~L
i (K ) := λ (K \ Ii ) ,K 2 B

µ
~L
i is a measure on (I ,B)

µ
~L = ∏

i2N
µ
~L
i : B ! RN , K 7!

�
µ
~L
i (K )

�
i2N

= Cartesian product of

these measures
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The population and its structure II

~L =
� 1
2 , 2
�
and intervals I1 =

�
0, 12
�
and I2 = [2, 4] . For

K :=
�
0, 14
�
[
� 5
2 , 3
�
2 B we obtain

µ1 (K ) = λ (K \ I1) = λ

��
0,
1
4

��
=
1
4
and

µ2 (K ) = λ (K \ I2) = λ

��
5
2
, 3
��

=
1
2
.
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Factors of production and production function

ki = amount of capital owned by a worker of group i
Thus,

Ki : = kiLi for group i , and

K : =
m

∑
i=1
kiLi for all groups together.

de�ne

g = (gK , gL) : Rm
+ ! R2,

(L1, ..., Lm) 7!
 

m

∑
i=1
kiLi ,

m

∑
i=1
Li

!
,

For a production function Y = F (K , L),

F � g : Rm
+ ! R,

(L1, ..., Lm) 7! F (gK (L1, ..., Lm) , gL (L1, ..., Lm))

yields the output producible by the m groups of size L1, ..., Lm .
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Vector measure game and Shapley value I

Vector measure game

v := F � g � µ : B ! R

Given a coalition S 2 B,
µ (S) speci�es how to devide S among the m groups,

g shows the labor and capital available to all those groups and

F yields the product.
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Vector measure game and Shapley value II

If F is continuously di¤erentiable, so is F � g .
If F (0, 0) = 0, we also have (F � g) (0) = 0.

Assume these two properties. Then, we can apply the continuous Shapley
value as proposed by Aumann and Shapley (1974).
For S 2 B, it is given by

Sh (v) (S) =
m

∑
j=1

µj (S)
Z 1

0

∂ (F � g)
∂Lj

����
(τµ1(I ),...,τµm (I ))

dτ

=
m

∑
j=1

λ (S \ Ij )
Z 1

0

∂ (F � g)
∂Lj

����
(τL1,...,τLm )

dτ.

Diagonal formula!
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Vector measure game and Shapley value III

From the previous chapter, we know

∂F
∂gK

����
(τK ,τL)

= τd�1
∂F
∂gK

����
(K ,L)

Therefore, we can write the derivative ∂(F �g )
∂Lj

���
(τL1,...,τLm )

dτ as

∂F
∂gK

����
(gK (τL1,...,τLm ),gL(τL1,...,τLm ))

∂gK
∂Li

����
(τL1,...,τLm )

+
∂F
∂gL

����
(gK (τL1,...,τLm ),gL(τL1,...,τLm ))

∂gL
∂Li

����
(τL1,...,τLm )

=
∂F
∂gK

����
(τ ∑m

j=1 kjLj ,τ ∑m
j=1 Lj)

ki +
∂F
∂gL

����
(τ ∑m

j=1 kjLj ,τ ∑m
j=1 Lj)

= τd�1
∂F
∂gK

����
(∑m

j=1 kjLj ,∑
m
j=1 Lj)

ki + τd�1
∂F
∂gL

����
(∑m

j=1 kjLj ,∑
m
j=1 Lj)

= τd�1
"

∂F
∂gK

����
(K ,L)

ki +
∂F
∂gL

����
(K ,L)

#
.
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Vector measure game and Shapley value IV

Finally, we calculate the integralZ 1

0
τd�1dτ =

1
d

τd
����1
0
=
1
d
.

Now, for S := Ii , we �nd

Sh (v) (Ii )
Li

=
1
Li

m

∑
j=1

λ (Ii \ Ij )
Z 1

0

∂ (F � g)
∂Lj

����
(τL1,...,τLm )

dτ

=
Z 1

0
τd�1

"
∂F
∂gK

����
(K ,L)

ki +
∂F
∂gL

����
(K ,L)

#
dτ

=

"
∂F
∂gK

����
(K ,L)

ki +
∂F
∂gL

����
(K ,L)

# Z 1

0
τd�1dτ

=

"
∂F
∂gK

����
(K ,L)

ki +
∂F
∂gL

����
(K ,L)

#
1
d
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Vector measure game and Shapley value V

Special case

Y = F (K , L) = K αLβ, 0 < α, β

homogeneous of degree d := α+ β
vector measure game given by

v (S) =

 
m

∑
i=1
kiλ (S \ Ii )

!α

(λ (S))β ,

and the Shapley value for group i

Yi : = Sh (v) (Ii )

= Li

"
∂F
∂gK

����
(K ,L)

ki +
∂F
∂gL

����
(K ,L)

#
1

α+ β

= Li

�
α

α+ β
K α�1Lβki +

β

α+ β
K αLβ�1

�
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Vector measure game and Shapley value VI

Problem
Simplify

Yi = Li

�
α

α+ β
K α�1Lβki +

β

α+ β
K αLβ�1

�
for the one-group case (m = 1, dropping the i-index) and comment!
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Labor and capital immigration I

De�nition
We have labor immigration into an economy if Lm+1 > 0 and km+1 = 0
hold. We have capital immigration (capital imports) into an economy if
Lm+1 = 0, km+1 > 0 hold.

De�nition
Group i = 1, ...,m is said to be welcoming towards labor (capital)
immigration if dYidL > 0 (

dYi
dK > 0) holds.
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Labor and capital immigration II

Theorem
Considering immigration at time into an economy, we �nd:

Group i bene�ts from labor immigration in case of

ki >
1� β

α

K
L
.

ki = K
L � > group i welcomes labor immigration i¤ increasing returns

to scale hold
d = 1 � > more-than-average capital-rich groups welcome labor
immigration
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Labor and capital immigration III

Theorem
Group i bene�ts from capital immigration in case of

K
L
>
1� α

β
ki .

ki = K
L � > group i welcomes capital immigration i¤ increasing

returns to scale hold
d = 1 � > more-than-average capital-rich groups oppose capital
immigration

Increasing returns to scale are a necessary condition for any group to
be welcoming to both capital and labor.
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Dynamics of per-head capital endowment I

Taking depreciation into account, the capital stock of group i develops in
accordance with

d (Litkit )
dt

=
dKit
dt

= siYit � δiKit

= siLit

�
α

α+ β
K α�1
t Lβ

t kit +
β

α+ β
K α
t L

β�1
t

�
� δiLitkit .

and we obtain

�
kit
kit
= si

"
α

α+ β

Lβ
t

K 1�α
t

+
β

α+ β

K α
t

L1�β
t

� 1
kit

#
� (δi + ni ) .

m = 1 � >
�
kt
kt
= s Lβ

t
K 1�α
t
� (δ+ n) and

α+ β = 1 � >
�
kt
kt
= s

k 1�α
t
� (δ+ n)
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Dynamics of per-head capital endowment II

Which of two groups i and j grows faster?

�
kit
kit
�

�
kjt
kjt

= (si � sj )
α

α+ β

Lβ
t

K 1�α
t

+

�
si
kit
� sj
kjt

�
β

α+ β

K α
t

L1�β
t

� (δi + ni ) + (δj + nj )

Convergence in the special case: n := ni = nj , δ := δi = δj , s := si = sj
� >

�
kit
kit
�

�
kjt
kjt
=

�
s
kit
� s
kjt

�
β

α+ β

K α
t

L1�β
t
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The steady state for a one-group economy I

Noting

Lβ

K 1�α
=

(L0ent )
β

(L0entk)
1�α =

(L0ent )
β

(L0ent )
1�α k1�α

= Lα+b�1
0

(ent )α+β�1

k1�α

= Lα+b�1
0

e(α+β�1)nt

k1�α
,

normalizing L0 = 1 , we can work with

�
k
k
= s

e(α+β�1)nt

k1�α
� (δ+ n)
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The steady state for a one-group economy II

If (!) a steady state exists, we �nd

0 =
∂
�
k
k

∂t
=

∂
�
se (α+β�1)nt

k 1�α � (δ+ n)
�

∂t

=
se(α+β�1)nt (α+ β� 1) n � k1�α � (1� α) k�α

�
k � se(α+β�1)nt

k2(1�α)
,

hence �
kc

kc
=

α+ β� 1
1� α

n (c=candidate).

� >
se(α+β�1)nt

k1�α
� (δ+ n) = α+ β� 1

1� α
n
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The steady state for a one-group economy III

... candidate equilibrium path

kc =

 
se(α+β�1)nt

(α+β�1)n
1�α + (δ+ n)

! 1
1�α

.

with growth rate

d

 
se(α+β�1)nt

(α+β�1)n
1�α +(δ+n)

! 1
1�α

dt�
se (α+β�1)nt

(α+β�1)n
1�α +(δ+n)

� 1
1�α

=
α+ β� 1
1� α

n (!)

� > k� := kc
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The steady state for a one-group economy IV

constant returns to scale � > growth rate 0

increasing returns to scale � > per-head capital endowment grows at
a constant rate

decreasing returns � > per-head capital endowment grows at a
constant shrinks

both growth and shrinkage is leveraged by the growth of the population
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The steady state for a one-group economy V

For m = 1, steady-state per-head consumption is given by

c : = (1� s)K αLβ�1

= (1� s)
�
entk

�α �ent�β�1 (L0 = 1)

= (1� s) ent(α+β�1)kα.

α+ β� 1 < 0 = decreasing returns to scale (possibly due to shortage of
land)
� > consumption tends to zero which makes a positive growth rate of the
population unsustainable and gives rise to a Malthusian interpretation
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