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Introduction I

Subordination = superior-subordinate relationship

permission (no action without superior)

use (by superior)
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Introduction II
permission

game v on N = f1, 2, 3g , 1 needs 2�s permission, rank order (3, 1, 2)
The marginal contributions are

the standard one for player 3,

no contribution for player 1 because player 2 is not present yet to give
his permission, and

the aggregate contribution v (f1, 2, 3g)� v (f3g) for player 2
because he brings to bear both player 1�s and his own contribution.

v = vf1g,f2,3g � > permission payo¤s
� 1
2 ,
1
2 , 0
�
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Introduction III
use

game v on N = f1, 2, 3g , 2 uses 1, rank order (3, 2, 1)
The marginal contributions are

the standard one for player 3,

the aggregate contribution v (f1, 2, 3g)� v (f3g) for player 2
because he uses both his own and also player 1�s productivity, and

no contribution for player 1.

v = vf1g,f2,3g � > use payo¤s
� 1
6 ,
2
3 ,
1
6

�
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Subordination structures
de�nition

De�nition

Let N be a set (of players). A function S : N ! 2N obeying i /2 S (i) is
called a subordination structure or a subordination relation. i is superior, j
subordinate. A subordination structure SC gives rise to a clique C � N if
SC is de�ned by

SC (i) =
�
Cn fig , i 2 C
∅, i /2 C

Problem
De�ne the subordination structure S on N = f1, 2, 3g where player 1 is
the superior of players 2 and 3 while player 3 is player 2�s subordinate.
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Subordination structures
chain of command

De�nition (chain of command)

Let S be a subordination structure on N. The tuple
T (i ! j) = hi = i0, ..., j = ik i is called a trail in S from i to j (a i � j
trail) if i`+1 2 S (i`) holds for all ` = 0, . . . , k � 1. The set of such trails
is denoted by T (i ! j) .
The set of player i�s direct or indirect subordinates is denoted by

Ŝ (i) := fj 2 Nn fig : a trail T (i ! j) existsg .

The set of player j�s direct or indirect superiors is denoted by

Ŝ�1 (j) := fi 2 Nn fjg : a trail T (i ! j) existsg .
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Subordination structures
coalitions rather than individual players

The de�nitions of S , S�1, Ŝ , and Ŝ�1 can be applied to coalitions rather
than individual players in the obvious manner:

S (K ) : = [i2KS (i) ,
S�1 (K ) : = [i2KS�1 (i) ,
Ŝ (K ) : = [i2K Ŝ (i) ,

Ŝ�1 (K ) : = [i2K Ŝ�1 (i) .
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Subordination structures
subordination game

De�nition (subordination game)
For any player set N, every coalition function v 2 VN and any
subordination structure S 2 SN , (v ,S) is called a subordination game.
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Hierarchies I
de�nition

De�nition (hierarchy)

A subordination structure S 2 SN is called a hierarchy on N if
S is acyclic, i.e., if i /2 Ŝ (i) holds, and
S is connected, i.e., there exists a player i0 2 N with
Ŝ (i0) = Nn fi0g .

If, on top,
��S�1 (j)�� = 1 for all j 6= i0 holds, too, S is called a unique

hierarchy.

Harald Wiese (Chair of Microeconomics) Applied cooperative game theory: May 2010 10 / 36



Hierarchies II
hierarchies? unique hierarchies?

(a) 2

4

1 3

5

(b) 2
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(d) 2
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Hierarchies III
domination

De�nition (domination)

Let (v ,S) be a hierarchy game with some player i0 ful�lling
S (i0) = Nn fi0g. A player i 2 N dominates another player j 2 N, j 6= i ,
if i is contained in every trail T (i0, j). By S̄ (i) we denote the set of all
players that player i dominates. S̄�1 (j) :=

�
i 2 N : j 2 S̄ (i)

	
is called

the j�s set of dominating players.

Problem
If S is a unique hierarchy, domination of j by i can be expressed by ... .
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Hierarchies IV
deleting link

Starting with a hierarchy S and considering a player j with at least two
superiors (

��S�1 (j)�� � 2), the deletion of the directed link between players
h and j leads to the subordination structure S�(h,j) which is de�ned by

S�(h,j) (i) =
�
S (i) n fjg , i = h
S (i) , i 6= h

Do you see that S�(h,j) is a hierarchy if S is one? How about deleting
links from unique hierarchies?
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Autonomous coalitions

De�nition (autonomous coalition)

Let S be a subordination structure on N. A coalition K � N is called
autonomous if Ŝ�1 (K ) � K holds.

Problem
Consider the subordination structure S on N = f1, ..., 5g given by

S (1) = f3g ,S (2) = ∅,S (3) = f4g ,
S (4) = f1g ,S (5) = f3g .

Find all the autonomous coalitions! How about the coalition f1, 3, 4g?
How about the empty set? Union or intersection of two autonomous sets?
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Autonomous subset

De�nition (autonomous subset)
Let v 2 VN be a coalition function, let S 2 SN be a subordination
structure, and K � N be a coalition. K�s autonomous subset aut (K ) is
de�ned by

aut (K ) :=
[
A�K ,

A autonomous

A.

A coalition�s autonomous subset is its largest autonomous subset.
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The permission game

De�nition (permission game)

Let (v ,S) be a subordination game. The permission game based on this
subordination game is the coalition function vS which is de�ned by

vS (K ) = v (aut (K )) .

Problem
Let K be an autonomous coalition under the subordination structure S .
Determine vS (K )!

Problem

Determine the permission games uSaf1,2g and u
Sb
f1,2g for N = f1, 2, 3g and

Sa (1) = f2g ,Sa (2) = f3g ,Sa (3) = ∅ and

Sb (1) = f2g ,Sb (2) = ∅,Sb (3) = f1g .
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The permission game
summing permission games

Lemma

Let v and w be coalition functions on N. The permission game (v + w)S

equals the sum of the permission games vS + wS .

The proof is not di¢ cult and follows from

(v + w)S (K ) = (v + w) (aut (K )) (de�nition permission game)

= v (aut (K )) + w (aut (K )) (vector sum)

= vS (K ) + wS (K ) (de�nition permission game).
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The permission game
inheritance of monotonicity

Lemma

Let S be a subordination structure. If v is a monotonic coalition function,
so is the permission game vS .

Consider two coalitions E and F with E � F for a proof. Because of

aut (E ) =
[
A�E ,

A autonomous

A �
[
A�F ,

A autonomous

A = aut (F )

we have vS (E ) = v (aut (E )) � v (aut (F )) = vS (F ) .
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The permission value

De�nition (permission value)
The permission value is the solution function Per given by

Peri (v ,S) = Shi
�
vS
�
, i 2 N (v)

where vS is the permission game based on S .

Lemma
We have Per (v ,S) = Sh (v) for the null subordination structure S .

Problem
Permission payo¤s for N = f1, 2, 3g , the subordination structure S given
by S (1) = f2g, S (2) = ∅,S (3) = f1g and the coalition functions

uf1,2g and

uf1,3g.
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The permission value
clique subordination structures

Lemma

Let C � N be a clique and let SC be the associated subordination
structure. Then, we have Peri

�
v ,SC

�
= Perj

�
v ,SC

�
for all i , j 2 C .
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E¤ective coalitions

De�nition (e¤ective coalition)

Let S be a subordination structure on N. A coalition K � N is called
e¤ective if S (K ) � K holds.

Problem

Do you see that a coalition K is e¤ective if and only if Ŝ (K ) � K holds?

Problem
Consider the subordination structure S on N = f1, ..., 5g given by

S (1) = f3g ,S (2) = ∅,S (3) = f4g ,
S (4) = f1g ,S (5) = f3g .

Find all the e¤ective coalitions! How about the coalition f1, 3, 4g? How
about the empty set? Union or intersection of two autonomous sets?
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E¤ective superset

De�nition (e¤ective superset)
Let v 2 VN be a coalition function, let S 2 SN be a subordination
structure, and K � be a coalition. K�s e¤ective superset e¤ (K ) is
de�ned by

e¤ (K ) := K[Ŝ (K ) .

Thus, a coalition�s e¤ective superset ist its smallest e¤ective superset.
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Use game
de�nition

De�nition (use game)

Let (v ,S) be a subordination game. The use game based on this
subordination game is the coalition function vS which is de�ned by

vS (K ) = v (e¤ (K )) .

Problem

Determine the use games uSaf1,2g and u
Sb
f1,2g for N = f1, 2, 3g and

Sa (1) = f2g ,Sa (2) = f3g ,Sa (3) = ∅ and

Sb (1) = f2g ,Sb (2) = ∅,Sb (3) = f1g .
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Use game
adding uses games, inheritance of monotonicity

Problem

Show (v + w)S = vS + wS for the use game.

Problem

If v is a monotonic coalition function, so is the use game vS .
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The use value

De�nition (use value)
The use value is the solution function Use given by

Usei (v ,S) = Shi
�
vS
�
, i 2 N (v)

where vS is the use game based on S .

Lemma
We have Use (v ,S) = Sh (v) for the null subordination structure S .

Problem
Use payo¤s for N = f1, 2, 3g and the subordination structure S given by
S (1) = f2g, S (2) = ∅,S (3) = f1g and the coalition functions

uf1,2g and

uf1,3g.
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Clique and full subordination structures

Lemma

Let C � N be a clique and let SC be the associated subordination
structure. Then, we have Usei

�
v ,SC

�
= Usej

�
v ,SC

�
for all i , j 2 C .

Corollary

For the (full) subordination structure S full : N ! 2N de�ned by
S full (i) = Nn fig for all i 2 N, we have

Use
�
v ,S full

�
= Per

�
v ,S full

�
=

�
v (N)
n

, ...,
v (N)
n

�
for all coalition functions v 2 VN .
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Important axioms for permissions and use values I

De�nition (additivity axiom)

A solution function σ on Vsub
N is said to obey the additivity axiom if we

have
σ (v + w ,S) = σ (v ,S) + σ (w ,S)

for any two coalition functions v ,w 2 V with N (v) = N (w) and any
subordination S 2 SN (v ).

Problem
Does the additivity axiom hold for the permission value and/or the use
value?
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Important axioms for permissions and use values II

De�nition (null-player axiom)

A solution function σ on Vsub
N is said to obey the null-player axiom if we

have
σi (v ,S) = 0

for all subordination games (v ,L) and for every null player i 2 N.

The null-player axiom does not hold for our two values �we have seen
exercises to prove it.
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Important axioms for permissions and use values III
inessential-player axiom �de�nition

De�nition (inessential player)

Let (v ,S) be a subordination game. A player i 2 N is called inessential
(with respect to (v ,S)) if

v (K ) = v (K [ fjg)

holds for all K � N and for all j 2 fig [Ŝ (i) .

De�nition (inessential-player axiom)

A solution function σ on Vsub
N is said to obey the inessential-player axiom if

σi (v ,S) = 0

holds for all subordination games (v ,S) and for every inessential player
i 2 N.
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Important axioms for permissions and use values III
inessential-player axiom � claim

Permission value: Let K � N be any coalition that does not contain i .
The set ∆K := aut (K [ fig) naut (K ) contains

player i if i does not have any superiors outside and
some players from K for whom i is a superior.

Thus, we �nd ∆Kn fig = K \ Ŝ (i) and
vS (K [ fig)� vS (K )

= v (aut (K [ fig))� v (aut (K ))
= ∑

j2∆K
MCKjj (v) = ∑

j2fig[(K\Ŝ(i ))
MCKjj (v)

with suitably chosen Kj � N. Since i is inessential, all these marginal
contributions are zero so that i is indeed a null palyer with respect to vS .

Proof.
Show that the use value obeys the inessential-player axiom.
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Important axioms for permissions and use values IV
necessary-player axiom �de�nition

De�nition (necessary player)

Let (v ,S) be a subordination game. A player i 2 N is called necessary
(with respect to (v ,S)) if

v (K ) = 0

holds for all K � Nn fig .

De�nition (necessary-player axiom)

A solution function σ on Vsub
N is said to obey the necessary-player axiom if

σi (v ,S) � σj (v ,S)

holds for every monotonic coalition function v and for every necessary
player i 2 N.
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Important axioms for permissions and use values IV
necessary-player axiom � claim

According to van den Brink (??), the permission value ful�lls the necessary
player axiom.
However, the use value does not. Consider N = f1, 2, 3g , the unanimity
game uf2,3g and the hierarchy S given by S (1) = f2g and S (2) = f3g .
The productive player 3 is a necessary player (as is player 2). But his
payo¤ is zero which you can see by a rank-order argument. If player 3 is
�rst, the productive player 2 is still missing so that player 3�s marginal
contribution is 0. If players 1 or 2 are �rst, both their marginal
contributions are 1. Therefore, we �nd the use payo¤s

� 1
2 ,
1
2 , 0
�
.
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Important axioms for permissions and use values V

De�nition (e¢ ciency axiom)

A solution function σ on Vsub
N is said to obey the e¢ ciency axiom if

∑
i2N

σi (v ,S) = v (N)

holds for all subordination games (v ,S).

Problem
Does the e¢ ciency axiom hold for the permission value and/or the use
value?
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Important axioms for permissions and use values VII
dominant players and superior players

De�nition (dominant player)

A solution function σ on Vh
N (!) is said to obey the dominant-player

axiom if we have
σi (v ,S) � σj (v ,S)

for every monotonic coalition function v whenever player i dominates j .

De�nition (superior player)

A solution function σ on Vsub
N is said to obey the superior-player axiom if

we have
σi (v ,S) � σj (v ,S)

for every monotonic coalition function v and for j 2 S (i).

Hints: which axiom is stronger? consider the marginal contributions with
respect to coalitions E � Nn fi , jg
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Important axioms for permissions and use values VIII

De�nition (balanced contributions)

A solution function σ on Vh
N (!) is said to obey the balanced-contribution

axiom if, for all players h, j , g 2 N with h 6= g and j 2 S (g) \ S (h), we
have

σj (v ,S)�σj

�
v ,S�(h,j)

�
= σi (v ,S)�σi

�
v ,S�(h,j)

�
for all i 2 fgg [S̄�1 (g)

holds for all subordination games (v ,S).

Note that the equality does not only apply to g himself but also to all
players that dominate g (the players from S̄�1 (g)).

Problem
Does the balanced-contribution axiom hold for the permission value
and/or the use value?
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Axiomatizations of the permission value

Theorem (�rst axiomatization of the permission value)
The permission value on hierarchies is axiomatized by the additivity axiom,
the inessential-player axiom, the necessary-player axiom, the e¢ ciency
axiom, the dominant-player axiom, and the balanced-contribution axiom.

Theorem (second axiomatization of the permission value)
The permission value on subordination structures is axiomatized by the
additivity axiom, the inessential-player axiom, the necessary-player axiom,
the e¢ ciency axiom, and the superior-player axiom.
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