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Introduction

The �rst part of this chapter presents the Solow model on the basis of both

a Cobb-Douglas production function and

any neoclassical production function.

We will guide the reader

to an understanding of discrete and continuous growth rates,

through the dynamics of the Solow model for both Cobb-Douglas and
neoclassical production functions, and

to the equilibrium concept employed by growth theorists.
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Growth rates
Discrete-time growth rates

By yt we denote the value of y at time t, t = 0, 1, ...

De�nition
The discrete-time growth rate of y is de�ned by

γ
h1i
y :=

yt+1 � yt
yt

.

Superscript h1i refers to the full time interval, a year, say.
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Growth rates
Discrete-time growth rates

Problem
What are the growth rates of xt , yt , and zt , given by

xt : = t,

yt : = t + 4 and

zt : = 100t?
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Growth rates
Discrete-time growth rates

Problem
What are the growth rates of xt , yt , and zt , given by

xt : = t,

yt : = t + 4 and

zt : = 100t?

We obtain
xt+1 � xt

xt
=

t + 1� t
t

=
1
t

yt+1 � yt
yt

=
t + 5� (t + 4)

t + 4
=

1
t + 4

<
1
t
and

zt+1 � zt
yt

=
100 (t + 1)� 100t

100t
=
1
t
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Growth rates
Discrete-time growth rates

Multiplying
yt

by the growth factor

1+ γ
h1i
y = 1+

yt+1 � yt
yt

yields, at the end of a year,

yt

�
1+

yt+1 � yt
yt

�
= yt+1.

t years later, a given y0 (y at time 0) has become

yt = y0
�
1+ γ

h1i
y

�t
.
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Growth rates
Discrete-time growth rates

Example

If you take Euro 100,- to the bank to earn an interest of r = 5
100 = 5%, at

the end of �ve years, you collect

100
�
1+

5
100

�5
� 100 � 1.276 = 127.6.
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Growth rates
Discrete-time growth rates

In growth theory, yt often denotes income per head at time t, i.e.,

yt =
Yt
Lt
,

where Yt is the income and Lt the labor force, both at time t. One would,
of course, think that the growth rates of y , Y and L are closely connected.
Indeed, we obtain

yt+1 � yt
yt

=

Yt+1
Lt+1

� Yt
Lt

Yt
Lt

= ....

=
Lt
Lt+1

�
Yt+1 � Yt

Yt
� Lt+1 � Lt

Lt

�
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Growth rates
Discrete-time growth rates

Thus, the growth rate of

y =
Y
L

is close to the growth rate of Y minus the growth rate of L if Lt is close to
Lt+1,

yt+1 � yt
yt

� Yt+1 � Yt
Yt

� Lt+1 � Lt
Lt

.
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Growth rates
Discrete-time growth rates

Very much the same holds for the product of two variables. Let us
consider the production function

Yt = LtKt ,

which supposes that income Yt is the product (in mathematical terms) of
labor Lt and capital Kt . We have

Lt+1 � Lt
Lt

+
Kt+1 �Kt

Kt
= ...

=
Yt+1 � Yt

Yt
+
Lt (Kt+1 �Kt )� Lt+1 (Kt+1 �Kt )

LtKt

� Yt+1 � Yt
Yt

If the time intervals are �very small�...
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Growth rates
From discrete to continuous time

Let us consider half-yearly instead of yearly growth rates. Instead of the
growth factor �

1+ γh1i
�t

for the yearly growth rate γ
h1i
y , we have the growth factor0@ 1+ γh1i

2

!21At

=

 
1+

γh1i

2

!2t
.

for the half-yearly growth rate γh1i

2 .
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Growth rates
From discrete to continuous time

Food for thought Would you prefer an interest payment of γh1i

2 , two times
a year, to an interest rate of γh1i, paid out only once a year?
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Growth rates
From discrete to continuous time

Food for thought Would you prefer an interest payment of γh1i

2 , two times
a year, to an interest rate of γh1i, paid out only once a year?

Since we earn interest on the interest, these two factors are not equal: 
1+

γh1i

2

!2t
>
�
1+ γh1i

�t
.
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Growth rates
From discrete to continuous time

We now look for a growth rate that makes the investor indi¤erent between
half-yearly payments and yearly payments. That is, we de�ne γh 12 i
implicitly by  

1+
γh 12 i
2

!2t
=
�
1+ γh1i

�t
.

Food for thought Would you expect γh 12 i > γh1i or γh 12 i < γh1i?
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Growth rates
From discrete to continuous time

From  
1+

γh 12 i
2

!2t
=
�
1+ γh1i

�t
we obtain

1+
γh 12 i
2

=

0@ 1+ γh 12 i
2

!2t1A 1
2t

=

��
1+ γh1i

�t� 1
2t

=
�
1+ γh1i

� 1
2

and then

γh 12 i = �2+ 2
q
1+ γh1i.
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Growth rates
From discrete to continuous time

We can now conclude

γh1i > 0

)
�

γh1i
�2
> 0

)
�

γh1i
�2
+ 4 (1+ γ) > 4 (1+ γ)

)
�

γh1i + 2
�2
> 4 (1+ γ)

) γh1i + 2 > 2
p
1+ γ

) γh1i > �2+ 2
p
1+ γ = γh 12 i
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Growth rates
From discrete to continuous time

We now decrease the time interval even further. Generally, we
consider an interest payment m times a year with interest rate
γh1i/m. Then, at the end of t years, we obtain  

1+
γh1i

m

!m!t
=

 
1+

γh1i

m

!mt
.

It can be shown (but we will not do that here) that this growth factor

is an increasing function of m. The sequence
��
1+ γh1i

m

�mt�
m2N

converges (gets closer and closer to some value) and we have

lim
m!∞

 
1+

γh1i

m

!mt
= eγh1it .
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Growth rates
From discrete to continuous time

Again, because of the interest on the interest, one prefers to obtain
continuous interest payments.

Looking for γh0i �rate at which indi¤erence to a yearly interest rate:

eγh0it =
�
1+ γh1i

�t
.

Applying the natural logarithm on both sides, deviding by t

γh0i = ln
�
1+ γh1i

�
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Growth rates
From discrete to continuous time

We would like to con�rm γh0i < γh1i

81

6

4

2

x

1−x

xln
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Growth rates
From discrete to continuous time

We would like to con�rm γh0i < γh1i

ln x < x � 1 for x > 0, x 6= 1

Replacing x by 1+ y , we obtain

ln (1+ y) < y for y > �1, y 6= 0

γh0i = ln
�
1+ γh1i

�
< γh1i for γh1i > �1,γh1i 6= 0
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Growth rates
From discrete to continuous time

The growth rates γh1i and γh0i are close for small rates:

γh1i γh0i (approximation)
0, 001 (one-tenth of a percent) 0, 0009995
0, 01 (one percent) 0, 0099503
0, 1 (10 percent) 0, 09531
0, 2 (20 percent) 0, 18232
0, 3 (30 percent) 0, 26236
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Growth rates
Continuous-time growth rates

In discrete time, the growth rate of y is de�ned by

γ
h∆ti
y :=

yt+∆t�yt
(t+∆t)�t
yt

.

Taking the limit with respect to ∆t yields

lim
∆t!0

γ
h∆ti
y = lim

∆t!0

yt+∆t�yt
(t+∆t)�t
yt

= lim
∆t!0

∆yt
∆t
yt

=
dyt
dt

yt
.
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Growth rates
Continuous-time growth rates

De�nition
The continuous-time growth rate of y is de�ned by

γy := γy ,t :=
dyt
dt

yt

where the time index is often suppressed.
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Growth rates
Continuous-time growth rates

Assuming a constant growth rate g

g =
dyt
dt

yt

we obtain a di¤erential equation with

solution
yt = y0egt
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Growth rates
Continuous-time growth rates
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Growth rates
Continuous-time growth rates

Problem

Calculate dyt
dt /yt for yt = y0egt . Hint: the derivative of ex is ex , but do

not forget the chain rule.
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Growth rates
Continuous-time growth rates

Problem

Calculate dyt
dt /yt for yt = y0egt . Hint: the derivative of ex is ex , but do

not forget the chain rule.

You have found
dyt
dt

yt
=

d (y0egt )
dt

y0egt
=
y0egtg
y0egt

= g .

=) γy = g so we can write yt = y0e
γy t .
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Growth rates
Using the natural logarithm to express growth

take recourse to byt = ln yt .
instead of yt

By d ln x
dx = 1

x

dby
dt

=
d ln yt
dt

=
1
yt

dy
dt
(chain rule!)

=

�
y t
yt

If by is plotted against t
growth rate of y = slope of by -graph
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Growth rates
Using the natural logarithm to express growth

Problem
Try to �nd the relationship between the (continuous-time) growth rates of
Y , K and L for Yt = LtKt . Hint: apply the product rule of di¤erentiation
and use ln (LK ) = ln L+ lnK .
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Growth rates
Using the natural logarithm to express growth

Problem
Try to �nd the relationship between the (continuous-time) growth rates of
Y , K and L for Yt = LtKt . Hint: apply the product rule of di¤erentiation
and use ln (LK ) = ln L+ lnK .

Using the original de�nition, we obtain

γY =

�
Yt
Yt
=

d (KtLt )
dt

KtLt
=

dKt
dt Lt +

dLt
dt Kt

KtLt

=
dKt
dt

Kt
+

dLt
dt

Lt
= γK + γL.
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Growth rates
Using the natural logarithm to express growth

Problem
Try to �nd the relationship between the (continuous-time) growth rates of
Y , K and L for Yt = LtKt . Hint: apply the product rule of di¤erentiation
and use ln (LK ) = ln L+ lnK .

Using the logarithm, we have

γY =
d lnYt
dt

=
d ln (KtLt )

dt

=
d (lnKt + ln Lt )

dt
=
d lnKt
dt

+
d ln Lt
dt

= γK + γL.
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Growth rates
Using the natural logarithm to express growth

Homework:
Also, for

y =
Y
L

we �nd
γy = γY � γL.
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Growth rates
Using the natural logarithm to express growth

To sum up, in continuous time we obtain:

Growth rate of a product = sum of the growth rates of its factors.

Growth rate of a ratio =

growth rates of nominator minus
growth rate of denominator.
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Growth rates
Using the natural logarithm to express real interest rate

An application

r denote the monetary interest rate = growth rate for an asset Km
π denotes the rate of in�ation

=) real interest rate = r � π

Because...

Notation: price level P, real capital K

K := Km
P

γK = γKm � γP = r � π
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Growth rates
Using the natural logarithm to express growth

Problem
Apply the natural logarithm to the exponential-growth formula

yt = y0eγy t

in order to con�rm

γy =
ln yt � ln y0
t � 0 =

1
t
ln
yt
y0
.
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Growth rates
Using the natural logarithm to express growth

Problem
Apply the natural logarithm to the exponential-growth formula

yt = y0eγy t

in order to con�rm

γy =
ln yt � ln y0
t � 0 =

1
t
ln
yt
y0
.

ln yt = ln y0 + ln eγy t

= ln y0 + γy t

) γy =
ln yt � ln y0
t � 0 =

ln yty0
t � 0
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Growth rates
Using the natural logarithm to express growth

Rule of thumb

years to double y is approximately 70
γy �100

.

Example: interest rate of 2% � > 35 years to double

achieve a doubling in t years � > growth rate 70
t is needed

double within 10 years, ask for an interest rate of 7%
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Growth rates
Using the natural logarithm to express growth
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Growth rates
Using the natural logarithm to express growth

Con�rmation of this rule

Growth rate γy and/or the time span needed to double y ,

We need to solve
y0eγy t = 2y0

Deviding by y0 and taking the logarithm

γy t = ln
�
eγy t

�
= ln 2 � 0, 69315

Solving for t or γy

t � 70
γy � 100

and
γy � 100 �

70
t

Two approximations!
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Growth rates
Using the natural logarithm to express growth

Growth rate
in percentage
points

Years
needed
for doubl.
(approximation)

Years
needed
for doubl.
(correct,
contin.
time)

Years
needed
for doubl.
(correct,
yearly
interest)

0.1 (one-tenth of a percent) 700 � 693.15 � 693.49
1 (one percent) 70 � 69.31 � 69.66
10 (ten percent) 7 � 6.93 � 7.27
20 (twenty percent) 3 12 � 3.46 � 3.80
30 (thirty percent) 2 13 � 2.31 � 2.64
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Growth rates
Convergence

De�nition
Weak convergence between xt and yt is said to hold if, whenever
0 < x0 < y0, the growth rates obey γx > γy for all t � 0.

Lemma

Criterion for weak convergence: 0 < x0 < y0 implies
d ytxt
dt < 0.

Proof:

d yx
dt
< 0,

dy
dt x �

dx
dt y

x2
< 0,

dy
dt

x
�

dx
dt

x
y
x
< 0

,
dy
dt

y
�

dx
dt

x
< 0 (multiply by

x
y
)

, γy < γx
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Convergence
Weak convergence

Weak convergence may hold even if x and y never get close. For example,
weak convergence exists between

xt = t and

yt = 2t + 2.

Problem
Show that weak convergence holds between xt and yt .
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Convergence
Weak convergence

Obviously, y0 > x0. Now,

γy =
2

2t + 2

=
1

t + 1
(multiply by

1/2
1/2

)

<
1
t

= γx
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Convergence
Strong convergence

De�nition
Strong convergence between xt and yt is said to hold if weak convergence
between xt and yt holds and if

lim
t!∞

yt
xt
= 1.

Problem
Show that strong convergence does not hold between xt = t and
yt = 2t + 2.
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Growth rates
Strong convergence

While x and y converge in a weak sense, they do not in a strong sense:

lim
t!∞

2t + 2
t

= lim
t!∞

�
2+

2
t

�
= 2+ lim

t!∞

2
t

= 2 > 1

yt
xt
decreases (by weak convergence), but yt > 2xt for all t.
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Cobb-Douglas production functions

Y = F (K , L) = AK αL1�α, A > 0, 0 < α < 1

A is a technological coe¢ cient
Letting A := 1, we work with

Y = F (K , L) = K αL1�α, 0 < α < 1
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Cobb-Douglas production functions

De�nition
A production function F exhibits constant returns to scale, if we have

F (τK , τL) = τF (K , L) ,K � 0, L � 0

for any τ � 0.

Problem
Can you prove that the CD production function is of constant returns?
Hint: you will use (a1a2)

b = ab1a
b
2 and a

bac = ab+c .

F (τK , τL) = (τK )α (τL)1�α = ταK ατ1�αL1�α

= τατ1�αK αL1�α = τF (K , L) .
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Cobb-Douglas production functions

marginal productivity

∂F
∂K

= αK α�1L1�α

= α
L1�α

K 1�α

= α

�
L
K

�1�α

> 0

� > concavity in K (and L)

Inada conditions:

lim
K!∞

∂F
∂K

= 0; lim
K!0

∂F
∂K

= ∞
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Cobb-Douglas production functions

Production elasticity of capital:

εY ,K =
∂Y
Y
∂K
K

=
∂Y
∂K

K
Y
.

Problem
Can you con�rm that the production elasticity of capital is equal to α?

∂Y
∂K is just another expression of ∂F

∂K , therefore

εY ,K =
∂F
∂K

K
Y

= α

�
L
K

�1�α K
K αL1�α

= α.
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Cobb-Douglas production functions

Problem
Prove Euler�s theorem for CD production functions:

∂F
∂K

�K + ∂F
∂L
� L = F (K , L) .

∂F
∂K

�K + ∂F
∂L
� L = α

�
L
K

�1�α

�K + (1� α)

�
K
L

�α

� L

= α
L1�α

K 1�α
�K + (1� α)

K α

Lα
� L

= αK αL1�α + (1� α)K αL1�α

= F (K , L) .
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Cobb-Douglas production functions

Problem
Assuming a CD production function, show how the growth rate of output
depends on the growth rates of capital and labor. Hint: you will use the
product and chain rule of di¤erentiation (�rst growth-rate de�nition) or
the rules for manipulating the natural logarithm (second growth-rate
de�nition).
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Cobb-Douglas production functions

For Yt = F (Kt , Lt ) = K α
t L

1�α
t ,

γY =
dYt
dt

Yt

=

d(K α
t L

1�α
t )

dt

K α
t L

1�α
t

=
αK α�1

t
dK
dt L

1�α
t +K α

t (1� α) L�α
t

dL
dt

K α
t L

1�α
t

(product rule and chain rule)

= α
dK
dt

Kt
+ (1� α)

dL
dt

Lt
= αγK + (1� α) γL.
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Cobb-Douglas production functions

Alternatively:

γY =
d lnYt
dt

=
d ln

�
K α
t L

1�α
t
�

dt

=
d (α lnKt + (1� α) ln Lt )

dt

=
d (α lnKt )

dt
+
d ((1� α) ln Lt )

dt

= α
d lnKt
dt

+ (1� α)
d ln Lt
dt

= αγK + (1� α) γL.
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Cobb-Douglas production functions

y :=
Y
L

k :=
K
L

y =
K αL1�α

L
=
K α

Lα
= kα =: f (k)

f � production function in intensive form
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Dynamics (CD production function)

Consumption function
C := (1� s)Y

s � 0 � constant saving rate

Per-head consumption

c :=
C
L
= (1� s) Y

L
= (1� s) y .

Savings = investments
�
K = sY � δK
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Dynamics (CD production function)

�
k =

��
K
L

�
=

�
KL�

�
LK

L2

=

�
K
L
�

�
L
L
K
L

=

�
K
L
� nk (n := γL)

=
sY � δK

L
� nk

= s
Y
L
� δ

K
L
� nk

= skα � (δ+ n) k
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Steady state (CD production function)

De�nition
A steady state is a tuple of relevant economic variables that grow at
constant rates.

Solow model: (Y ,K , L) or (Y , y , k, L)

constant
�
k
k

= s
k 1�α � (δ+ n)
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Steady state (CD production function)
�
k
k constant � >

0 =
d
� s
k 1�α � (δ+ n)

�
dt

=
d
�
sk�1+α

�
dt

= s (�1+ α) k�2+α dk
dt

= s (�1+ α)
1

k2�α

dk
dt

� > s = 0 or

� > dk
dt = 0 � >

�
k
k = 0 � >

s

(k�)1�α = δ+ n,

s (k�)α = (δ+ n) k�, or

k� =

�
s

δ+ n

� 1
1�α
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Steady state (CD production function)

k� is constant; so are

y � = f (k�) = (k�)α =

�
s

δ+ n

� α
1�α

and

c� = (1� s)
�

s
δ+ n

� α
1�α

.

Problem
Show K , Y , and C grow at rate n. Hint: remember K = kL,Y = yL, and
C = cL.

γK = γk + γL = 0+ n = n

γY = γy + γL = 0+ n = n and

γC = γc + γL = 0+ n = n
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Steady state (CD production function)

kn)( +δ

( ) αskksf =

*k k

Breakeven investment

Actual investment

In
ve

st
m

en
t p

er
he

ad
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Steady state (CD production function)

k0

n+δ

( )
α−= 1k

s

k

kf
s

0<kγ

0>kγ

*k
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Steady state (CD production function)

Algebraically: 0 < k < k� =
� s

δ+n

� 1
1�α implies

γk =
s

k1�α
� (δ+ n)

>
s

(k�)1�α � (δ+ n)

=
s�� s

δ+n

� 1
1�α

�1�α � (δ+ n)

= 0

Alternative way: di¤erential equation
.
k = skα � (n+ δ)k

with solution

kt =
�

s
n+ δ

+

�
k1�α
0 � s

n+ δ

�
e�(1�α)(n+δ)t

� 1
1�α
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Steady state (CD production function)

lim
t!∞

e�(1�α)(n+δ)t = lim
t!∞

1
e(1�α)(n+δ)t

= 0

lim
t!∞

kt

=

�
s

n+ δ
+

�
k1�α
0 � s

n+ δ

�
lim
t!∞

e�(1�α)(n+δ)t
� 1

1�α

=

�
s

n+ δ
+

�
k1�α
0 � s

n+ δ

�
� 0
� 1

1�α

=

�
s

n+ δ

� 1
1�α

= k�.
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Steady state (CD production function)

lim
t!∞

e�(1�α)(n+δ)t = lim
t!∞

1
e(1�α)(n+δ)t
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lim
t!∞

kt

=

�
s

n+ δ
+

�
k1�α
0 � s

n+ δ

�
lim
t!∞

e�(1�α)(n+δ)t
� 1

1�α

=

�
s

n+ δ
+

�
k1�α
0 � s

n+ δ

�
� 0
� 1

1�α

=

�
s

n+ δ

� 1
1�α

= k�.
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Comparative statics and the golden rule (CD production
function)

How do the (exogenous) parameters of our model in�uence the
(endogenous) variables?

k� =
�

s
δ+ n

� 1
1�α

Robert Solo ·w: �Why are we so rich and they so poor?�

c� = (1� s)
�

s
δ+ n

� α
1�α

?

α
δ
n
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Comparative statics and the golden rule (CD production
function)

Towards the golden rule

max

c� = (1� s) y �

= (k� (s))α � s (k� (s))α

= (k� (s))α � (δ+ n) k�

w.r.t. s

α (k� (s))α�1 dk�

ds
� (δ+ n) dk

�

ds
= 0

kgold

kgold
!
=

�
α

δ+ n

� 1
1�α

.
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Comparative statics and the golden rule (CD production
function)

kgold
!
=

�
α

δ+ n

� 1
1�α

and k� (s) =
�

s
δ+ n

� 1
1�α

yields sgold
!
= α.

goldk k0

kn)( +δ

goldc

( ) αkkf =

( ) αkskfs goldgold =

n+= δslope
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Neoclassical production function
Constant returns to scale

A production function Y = F (K , L) is called neoclassical if F has two
properties:

1 constant returns to scale and
2 decreasing marginal productivities obeying the Inada conditions.
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Neoclassical production function
Constant returns to scale

De�nition
A production function F is homogeneous of degree d , if we have

F (τK , τL) = τdF (K , L) ,K � 0, L � 0

for any τ � 0. A production function F exhibits constant returns to scale
if it is homogeneous of degree 1.
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Neoclassical production function
Constant returns to scale

Problem
Prove that the production function given by

F (K , L) =
�
αK�ρ + (1� α) L�ρ

��1/ρ
, 0 < α < 1, ρ > �1, ρ 6= 0

exhibits constant returns to scale.

F (τK , τL) =
h
α (τK )�ρ + (1� α) (τL)�ρ

i�1/ρ

=
�
ατ�ρK�ρ + (1� α) τ�ρL�ρ

��1/ρ

=
�
τ�ρ

��
αK�ρ + (1� α) L�ρ

����1/ρ

=
�
τ�ρ

��1/ρ ��
αK�ρ + (1� α) L�ρ

���1/ρ

= τ�ρ�(�1/ρ)F (K , L) = τF (K , L)
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Neoclassical production function
Constant returns to scale

Problem
Can you show that the Leontief production function, given by

Y = F (K , L) = min (AK ,BL) ,

also obeys constant returns to scale?

First, we note F (0 �K , 0 � L) = 0 � F (K , L), so that the equality holds for
τ = 0. For τ > 0, we have

AK � BL, τ (AK ) � τ (BL)

and hence

F (τK , τL) = min (A (τK ) ,B (τL))

= min (τ (AK ) , τ (BL))

= τmin (AK ,BL) .
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Neoclassical production function
Constant returns to scale

Problem
Can you prove F (0, 0) = 0 for any constant-returns production function
F?

For τ := 0, the desired equation follows easily:

F (0, 0) = F (0 �K , 0 � L) = 0 � F (K , L) = 0
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Neoclassical production function
Constant returns to scale

For τ := 1
L , we obtain

F
�
K
L
, 1
�
= F

�
1
L
K ,
1
L
L
�
=
1
L
F (K , L) .

De�ning

k : =
K
L
,

y : =
Y
L
, and

f (k) : = F (k, 1)

yields

y =
F (K , L)
L

= F
�
K
L
, 1
�
= f (k)
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Neoclassical production function
Constant returns to scale

Problem
Determine the intensive form of the CES production function.

f (k) = F
�
K
L
, 1
�

=

"
α

�
K
L

��ρ

+ (1� α) � 1�ρ

#�1/ρ

=
�
αk�ρ + (1� α)

��1/ρ
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Neoclassical production function
Constant returns to scale

Which are equal?

∂2F

(∂K )2
: =

∂ ∂F
∂K

∂K
,

∂2F

(∂L)2
: =

∂ ∂F
∂L

∂L
,

∂2F
∂K∂L

: =
∂ ∂F

∂L

∂K
, and

∂2F
∂L∂K

: =
∂ ∂F

∂K

∂L

Notation:
∂F
∂K

=
∂F
∂K

����
(K ,L)
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Neoclassical production function
Constant returns to scale

Lemma
Let F be homogeneous of degree 1. Then,

1 the marginal productivities are homogeneous of degree 0 :

∂F
∂K

����
(τK ,τL)

=
∂F
∂K

����
(K ,L)

and

∂F
∂L

����
(τK ,τL)

=
∂F
∂L

����
(K ,L)

(Generalization: Let F be homogeneous of degree d. Then,

∂F
∂K

����
(τK ,τL)

= τd�1
∂F
∂K

����
(K ,L)

)
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Neoclassical production function
Constant returns to scale

Proof: Derivative of F (τK , τL) = τF (K , L) with respect to K :

∂F (τK , τL)
∂K

=
∂ [τF (K , L)]

∂K

, ∂F (τK , τL)
∂ (τK )

d (τK )
dK

= τ
∂ [F (K , L)]

∂K

, ∂F (τK , τL)
∂ (τK )

=
∂ [F (K , L)]

∂K

, ∂F
∂K

����
(τK ,τL)

=
∂F
∂K

����
(K ,L)

.

Analogously, forming the derivative with respect to L leads to

∂F (τK , τL)
∂L

=
∂ [τF (K , L)]

∂L
, ∂F

∂L

����
(τK ,τL)

=
∂F
∂L

����
(K ,L)

.
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Neoclassical production function
Constant returns to scale

Lemma
Let F be homogeneous of degree 1.

1 ...
2 the second-order derivatives are homogenous of degree �1 :

τ
∂2F

(∂K )2

�����
(τK ,τL)

=
∂2F

(∂K )2

�����
(K ,L)

and

τ
∂2F

(∂L)2

�����
(τK ,τL)

=
∂2F

(∂L)2

�����
(K ,L)

Proof similar to 1. (form the derivative of ∂F
∂K

���
(τK ,τL)

= ∂F
∂K

���
(K ,L)

)
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Neoclassical production function
Constant returns to scale

Lemma
Let F be homogeneous of degree 1.

1 ...
2 ...
3 the marginal productivities can be expressed as functions of capital
per head, k :

∂F
∂K

=
df
dk

and (1)

∂F
∂L

= f (k)� k df
dk
=: ω (k) (2)
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Neoclassical production function
Constant returns to scale

∂F
∂K

=
df
dk

and

∂F
∂L

= f (k)� k df
dk
=: ω (k)

Proof:

∂F (K , L)
∂K

=
∂
�
Lf
�K
L

��
∂K

= L
df

d
�K
L

� ∂
�K
L

�
∂K

= L
df
dk
1
L
=
df
dk
.

Harald Wiese (Chair of Microeconomics) Applied cooperative game theory: April 2010 78 / 99



Neoclassical production function
Constant returns to scale

Problem

Show ∂F
∂L = f (k)� k

df
dk . Hint: Beginn with

∂F (K ,L)
∂L =

∂(Lf (KL�1))
∂L and

apply the product rule of di¤erentiation.

∂F (K , L)
∂L

=
∂
�
Lf
�
KL�1

��
∂L

= f
�
KL�1

�
+ L

∂f
∂ (KL�1)

d
�
KL�1

�
dL

= f (k) + L
∂f
∂k
(�1)KL�2

= f (k)� df
dk
k.
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Neoclassical production function
Constant returns to scale
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apply the product rule of di¤erentiation.

∂F (K , L)
∂L

=
∂
�
Lf
�
KL�1

��
∂L

= f
�
KL�1

�
+ L

∂f
∂ (KL�1)

d
�
KL�1

�
dL

= f (k) + L
∂f
∂k
(�1)KL�2

= f (k)� df
dk
k.
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Neoclassical production function
Constant returns to scale

Here, ω is reminiscent of w as in wage rate.

ω (k) = f (k)|{z}
output by one worker

with capital k

� k|{z}
capital

used by worker

df
dk|{z}

marginal-product
price for capital| {z }

payments for capital
used by worker
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Neoclassical production function
Constant returns to scale

Lemma
Let F be homogeneous of degree 1. Then,

1 ...
2 ...
3

∂F
∂K

=
df
dk

and
∂F
∂L
= f (k)� k df

dk
=: ω (k)

4 Euler�s theorem holds:

F (K , L) =
∂F
∂K
K +

∂F
∂L
L

Problem
Prove! Hint: You need the results from item 3.
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Neoclassical production function
Constant returns to scale

Euler�s theorem:

∂F
∂K
K +

∂F
∂L
L =

df
dk
K +

�
f (k)� k df

dk

�
L

=
df
dk
K + f (k) L� K

L
df
dk
L

= Lf (k)

= F (K , L) .

Harald Wiese (Chair of Microeconomics) Applied cooperative game theory: April 2010 82 / 99



Neoclassical production function
Constant returns to scale

Lemma
Let F be homogeneous of degree 1. Then,

5. the second-order derivatives relate to each other in a simple manner:

∂2F
∂K∂L

= �k ∂2F

(∂K )2
,

∂2F
∂K∂L

= � 1
k

∂2F

(∂L)2
, and

∂2F

(∂K )2
∂2F

(∂L)2
=

�
∂2F

∂K∂L

�2
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Neoclassical production function
Constant returns to scale

Proof of 5: Di¤erentiate Euler�s equation to �nd

∂F
∂K

=

 
∂2F

(∂K )2
K +

∂F
∂K

!
+

∂2F
∂K∂L

L and

∂F
∂L

=
∂2F

∂K∂L
K +

 
∂2F

(∂L)2
L+

∂F
∂L

!
hence

∂2F
∂K∂L

= �k ∂2F

(∂K )2
and

∂2F
∂K∂L

= � 1
k

∂2F

(∂L)2

implying the third one,

∂2F

(∂K )2
∂2F

(∂L)2
=

�
∂2F

∂K∂L

�2
.
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Neoclassical production function
Decreasing marginal productivities and Inada conditions

Decreasing marginal productivity

∂F
∂K

> 0 for L > 0

∂2F

(∂K )2
< 0

Inada conditions

lim
K!∞

∂F
∂K

= 0

lim
K!0

∂F
∂K

= ∞

& for labor...
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Neoclassical production function

f inherits from F

the marginal product per head

df
dk
=

∂F (k, 1)
∂k

> 0

the marginal product per head

d2f

(dk)2
=

∂2F (k, 1)

(∂k)2
< 0

the Inada conditions

lim
k!∞

df
dk

= lim
k!∞

∂F (k, 1)
∂k

= 0

lim
k!0

df
dk

= lim
k!0

∂F (k, 1)
∂k

= ∞

Barro & Sala-i-Martin (1999, p. 52)

F (0, L) = F (K , 0) = 0, hence f (0) = F (0, 1) = 0
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Dynamics and steady state (neoclassical production
function)

�
Kt = sYt � δKt

Kt � economy�s stock of capital,
�
Kt � change of this stock

s � saving rate of income Yt
δ � depreciation rate
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Dynamics and steady state (neoclassical production
function)

Dynamics of k :

�
k =

��
K
L

�

=

�
KL�

�
LK

L2

=

�
K
L
� nk

=
sY � δK

L
� nk

= sf (k)� (n+ δ) k

n � (working) population�s growth rate
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Dynamics and steady state (neoclassical production
function)

Rate

γk =

�
k
k
= s

f (k)
k

� (δ+ n) , k > 0

Steady state:
sf (k)
k

� (δ+ n)

constant

0 =
d
h
sf (k )
k �(δ+n)

i
dt
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Dynamics and steady state (neoclassical production
function)

0 =
d
h
sf (k )
k � (δ+ n)

i
dt

= s
d f (k )k
dt

= s
df
dk
dk
dt k �

dk
dt f (k)

k2

= s
df
dk k � f (k)

k

dk
dt

k

= �s f (k)�
df
dk k

k
γk

= �s
∂F
∂L

k
γk =) 0 = γk
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Dynamics and steady state (neoclassical production
function)

0 = γk
=) sf (k�) = (δ+ n) k�

Output & consumption per head

y � = f (k�) and

c� = (1� s) y �,
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Dynamics and steady state (neoclassical production
function)

kn)( +δ

( )ksf

*k k

Breakeven investment

Actual investment

 In
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Dynamics and steady state (neoclassical production
function)

k0

n+δ

( )
k
ksf

0<kγ

0>kγ

*k
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Dynamics and steady state (neoclassical production
function)

Problem
Draw the equivalents of the above �gures for s = 0.

kn)( +δ

( )kf⋅0
0* =k

k

Breakeven investment

Actual investment

 In
ve

stm
en

t p
er

he
ad
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Dynamics and steady state (neoclassical production
function)

k

n+δ

( )
k

kf⋅0

0<kγ

0* =k
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Dynamics and steady state

k = 0 and k� > 0 is where investment = break-even investment.

For su¢ ciently small endowments of capital per head k > 0, actual
investment per head sf (k) is greater than the break-even investment

(δ+ n) k by the Inada condition. Hence,
�
k = sf (k)� (n+ δ) k is

positive and capital per head increases.

For su¢ ciently large k, actual investment per head is smaller than
break-even investment, by the other Inada condition . Therefore,
capital per head decreases.
Summarizing, sf (k)� (n+ δ) k is positive for small k and negative
for large ones. Therefore, we should �nd a k� in between where
sf (k�)� (n+ δ) k� is zero. This follows from the so-called
intermediate-value theorem which holds for continuous functions.
(sf (k)� (n+ δ) k is continuous for k > 0.)
k = 0 is a steady state by f (0) = 0.
Finally, f and hence sf (k)� (n+ δ) k is concave by so that further
nulls are excluded.

Harald Wiese (Chair of Microeconomics) Applied cooperative game theory: April 2010 96 / 99



Dynamics and steady state

k = 0 and k� > 0 is where investment = break-even investment.

For su¢ ciently small endowments of capital per head k > 0, actual
investment per head sf (k) is greater than the break-even investment

(δ+ n) k by the Inada condition. Hence,
�
k = sf (k)� (n+ δ) k is

positive and capital per head increases.
For su¢ ciently large k, actual investment per head is smaller than
break-even investment, by the other Inada condition . Therefore,
capital per head decreases.

Summarizing, sf (k)� (n+ δ) k is positive for small k and negative
for large ones. Therefore, we should �nd a k� in between where
sf (k�)� (n+ δ) k� is zero. This follows from the so-called
intermediate-value theorem which holds for continuous functions.
(sf (k)� (n+ δ) k is continuous for k > 0.)
k = 0 is a steady state by f (0) = 0.
Finally, f and hence sf (k)� (n+ δ) k is concave by so that further
nulls are excluded.

Harald Wiese (Chair of Microeconomics) Applied cooperative game theory: April 2010 96 / 99



Dynamics and steady state

k = 0 and k� > 0 is where investment = break-even investment.

For su¢ ciently small endowments of capital per head k > 0, actual
investment per head sf (k) is greater than the break-even investment

(δ+ n) k by the Inada condition. Hence,
�
k = sf (k)� (n+ δ) k is

positive and capital per head increases.
For su¢ ciently large k, actual investment per head is smaller than
break-even investment, by the other Inada condition . Therefore,
capital per head decreases.
Summarizing, sf (k)� (n+ δ) k is positive for small k and negative
for large ones. Therefore, we should �nd a k� in between where
sf (k�)� (n+ δ) k� is zero. This follows from the so-called
intermediate-value theorem which holds for continuous functions.
(sf (k)� (n+ δ) k is continuous for k > 0.)

k = 0 is a steady state by f (0) = 0.
Finally, f and hence sf (k)� (n+ δ) k is concave by so that further
nulls are excluded.

Harald Wiese (Chair of Microeconomics) Applied cooperative game theory: April 2010 96 / 99



Dynamics and steady state

k = 0 and k� > 0 is where investment = break-even investment.

For su¢ ciently small endowments of capital per head k > 0, actual
investment per head sf (k) is greater than the break-even investment

(δ+ n) k by the Inada condition. Hence,
�
k = sf (k)� (n+ δ) k is

positive and capital per head increases.
For su¢ ciently large k, actual investment per head is smaller than
break-even investment, by the other Inada condition . Therefore,
capital per head decreases.
Summarizing, sf (k)� (n+ δ) k is positive for small k and negative
for large ones. Therefore, we should �nd a k� in between where
sf (k�)� (n+ δ) k� is zero. This follows from the so-called
intermediate-value theorem which holds for continuous functions.
(sf (k)� (n+ δ) k is continuous for k > 0.)
k = 0 is a steady state by f (0) = 0.

Finally, f and hence sf (k)� (n+ δ) k is concave by so that further
nulls are excluded.

Harald Wiese (Chair of Microeconomics) Applied cooperative game theory: April 2010 96 / 99



Dynamics and steady state

k = 0 and k� > 0 is where investment = break-even investment.

For su¢ ciently small endowments of capital per head k > 0, actual
investment per head sf (k) is greater than the break-even investment

(δ+ n) k by the Inada condition. Hence,
�
k = sf (k)� (n+ δ) k is

positive and capital per head increases.
For su¢ ciently large k, actual investment per head is smaller than
break-even investment, by the other Inada condition . Therefore,
capital per head decreases.
Summarizing, sf (k)� (n+ δ) k is positive for small k and negative
for large ones. Therefore, we should �nd a k� in between where
sf (k�)� (n+ δ) k� is zero. This follows from the so-called
intermediate-value theorem which holds for continuous functions.
(sf (k)� (n+ δ) k is continuous for k > 0.)
k = 0 is a steady state by f (0) = 0.
Finally, f and hence sf (k)� (n+ δ) k is concave by so that further
nulls are excluded.

Harald Wiese (Chair of Microeconomics) Applied cooperative game theory: April 2010 96 / 99



Comparative statics and the golden rule (neoclassical
production function)

dk�/ds > 0

kn)( +δ

( )ksf

*k k
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Comparative statics and the golden rule (neoclassical
production function)

Starting from

c� (s) = (1� s) f (k� (s)) = f (k� (s))� (δ+ n) k� (s)

Maximize consumption per head

f 0 (k� (s))
dk�

ds
� (δ+ n) dk

�

ds
!
= 0

, f 0 (k� (s))
!
= (δ+ n) (note

dk�

ds
> 0).

Golden rule of capital accumulation

f 0 (kgold )
!
= δ+ n
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Comparative statics and the golden rule (neoclassical
production function)

goldk k0

kn)( +δ

goldc

( )kf

( )kfsgold

n+= δslope
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