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Introduction

o last chapter: PU-value

@ this chapter: exogenous-payments Shapley value obeying a
consistency axiom:
If the exogenous payments happen to be equal to the payoff
determined endogenously (i.e., according to the Shapley value), then
the endogenous agents also obtain their Shapley values.
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XP values

X C N —> set of exogenous players (civil servants)
D := N\X —> endogenous players (the private sector)

XP games are tuples

(N, v, X, )
where

o (N,v)isa TU game,

@ X is a strict subset of N, and

o 71 € RIXl'is a vector specifying a payoff for every member of X.
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Axioms for XP-values

X (exogenous payments): For all i € X, we have ¢, (N, v, X, ) = m;.
E (efficiency): We have ¢, (N, v, X, ) = v (N).

S (symmetry): For all symmetric players i, € D,

¢; (N, v, X, ) = ¢;(N,v,X, 7).

N-@ (null player for X = @): If i € N is a null player, then

¢, (N, v,®,7) = 0.

A (additivity): For any coalition functions v/, v/ € Vy, any payments
7', " € RIXI and any player i from N, we obtain

@; (NV +V'" X, ' +7") =9, (N VX, ') + ¢, (N V' X 7").
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Axioms for XP-values I

M (marginalism): Assume two coalition functions v and z from V. Let
i be a player from D obeying

v(SU{}) —v(S) =z (SU{i}) —z(5)
for all S € N\ {i}. Then
¢, (N,v,X, ) =¢,(N,z,X,m).

Our value does not fulfill axiom M:

@ The players from D pay 7t to the players from X but

@ enjoy the contributions made by these exogenous players by efficiency.

BF (Brink fairness): Let i/ and j be players from D that are symmetric in
(N, z). Then

. (N, v+2z X, m)—¢, (N, v, X, ) :goj(N,v—f—z,X,n)—(pj(N,v,X,n)
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Axioms for XP-values Il|

Lawyer or civil servant is responsible for an increase (or a decrease) of the
social product and his renumeration is changed by the very same amount:

SH (shifting): For all i € D, we have
@; (N, v+7mx, X, 1) =g, (N, v+, X 1)

for all 7r, 7’ € RIXI
It is not difficult to show that axioms X, S, E, and A imply axiom SH. The
final axiom is a very important one:

C (consistency): For any player i € D,

@; (N.v. X, (¢, (N, v.D, 7)), cx) = ¢; (N, v,D, 7).

If the players in X (happen to) obtain the value dictated by the axioms for
games without exogenous players, so do the other players.
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Axiomatization |

Assuming X = @ (in which case N-© and N are equivalent) and ignoring

7T in that case, the Shapley value is characterized by the following sets of
axioms for solution ¢:

e E, S, N, and A (Shapley 1953)
e E S, and M (Young 1985)
e E, N, and BF (Van den Brink 2001)

The Shapley value with exogenous payments is denoted by Sh*'™ and
given by

X, 7T o T, ieX
Shi (N’V)_{Sh,-(N,) + b (Shx (N,v) —7x), i €D
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Axiomatization I

Lemma

Assuming axiom C and any of the two following axiom sets

e £ S, N-©, and A or
o E, N-@, and BF

we obtain

Shi (N, V) = @, (N, V,X, (th (N, V))XEX)
for all players i € D.

Proof. Either one of the set of axioms obviously imply
@ (N,v,®, ) = Sh; (N, v).

Shi(N,v) = ¢;(N,v,®,m) (above equation)
= ¢;(N.v.X, (¢, (N,v.D,7)),.x) (axiom C)
= @;(N,v,X,(5h,(N,v above equation
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Axiomatization |l

The Shapley value with exogenous payments is characterized by the
axioms X, E, S, N-@, A, and C.

Proof. It is not difficult to show that SAX'™ fulfills all the axioms
mentioned in the theorem. Let ¢ be an XP value. For i € X, axiom X
guarantees ¢, (N, v, X, ) = ;. For i € D, we obtain the desired result by

@ (N, v, X, )
= @; (N, v, X, (Shx (N, v)) ex)
+¢; (N0, X, (70x) yex — (Shx (N, v))cx) (axiom A)
= Shi(N,v) + ¢ (N,O,X, (70x)xex — (Shx (N, V))xEX) (lemma 3)
1

= Sh,' N,V+
(N.v)+ 15

(Shx (N, v) — rtx) (axioms E, S)
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Axiomatization 1V

The Shapley value with exogenous payments is characterized by the
axioms X, E, BF, N-©, SH, and C.

Proof. ShX'™ also fulfills the axioms BF and SH. Consider the coalition
function z := 7tx — Shx (N, v). Then any two players j and j from D are
symmetric in (N, z) and Brink fairness implies

¢ (N, v+2z X, m)—¢;, (N, v, X, ) :q)j(N,v—l—z,X,n)—q)j(N,V,X,T[)
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Axiomatization V

Fix i € D and sum this equation for all j € D. Using axioms X and E and
hence ¢, (N,v, X, ) = v (N) — 7tx, we find

¢ (N, v, X, 77) = ¢, (N, v + 2, X, 7r)+|1|(5hx (N, v) — 7x).

The equations

Shi(N,v) = @;(N,v,X,(She (N,v)),cx) (above lemma)
= @ (N, v — Shx (N,v) + 7tx, X, (ﬂx)xex) (axiom SH)
= ¢, (N,v+z X, m)

provide the final bit of our proof.
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Application: Basic income |

Suggestion Andre Casajus:

Duplicate a TU game (N, v) (which stands for the economy) in the
following manner.

@ On the basis of player set N = {1, ..., n}, we define a set
N':={1',...,n'} with |[N| = |[N’| and a player set N := NUN'.

o We define a TU game (N, ¥) by ¥ (K) = v (K N N). Thus, every
player from N’ is a null player in (N, \7) and we have
Shi (N, v) = Sh; (N, ) for all players i € N.

@ Every player i’ € N is an exogenous player and obtains the payoff
(the basic income) 7.

Harald Wiese (Chair of Microeconomics)

Applied cooperative game theory:

April 2010 13 / 23



Application: Basic income Il

Obviously, the dash-player is just a copy of a player from N invented for
the purpose of collecting the basic income. We find the payoffs

. . !
Sh;\’/'” (/\A/y ‘7) _ { 7'C,,. . ieN

Thus, the overall payoff for a player i € N and his clone i’ € N is

TUN!

Shi(N,v) + m — .

~——— —~— ‘N‘

market income  basic income NN~~~
tax

Therefore, the introduction of a basic-income system makes an agent
better off iff his basic payoff is greater than the average basic payoff.
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Weighted XP values

definition of weighted Shapley value with exogenous payments

A weighted XP game is a tuple (N, v, X, 7t, w) where (N, v, X, 77) is an
XP game and w = (w;);.p a tuple of strictly positive numbers.
The weighted Shapley value with exogenous payments is given by

X, m,w — Tt <y
Sh; <N'V>_{5hi(N,V)+ oy (Shx (Nov) —7x), ieD

Ydep Wd
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Weighted XP values

axiomatization |

The value Sh™™" can be axiomatized:
X (exogenous payments): For all i € X, we have
¢ (N, v, X, m,w) =m;.

E (efficiency): We have ¢, (N, v, X, m,w) = v (N).

N-@ (null player for X = @): If i € N is a null player, then
¢ (N,v,0,m,w)=0.

A (additivity): For any coalition functions v/, v/ € Vy, any payments
7', 7" € RIXI and any player i from N, we obtain

Q; (N, v+ v X, 7+ A7 W) =@, (N, v X, 1, W) + o, (N, v X, W)

C (consistency): For any player i € D,

?; (N, v, X, (¢, (N,v,0,m, W))XGX ) W) =¢, (N, v,0, m w).
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Weighted XP values

axiomatization |l

The symmetry axiom has to take the weights into account:
S (symmetry): For all symmetric players i, j € D obeying w; = w;,
¢ (N, v, X, m,w) = ¢ (N, v, X, T, w).
IR (irrelevance): For all i € D and all r, 7/ € RX! w, w’ € RIPI, we

have
@; (N,v, 0, t,w) =9, (N,v,0, 7', w').

W (weighing): For all players i,j € D,
wig; (N,0,X, 7T, w) = w;p; (N,0, X, 77, w).

The weighted Shapley value with exogenous payments is characterized by
the axioms (given in this section) X, E, S, N-©, A, C, IR, and W.
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Application: buying a house in the presence of a

realtor |

@ A seller 's reservation price for a house r is below the buyer's
willingness to pay w. Thus, the gains from trade are positive,
w—r>0.

@ The seller and the buyer need the realtor to come into contact.
Therefore, the coalition function v is given by N = {S, B, A} and

w—r, K=N,
v(K) = { 0, otherwise

@ The realtor charges a fee 71 which is a fraction f of the house price p
for his service, T = fp

@ This payoff to the realtor 7T is payable by the buyer and the seller in
proportions gs = 0 and gg = 1.
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Application: buying a house in the presence of a

realtor |l

@ At the first stage, the realtor decides on f.

@ At the second stage, the seller and the buyer decide whether they will
indeed do business with each other. If not, the game ends with
payoffs O for every player.

@ At the third stage, the seller and the buyer engage in a bargaining

process, the outcome of which is determined by the weighted XP
value.
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Application: buying a house in the presence of a

realtor IlI

third stage: bargaining

Abbreviating Sh{A}7(0.1) (N, v) by ¢, we find

¢ = (8s.88.Ca)

So far, the realtor’s fee 7 is exogenous so that we could apply our formula.
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Application: buying a house in the presence of a

realtor IV

third stage: bargaining

However, the model allows to calculate the "equilibrium" house price p* so
that payments to the realtor are now endogenous at fp*. Indeed, the
seller's rent is p — r = {5 so that we obtain

w—r

o= () ="

+r

= §r+§W

and

Cg(f) = w—p"—1fp",
TF) =
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Application: buying a house in the presence of a

realtor V

second stage: do they have a deal

@ The seller is willing to sell his house if {5 > 0 holds which is true by
w—r>0.

@ The buyer will buy if w — p* — fp* > 0 or

e w— (Y%L +r) _2(w-—r)

- W;r—i—r 2r+w

hold.

@ For any f > 0, the realtor is happy to help in the deal.
Thus, the deal can be struck for any fee percentage f obeying

o<f<2w=r)
- T 2r+w
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Application: buying a house in the presence of a

realtor VI

first stage: setting the realtor's fraction

The real-estate agent maximizes her profit by letting

f*_2(W_r)
 2r+w

As expected, we find Z—’; > 0 and dd—’f < 0.
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