Applied cooperative game theory:

Firms and markets

Harald Wiese
University of Leipzig

April 2010

Overview part E: Extensions and exogenous payoffs

- Firms and markets
- The Size of Government
- A real-estate model

Overview "Firms and markets"

- Introduction
- Extensions of coalition functions
- The model
- The two-player case
- Conclusions

Introduction I

- Boundaries of the firms: What kind of economic activity is conducted through markets and what kind is conducted through firms?
- Ronald Coase (1937) (Nobel prize winner 1991) and
- Oliver Williamson (Nobel prize winner 2009)
- In this chapter, a firm is modeled by way of an employment relation between players.
- Every player has an endowment of 100% of his time.
- Giving part of his time to other players means that he is a worker for others who are employers.
- A player can be both a worker and an employer.

Introduction II

- Market inefficiency:

Gains from trade may remain unexploited because of

- principal-agent problems of the hidden-information variety (lemons)
- uncertainty about reservation prices

Market inefficiencies are reflected by partitions on the player set —> chance decides which partition will form.

- Organizational inefficiency (costs): principal-agent problems of hidden actions/team-production problems

Introduction III

- Our model: baker (B) and chocolate maker (C) with coalition function

$$
\begin{aligned}
v(B) & =80 \\
v(C) & =40 \\
v(B, C) & =200
\end{aligned}
$$

- Questions:
- Will the two agents produce separately and buy or sell chocolate or bread on the market?
- If a firm turns out to be optimal, will the baker employ the chocolate maker or vice versa?
- Can an economic situation be imagined where both agents found firms, i.e. where the baker employs the chocolate maker and the chocolate maker employs the baker?

Extensions of coalition functions I

Part-time coalition:

Which worth can the baker and the chocolate maker produce if they work together (in a firm, say) assuming

- the baker spends $\frac{1}{2}$ of his time and
- the chocolate maker $\frac{1}{3}$ of his time.
$\left(\frac{1}{2}, \frac{1}{3}\right)$ is an example of a part-time coalition.
In case of $s \in\{0,1\}^{N}$, we identify s with

$$
\mathbf{K}(s):=\left\{i \in N: s_{i}=1\right\}
$$

Extensions of coalition functions II

- An extension of a coalition function v on N is a function

$$
v^{e x t}: \mathbb{R}_{+}^{N} \rightarrow \mathbb{R}
$$

obeying

$$
v^{e x t}(s)=v(\mathbf{K}(s)), s \in\{0,1\}^{N}
$$

- The multilinear extension (MLE) is defined by

$$
v^{M L E}(s):=\sum_{T \in 2^{N} \backslash\{\varnothing\}} d^{v}(T) \cdot \prod_{i \in T} s_{i}
$$

- The Lovasz extension is given by

$$
v^{\ell}(s):=\sum_{T \in 2^{N} \backslash\{\varnothing\}} d^{\vee}(T) \cdot \min _{i \in T} s_{i}
$$

- Comparisons: $u_{\{1,2\}}$ with $s=\left(\frac{1}{2}, \frac{1}{3}\right)$ or $s^{\prime}=(2,3)$ yield
- $u_{\{1,2\}}^{M L E}(s)=\frac{1}{2} \cdot \frac{1}{3}$ and $v^{M L E}(s)=2 \cdot 3$, respectively, and
- $u_{\{1,2\}}^{\ell}(s)=\frac{1}{3}$ and $v^{\ell}(s)=2$, respectively.

Extensions of coalition functions III

Figure: A coalition function and its extension

Lovasz extension

example apex game

- Assume $s_{2} \leq s_{3} \leq s_{4}$ without loss of generality and use the Harsanyi dividends to find
- the apex game's Lovasz extension

$$
\begin{aligned}
h^{\ell}(s)= & -\min _{i \in\{1,2,3\}} s_{i}-\min _{i \in\{1,2,4\}} s_{i}-\min _{i \in\{1,3,4\}} s_{i}+\min _{i \in\{2,3,4\}} s_{i} \\
& +\min _{i \in\{1,2\}} s_{i}+\min _{i \in\{1,3\}} s_{i}+\min _{i \in\{1,4\}} s_{i} \\
= & \begin{cases}s_{2}, & s_{1} \leq s_{2} \leq s_{3} \leq s_{4} \\
s_{1}, & s_{2} \leq s_{1} \leq s_{3} \leq s_{4} \\
s_{1}, & s_{2} \leq s_{3} \leq s_{1} \leq s_{4} \\
s_{4}, & s_{2} \leq s_{3} \leq s_{4} \leq s_{1}\end{cases}
\end{aligned}
$$

- First line: the three small players cooperate
- Second line: the apex player cooperates with players 3 or 4
- Third and fourth line: the apex player cooperates with player 4

Lovasz extension versus MLE extension

- $v_{\text {MLE }}$ has a probabilistic interpretation:
- Inside a firm, the players work together only if their time schedules happen to coincide. For the above part-time coalition $\left(\frac{1}{2}, \frac{1}{3}\right)$, chocolate bread will be produced for $\frac{1}{2} \cdot \frac{1}{3}$ time units, only.
- However, the two agents could show up at the same time. Also, it may be possible that the baker bakes his bread which is coated by chocolate later.
- v^{ℓ} works differently:
- In case of $\left(\frac{1}{2}, \frac{1}{3}\right)$ chocolate bread will be produced for $\min \left(\frac{1}{2}, \frac{1}{3}\right)$ time units.
- That is, the baker and the chocolate maker's time are perfect complements in the production of chocolate bread.
- However, the baker has some time left, $\frac{1}{2}-\min \left(\frac{1}{2}, \frac{1}{3}\right)$, and will spend this time producing bread. Since chocolate bread is more valuable than bread (or chocolate) it is efficient to allocate $\min \left(\frac{1}{2}, \frac{1}{3}\right)$ time units to chocolate-bread production and to use the remainder for bread.

The employment relation

Definition

$\mathcal{A}: N^{2} \rightarrow[0,1]$ is called an employment matrix or an employment relation if

$$
\sum_{i=1}^{n} \mathcal{A}(i, j)=1 \text { for any } j=1, \ldots, n
$$

holds. $\mathcal{A}(i, j)$ is the time spent by agent j in agent i 's firm
Example:

$$
\mathcal{A}=\left(\begin{array}{lll}
1 & \frac{3}{8} & 1 \\
0 & 0 & 0 \\
0 & \frac{5}{8} & 0
\end{array}\right)
$$

- Player 1 uses all his time in his own firm.
- Player 1 employs players 2 and 3 , with shares of time $\frac{3}{8}$ and 1 .
- Player 2 is employed by player $1\left(\frac{3}{8}\right)$ and player $3\left(\frac{5}{8}\right)$.

The employment relation

Problem

Determine the employment matrix if all players spend all their time in their own one-man firm.

The employment coalition function

On the basis of the employment relation \mathcal{A}, we define a part-time coalition

$$
s_{K}^{\mathcal{A}}:=\left(\sum_{j \in K} \mathcal{A}(1, j), \ldots, \sum_{j \in K} \mathcal{A}(n, j)\right) .
$$

We can now construct the employment coalition function $v_{\text {ext }}^{\mathcal{A}}$ by

$$
v_{\mathrm{ext}}^{\mathcal{A}}(K):=v^{\mathrm{ext}}\left(s_{K}^{\mathcal{A}}\right) .
$$

- The players from K employ themselves and/or other players within and outside K.
- These players are summarized in the part-time coalition $s_{K}^{\mathcal{A}}$.
- The worth of K is then the worth of this part-time coalition under the given extension.
\mathcal{A} represents the market $\longrightarrow v_{\text {ext }}^{\mathcal{A}}(K)=v(K)$
Notation: $v(s)$ instead of $v^{\ell}(s), v^{\mathcal{A}}(K)$ instead of $v_{\text {min }}^{\mathcal{A}}(K)$

Organizational inefficiency

definition

We build the team production costs, $t(0 \leq t \leq 1)$, into the employment coalition function. For $K \subseteq N$, we define

$$
\begin{aligned}
s^{K}:= & \left((1-t) \sum_{j \in K, j \neq 1} \mathcal{A}(1, j)+\mathcal{A}(1,1) \cdot\left\{\begin{array}{ll}
1, & 1 \in K \\
0, & 1 \notin K
\end{array},\right.\right. \\
& \ldots,(1-t) \sum_{j \in K, j \neq n} \mathcal{A}(n, j)+\mathcal{A}(n, n) \cdot\left\{\begin{array}{ll}
1, & n \in K \\
0, & n \notin K
\end{array}\right)
\end{aligned}
$$

and

$$
v^{\mathcal{A}, t}(K):=v\left(s^{K}\right)
$$

Our measure of welfare that incorporates organizational inefficiencies is given by

$$
v^{\mathcal{A}, t}(N) .
$$

Organizational inefficiency

the baker's worth I
$v^{\mathcal{A}, t}(B)=$
$\underbrace{v(B, C)}_{\text {worth of }}$
chocolate bread

$+\underbrace{v(B)}_{\text {worth of }} \underbrace{[\mathcal{A}(B, B)-\min (\mathcal{A}(B, B),(1-t) \mathcal{A}(B, C))]}_{\text {time spent by } \mathrm{B} \text { in his own firm }}$ not used for chocolate-bread production

Organizational inefficiency

the baker's worth II

Organizational inefficiency

effective time for chocolate-bread production

$\underbrace{\mathcal{A}(C, C)}_{\text {spent by } C}+\underbrace{(1-t) \mathcal{A}(B, C)}_{\text {effective time spent by } C}$ in B's firm

Organizational inefficiency

```
effective time for bread/for chocolate production
```

Now, the baker is effective $T^{C B}$ time units contributing to chocolate bread. He spoils $t \mathcal{A}(C, B)$ time units. Therefore, he will produce

$$
T^{B}=1-t \mathcal{A}(C, B)-T^{C B}
$$

units of bread. Similarly, the chocolate maker will produce

$$
T^{C}=1-t \mathcal{A}(B, C)-T^{C B}
$$

units of chocolate.

Organizational inefficiency

Summarizing, we obtain

$$
v^{\mathcal{A}, t}(B, C)=\underbrace{v(B, C)}_{\begin{array}{c}
\text { worth of } \\
\text { chocolate bread }
\end{array}} T^{C B}
$$

$+\underbrace{v(B)}_{\text {worth of }}$
simple bread
$+\underbrace{v(C)}_{\text {worth of }}$ chocolate
effective time spent by C producing chocolate

Market inefficiency I

Market $->\mathcal{A}(i, i)=1, i \in N$
Market efficiency $\longrightarrow>$ realizing any gains from trade without employing each other

- trusting and knowing: trivial partition
- not trusting or not knowing: atomic partiton

Market inefficiency II

Let $\operatorname{prob}(\mathcal{P})$ be the probability of a partition \mathcal{P}. Welfare without organizational inefficiencies:

$$
\sum_{\mathcal{P} \in \mathfrak{P}} \operatorname{prob}(\mathcal{P}) \sum_{C \in \mathcal{P}} v^{\mathcal{A}}(C) .
$$

Development of a one-parameter measure for market inefficiency by looking at rank orders

$$
\rho=\left(\rho_{1}, \rho_{2}, \ldots, \rho_{n}\right)
$$

- $b_{0}=1$ signifies a "break" before player ρ_{1}.
- $b_{n}=1$ signifies a break after player ρ_{n}.
- $K=\left\{\rho_{l}, \ldots, \rho_{j-1}, \rho_{j}\right\}$ is called effective if $b_{l-1}=1=b_{j}$ and $b_{l}=\ldots=b_{j-1}=0$.
- $\left(b_{1}, \ldots, b_{n-1}\right)$ specifies a partition of the players,

$$
\mathcal{P}:=\left\{C_{1}, \ldots, C_{m}\right\}
$$

into effective coalitions.

Market inefficiency II

Assume constant probability p for the $b_{j}(j=1, \ldots, n-1)$ being equal to 0 . $\mathcal{P}^{\prime} s$ probability under $p, \operatorname{prob}(\mathcal{P}, p)$, is given by

$$
\operatorname{prob}(\mathcal{P}, p)=\frac{1}{n!} \cdot \prod_{j=1}^{m}\left|C_{j}\right|!\cdot m!\cdot(1-p)^{m-1} \cdot p^{n-m}
$$

Two players:

$$
\begin{aligned}
\operatorname{prob}(\{\{1,2\}\}, p) & =p \\
\operatorname{prob}(\{\{1\},\{2\}\}, p) & =1-p
\end{aligned}
$$

Three players:

$$
\begin{aligned}
\operatorname{prob}(\{\{1,2,3\}\}, p) & =\frac{1}{6} \cdot 6 \cdot 1 \cdot 1 \cdot p^{2}=p^{2} \\
\operatorname{prob}(\{\{1\},\{2,3\}\}, p) & =\frac{1}{6} \cdot 2 \cdot 2 \cdot(1-p) \cdot p=\frac{2}{3}(1-p) p \\
\operatorname{prob}(\{\{1\},\{2\},\{3\}\}, p) & =\frac{1}{6} \cdot 1 \cdot 6 \cdot(1-p)^{2} \cdot 1=(1-p)^{2} .
\end{aligned}
$$

Putting market and organizational ineffiencies together

Welfare with organizational inefficiencies:

$$
\sum_{\mathcal{P} \in \mathfrak{P}} \operatorname{prob}(\mathcal{P}) \sum_{C \in \mathcal{P}} v^{\mathcal{A}}(C) .
$$

If we have only two players (baker and chocolate maker), we obtain

$$
\begin{aligned}
\pi= & \operatorname{prob}(\{\{B\},\{C\}\})\left[v^{\mathcal{A}, t}(B)+v^{\mathcal{A}, t}(C)\right] \\
& +\operatorname{prob}(\{\{B, C\}\}) v^{\mathcal{A}, t}(B, C)
\end{aligned}
$$

Welfare maximization

We assume that employers and workers will agree on wages that exploit all welfare potential while organizational and market inefficiencies persist. That is, we look for

$$
\arg \max _{\mathcal{A}} \sum_{\mathcal{P} \in \mathfrak{P}} \operatorname{prob}(\mathcal{P}) \sum_{C \in \mathcal{P}} v^{\mathcal{A}, t}(C) .
$$

The two-player case I

Assuming superadditivity, $u:=v(B, C)-v(B)-v(C) \geq 0$, we find:

- Total cross employment $(\mathcal{A}(B, C)=1=\mathcal{A}(C, B))$ is never the unique best outcome.
- If v is inessential (i.e. $u=0$), the market outcome $(\mathcal{A}(B, B)=1$, $\mathcal{A}(B, C)=0)$ is the unique best solution for $t>0$, and $v(C)>0$.
- If the market is efficient (i.e., $p=1$), the market outcome $(\mathcal{A}(B, B)=1, \mathcal{A}(B, C)=0)$ is the unique best solution for $t>0$, and one of the following conditions:
- $v(C)>0$,
- $u>0$.
- $t=0, p<1$, and $u>0 \longrightarrow>$ the set of best solutions is the continuum defined by

$$
\mathcal{A}(B, B)=\mathcal{A}(B, C)
$$

- $p=1$ and $t=0$ imply that every employment matrix is optimal.
- $t=0$ and $u=0$ imply that every employment matrix is optimal.

The two-player case II

$u>0, p<1$, and $t>0 \longrightarrow>$ two cases:

- Either, we have $v(B, C) \leq 2 v(B) \longrightarrow>$ market is the unique optimal outcome for sufficiently high values of p and t. Otherwise, the baker employs the chocolate maker (note that $u>0$ and $v(B, C) \leq 2 v(B)$ imply $v(B)>v(C))$.

The two-player case III

- ...or, we have $v(B, C)>2 v(B) \longrightarrow$ partial cross-employment at $\mathcal{A}(B, B)=\frac{1-t}{2-t}$ and $\mathcal{A}(B, C)=\frac{1}{2-t}$ is the unique optimal outcome for $p<1-\frac{t v(B, C)}{u(2-t)}$ and $0<t<1-\frac{v(B)}{v(B, C)-v(B)}$. Otherwise, result similar to previous slide.

The two-player case IV

The middle point is given by $\mathcal{A}(B, B)=\frac{1-t}{2-t}$ and $\mathcal{A}(B, C)=\frac{1}{2-t}$. For this employment matrix, we have

- $\underbrace{\mathcal{A}(B, B)}=\underbrace{(1-t) \mathcal{A}(B, C)}$,
time spent by $B \quad$ effective time spent by C
in his own firm in B's firm
- $\underbrace{1-\mathcal{A}(B, C)}_{\text {time spent by } C}=\underbrace{(1-t)(1-\mathcal{A}(B, B))}_{\text {effective time spent by } \mathrm{B}}$ and
in his own firm in C's firm

$$
\underbrace{\mathcal{A}(B, B)}+\underbrace{(1-t)(1-\mathcal{A}(B, B))}
$$

time spent by B
in his own firm
effective time spent by B in C's firm

$$
=\underbrace{1-\mathcal{A}(B, C)}_{\substack{\text { time spent by } C \\ \text { in his own firm }}}+
$$

The two-player case IV

For the production of chocolate bread one needs both the baker's and the chocolate maker's effective time.

- By concentrating production in the baker's firm $(\mathcal{A}(B, B)=1=\mathcal{A}(B, C))$ there is a relative shortage of chocolate production time.
- Similarly, if the chocolate maker employs the baker, there is a shortage of baking time.

The middle point avoids these shortages thus ensuring that chocolate bread is produced.

