Applied cooperative game theory: Permission and use values

Harald Wiese

University of Leipzig

May 2010

Overview "Permission and use values"

- Introduction
- Subordination structures
- Hierarchies
- Autonomous coalitions and the permission game
- Effective coalitions and the use game
- Axioms

Introduction I

 $Subordination = {\it superior-subordinate\ relationship}$

- permission (no action without superior)
- use (by superior)

permission

game v on $N = \{1, 2, 3\}$, 1 needs 2's permission, rank order (3, 1, 2)The marginal contributions are

- the standard one for player 3,
- no contribution for player 1 because player 2 is not present yet to give his permission, and
- the aggregate contribution v ({1, 2, 3}) v ({3}) for player 2 because he brings to bear both player 1's and his own contribution.

$$v = v_{\{1\},\{2,3\}}$$
 —> permission payoffs $(\frac{1}{2}, \frac{1}{2}, 0)$

Introduction III

game v on $N = \{1, 2, 3\}$, 2 uses 1, rank order (3, 2, 1)The marginal contributions are

- the standard one for player 3,
- the aggregate contribution $v(\{1, 2, 3\}) v(\{3\})$ for player 2 because he uses both his own and also player 1's productivity, and
- no contribution for player 1.

$$v = v_{\{1\},\{2,3\}} \longrightarrow$$
 use payoffs $(\frac{1}{6}, \frac{2}{3}, \frac{1}{6})$

Subordination structures

definition

Definition

Let N be a set (of players). A function $S: N \to 2^N$ obeying $i \notin S(i)$ is called a subordination structure or a subordination relation. *i* is superior, *j* subordinate. A subordination structure S^C gives rise to a clique $C \subseteq N$ if S^C is defined by

$$\mathcal{S}^{C}(i) = \begin{cases} C \setminus \{i\}, & i \in C \\ \emptyset, & i \notin C \end{cases}$$

Problem

Define the subordination structure S on $N = \{1, 2, 3\}$ where player 1 is the superior of players 2 and 3 while player 3 is player 2's subordinate.

chain of command

Definition (chain of command)

Let S be a subordination structure on N. The tuple $T(i \rightarrow j) = \langle i = i_0, ..., j = i_k \rangle$ is called a trail in S from i to j (a i - jtrail) if $i_{\ell+1} \in S(i_\ell)$ holds for all $\ell = 0, ..., k - 1$. The set of such trails is denoted by $\mathbb{T}(i \rightarrow j)$. The set of player i's direct or indirect subordinates is denoted by

$$\hat{\mathcal{S}}\left(i
ight):=\left\{j\in extsf{N}ig \left\{i
ight\}: extsf{a} extsf{ trail } T\left(i
ightarrow j
ight) extsf{ exists}
ight\}.$$

The set of player j's direct or indirect superiors is denoted by

$$\hat{\mathcal{S}}^{-1}\left(j
ight):=\left\{i\in\mathsf{N}ig\setminus\left\{j
ight\}:\mathsf{a trail}\ T\left(i
ightarrow j
ight)\ \mathsf{exists}
ight\}.$$

Subordination structures

coalitions rather than individual players

The definitions of S, S^{-1} , \hat{S} , and \hat{S}^{-1} can be applied to coalitions rather than individual players in the obvious manner:

$$\begin{aligned} \mathcal{S}\left(\mathbf{K}\right) &:= \cup_{i \in \mathbf{K}} \mathcal{S}\left(i\right), \\ \mathcal{S}^{-1}\left(\mathbf{K}\right) &:= \cup_{i \in \mathbf{K}} \mathcal{S}^{-1}\left(i\right), \\ \hat{\mathcal{S}}\left(\mathbf{K}\right) &:= \cup_{i \in \mathbf{K}} \hat{\mathcal{S}}\left(i\right), \\ \hat{\mathcal{S}}^{-1}\left(\mathbf{K}\right) &:= \cup_{i \in \mathbf{K}} \hat{\mathcal{S}}^{-1}\left(i\right). \end{aligned}$$

subordination game

Definition (subordination game)

For any player set N, every coalition function $v \in \mathbb{V}_N$ and any subordination structure $S \in \mathfrak{S}_N$, (v, S) is called a subordination game.

Definition (hierarchy)

A subordination structure $\mathcal{S} \in \mathfrak{S}_N$ is called a hierarchy on N if

- \mathcal{S} is acyclic, i.e., if $i \notin \hat{\mathcal{S}}(i)$ holds, and
- S is connected, i.e., there exists a player $i_0 \in N$ with $\hat{S}(i_0) = N \setminus \{i_0\}$.

If, on top, $\left|\mathcal{S}^{-1}\left(j\right)\right|=1$ for all $j
eq i_0$ holds, too, \mathcal{S} is called a unique hierarchy.

Hierarchies II hierarchies? unique hierarchies?

domination

Definition (domination)

Let (v, S) be a hierarchy game with some player i_0 fulfilling $S(i_0) = N \setminus \{i_0\}$. A player $i \in N$ dominates another player $j \in N, j \neq i$, if i is contained in every trail $T(i_0, j)$. By $\bar{S}(i)$ we denote the set of all players that player i dominates. $\bar{S}^{-1}(j) := \{i \in N : j \in \bar{S}(i)\}$ is called the j's set of dominating players.

Problem

If $\mathcal S$ is a unique hierarchy, domination of j by i can be expressed by

Starting with a hierarchy S and considering a player j with at least two superiors $(|S^{-1}(j)| \ge 2)$, the deletion of the directed link between players h and j leads to the subordination structure $S_{-(h,j)}$ which is defined by

$$\mathcal{S}_{-(h,j)}(i) = \left\{ egin{array}{ll} \mathcal{S}(i) \setminus \{j\}, & i = h \\ \mathcal{S}(i), & i \neq h \end{array}
ight.$$

Do you see that $S_{-(h,j)}$ is a hierarchy if S is one? How about deleting links from unique hierarchies?

Definition (autonomous coalition)

Let S be a subordination structure on N. A coalition $K \subseteq N$ is called autonomous if $\hat{S}^{-1}(K) \subseteq K$ holds.

Problem

Consider the subordination structure ${\mathcal S}$ on $N=\{1,...,5\}$ given by

$$\begin{split} \mathcal{S} \, (1) &= & \{3\} \, , \, \mathcal{S} \, (2) = \oslash , \, \mathcal{S} \, (3) = \{4\} \, , \\ \mathcal{S} \, (4) &= & \{1\} \, , \, \mathcal{S} \, (5) = \{3\} \, . \end{split}$$

Find all the autonomous coalitions! How about the coalition $\{1, 3, 4\}$? How about the empty set? Union or intersection of two autonomous sets?

Definition (autonomous subset)

Let $v \in \mathbb{V}_N$ be a coalition function, let $S \in \mathfrak{S}_N$ be a subordination structure, and $K \subseteq N$ be a coalition. *K*'s autonomous subset *aut*(*K*) is defined by

$$aut(K) := \bigcup_{\substack{A \subseteq K, \\ A ext{ autonomous}}} A.$$

A coalition's autonomous subset is its largest autonomous subset.

Definition (permission game)

Let (v, S) be a subordination game. The permission game based on this subordination game is the coalition function v^S which is defined by

$$oldsymbol{v}^{\mathcal{S}}\left(\mathcal{K}
ight) =oldsymbol{v}\left(oldsymbol{aut}\left(\mathcal{K}
ight)
ight)$$
 .

Problem

Let K be an autonomous coalition under the subordination structure S. Determine $v^{S}(K)$!

Problem

Determine the permission games $u_{\{1,2\}}^{\mathcal{S}_a}$ and $u_{\{1,2\}}^{\mathcal{S}_b}$ for $N=\{1,2,3\}$ and

$$\begin{aligned} \mathcal{S}_{a}\left(1\right) &= \left\{2\right\}, \mathcal{S}_{a}\left(2\right) = \left\{3\right\}, \mathcal{S}_{a}\left(3\right) = \emptyset \text{ and } \\ \mathcal{S}_{b}\left(1\right) &= \left\{2\right\}, \mathcal{S}_{b}\left(2\right) = \emptyset, \mathcal{S}_{b}\left(3\right) = \left\{1\right\}. \end{aligned}$$

Harald Wiese (Chair of Microeconomics)

summing permission games

Lemma

Let v and w be coalition functions on N. The permission game $(v + w)^S$ equals the sum of the permission games $v^S + w^S$.

The proof is not difficult and follows from

$$(v+w)^{\mathcal{S}}(K) = (v+w) (aut (K)) \text{ (definition permission game)} = v (aut (K)) + w (aut (K)) \text{ (vector sum)} = v^{\mathcal{S}}(K) + w^{\mathcal{S}}(K) \text{ (definition permission game).}$$

Lemma

Let S be a subordination structure. If v is a monotonic coalition function, so is the permission game v^{S} .

Consider two coalitions E and F with $E \subseteq F$ for a proof. Because of

$$aut(E) = \bigcup_{\substack{A \subseteq E, \\ A \text{ autonomous}}} A \subseteq \bigcup_{\substack{A \subseteq F, \\ A \text{ autonomous}}} A = aut(F)$$

we have $v^{\mathcal{S}}(E) = v(aut(E)) \leq v(aut(F)) = v^{\mathcal{S}}(F)$.

Definition (permission value)

The permission value is the solution function Per given by

$$extsf{Per}_{i}\left(\mathbf{v},\mathcal{S}
ight) =Sh_{i}\left(\mathbf{v}^{\mathcal{S}}
ight)$$
 , $i\in N\left(\mathbf{v}
ight)$

where v^{S} is the permission game based on S.

Lemma

We have Per(v, S) = Sh(v) for the null subordination structure S.

Problem

Permission payoffs for N = {1,2,3}, the subordination structure S given by S (1) = {2}, S (2) = \emptyset , S (3) = {1} and the coalition functions

• $u_{\{1,2\}}$ and

• $U_{\{1,3\}}$.

Harald Wiese (Chair of Microeconomics)

The permission value

clique subordination structures

Lemma

Let $C \subseteq N$ be a clique and let S^{C} be the associated subordination structure. Then, we have $Per_i(v, S^{C}) = Per_j(v, S^{C})$ for all $i, j \in C$.

Definition (effective coalition)

Let S be a subordination structure on N. A coalition $K \subseteq N$ is called effective if $S(K) \subseteq K$ holds.

Problem

Do you see that a coalition K is effective if and only if $\hat{S}(K) \subseteq K$ holds?

Problem

Consider the subordination structure ${\mathcal S}$ on $N=\{1,...,5\}$ given by

$$\begin{array}{rcl} \mathcal{S} \left(1 \right) & = & \left\{ 3 \right\}, \mathcal{S} \left(2 \right) = \mathcal{O}, \mathcal{S} \left(3 \right) = \left\{ 4 \right\}, \\ \mathcal{S} \left(4 \right) & = & \left\{ 1 \right\}, \mathcal{S} \left(5 \right) = \left\{ 3 \right\}. \end{array}$$

Find all the effective coalitions! How about the coalition $\{1, 3, 4\}$? How about the empty set? Union or intersection of two autonomous sets?

Definition (effective superset)

Let $v \in \mathbb{V}_N$ be a coalition function, let $S \in \mathfrak{S}_N$ be a subordination structure, and $K \subseteq$ be a coalition. K's effective superset *eff* (K) is defined by

eff
$$(K):=K\cup \hat{\mathcal{S}}\left(K
ight)$$
 .

Thus, a coalition's effective superset ist its smallest effective superset.

Definition (use game)

Let (v, S) be a subordination game. The use game based on this subordination game is the coalition function v^S which is defined by

$$v^{\mathcal{S}}(K) = v(eff(K)).$$

Problem

Determine the use games
$$u_{\{1,2\}}^{\mathcal{S}_a}$$
 and $u_{\{1,2\}}^{\mathcal{S}_b}$ for $N=\{1,2,3\}$ and

$$\begin{array}{lll} \mathcal{S}_{a}\left(1\right) &=& \left\{2\right\}, \mathcal{S}_{a}\left(2\right) = \left\{3\right\}, \mathcal{S}_{a}\left(3\right) = \oslash \text{ and} \\ \mathcal{S}_{b}\left(1\right) &=& \left\{2\right\}, \mathcal{S}_{b}\left(2\right) = \oslash, \mathcal{S}_{b}\left(3\right) = \left\{1\right\}. \end{array}$$

Use game adding uses games, inheritance of monotonicity

Problem

Show
$$(v + w)^{S} = v^{S} + w^{S}$$
 for the use game.

Problem

If v is a monotonic coalition function, so is the use game v^{S} .

The use value

Definition (use value)

The use value is the solution function Use given by

$$\mathit{Use}_{i}\left(\mathit{v},\mathcal{S}
ight)=\mathit{Sh}_{i}\left(\mathit{v}^{\mathcal{S}}
ight)$$
 , $i\in\mathit{N}\left(\mathit{v}
ight)$

where $v^{\mathcal{S}}$ is the use game based on \mathcal{S} .

Lemma

We have Use(v, S) = Sh(v) for the null subordination structure S.

Problem

Use payoffs for N = {1,2,3} and the subordination structure S given by $S(1) = \{2\}$, $S(2) = \emptyset$, $S(3) = \{1\}$ and the coalition functions

• $u_{\{1,2\}}$ and

• $U_{\{1,3\}}$.

Harald Wiese (Chair of Microeconomics)

Lemma

Let $C \subseteq N$ be a clique and let S^{C} be the associated subordination structure. Then, we have $Use_{i}(v, S^{C}) = Use_{j}(v, S^{C})$ for all $i, j \in C$.

Corollary

For the (full) subordination structure $S^{full} : N \to 2^N$ defined by $S^{full}(i) = N \setminus \{i\}$ for all $i \in N$, we have

$$Use\left(v, \mathcal{S}^{full}\right) = Per\left(v, \mathcal{S}^{full}\right) = \left(\frac{v\left(N\right)}{n}, ..., \frac{v\left(N\right)}{n}\right)$$

for all coalition functions $v \in \mathbb{V}_N$.

Definition (additivity axiom)

A solution function σ on $\mathbb{W}_N^{\mathrm{sub}}$ is said to obey the additivity axiom if we have

$$\sigma\left(\mathbf{v}+\mathbf{w},\mathcal{S}\right)=\sigma\left(\mathbf{v},\mathcal{S}\right)+\sigma\left(\mathbf{w},\mathcal{S}\right)$$

for any two coalition functions $v, w \in \mathbb{V}$ with N(v) = N(w) and any subordination $S \in \mathfrak{S}_{N(v)}$.

Problem

Does the additivity axiom hold for the permission value and/or the use value?

Definition (null-player axiom)

A solution function σ on $\mathbb{V}_N^{\mathrm{sub}}$ is said to obey the null-player axiom if we have

$$\sigma_i(\mathbf{v},\mathcal{S})=\mathbf{0}$$

for all subordination games (v, \mathcal{L}) and for every null player $i \in N$.

The null-player axiom does not hold for our two values – we have seen exercises to prove it.

Important axioms for permissions and use values III inessential-player axiom – definition

Definition (inessential player)

Let (v, S) be a subordination game. A player $i \in N$ is called inessential (with respect to (v, S)) if

$$\mathsf{v}(\mathsf{K}) = \mathsf{v}(\mathsf{K} \cup \{j\})$$

holds for all $K \subseteq N$ and for all $j \in \{i\} \cup \hat{S}(i)$.

Definition (inessential-player axiom)

A solution function σ on $\mathbb{V}_N^{\mathsf{sub}}$ is said to obey the inessential-player axiom if

$$\sigma_i(\mathbf{v},\mathcal{S})=\mathbf{0}$$

holds for all subordination games (v, S) and for every inessential player $i \in N$.

Important axioms for permissions and use values III inessential-player axiom – claim

Permission value: Let $K \subseteq N$ be any coalition that does not contain *i*. The set $\Delta K := aut (K \cup \{i\}) \setminus aut (K)$ contains

- player *i* if *i* does not have any superiors outside and
- some players from K for whom i is a superior.

Thus, we find $\Delta K \setminus \{i\} = K \cap \hat{S}(i)$ and

$$v^{\mathcal{S}}(K \cup \{i\}) - v^{\mathcal{S}}(K)$$

$$= v(aut(K \cup \{i\})) - v(aut(K))$$

$$= \sum_{j \in \Delta K} MC_{j}^{K_{j}}(v) = \sum_{j \in \{i\} \cup (K \cap \hat{\mathcal{S}}(i))} MC_{j}^{K_{j}}(v)$$

with suitably chosen $K_j \subseteq N$. Since *i* is inessential, all these marginal contributions are zero so that *i* is indeed a null palyer with respect to v^S .

Proof.

Show that the use value obeys the inessential-player axiom.

Important axioms for permissions and use values IV <u>necessary-player axiom</u> – definition

Definition (necessary player)

Let (v, S) be a subordination game. A player $i \in N$ is called necessary (with respect to (v, S)) if

$$v(K) = 0$$

holds for all $K \subseteq N \setminus \{i\}$.

Definition (necessary-player axiom)

A solution function σ on $\mathbb{V}_N^{\mathsf{sub}}$ is said to obey the necessary-player axiom if

$$\sigma_{i}\left(\mathbf{v},\mathcal{S}\right)\geq\sigma_{j}\left(\mathbf{v},\mathcal{S}\right)$$

holds for every monotonic coalition function v and for every necessary player $i \in N$.

Important axioms for permissions and use values IV necessary-player axiom – claim

According to van den Brink (??), the permission value fulfills the necessary player axiom.

However, the use value does not. Consider $N = \{1, 2, 3\}$, the unanimity game $u_{\{2,3\}}$ and the hierarchy S given by $S(1) = \{2\}$ and $S(2) = \{3\}$. The productive player 3 is a necessary player (as is player 2). But his payoff is zero which you can see by a rank-order argument. If player 3 is first, the productive player 2 is still missing so that player 3's marginal contribution is 0. If players 1 or 2 are first, both their marginal contributions are 1. Therefore, we find the use payoffs $(\frac{1}{2}, \frac{1}{2}, 0)$.

Definition (efficiency axiom)

A solution function σ on $\mathbb{V}_N^{\mathrm{sub}}$ is said to obey the efficiency axiom if

$$\sum_{i\in\mathbb{N}}\sigma_{i}\left(\mathbf{v},\mathcal{S}\right)=\mathbf{v}\left(\mathbf{N}\right)$$

holds for all subordination games (v, S).

Problem

Does the efficiency axiom hold for the permission value and/or the use value?

Important axioms for permissions and use values VII

dominant players and superior players

Definition (dominant player)

A solution function σ on \mathbb{V}_N^h (!) is said to obey the dominant-player axiom if we have

$$\sigma_{i}(\mathbf{v}, \mathcal{S}) \geq \sigma_{j}(\mathbf{v}, \mathcal{S})$$

for every monotonic coalition function v whenever player i dominates j.

Definition (superior player)

A solution function σ on $\mathbb{V}_N^{\mathrm{sub}}$ is said to obey the superior-player axiom if we have

$$\sigma_{i}\left(\mathbf{v},\mathcal{S}\right)\geq\sigma_{j}\left(\mathbf{v},\mathcal{S}\right)$$

for every monotonic coalition function v and for $j \in \mathcal{S}(i)$.

Hints: which axiom is stronger? consider the marginal contributions with respect to coalitions $E \subseteq N \setminus \{i, j\}$ Harald Wiese (Chair of Microeconomics) Applied cooperative game theory: May 2010 34 / 36

Definition (balanced contributions)

A solution function σ on $\mathbb{V}_{N}^{h}(!)$ is said to obey the balanced-contribution axiom if, for all players $h, j, g \in N$ with $h \neq g$ and $j \in S(g) \cap S(h)$, we have

$$\sigma_{j}\left(\mathbf{v},\mathcal{S}\right) - \sigma_{j}\left(\mathbf{v},\mathcal{S}_{-(h,j)}\right) = \sigma_{i}\left(\mathbf{v},\mathcal{S}\right) - \sigma_{i}\left(\mathbf{v},\mathcal{S}_{-(h,j)}\right) \text{ for all } i \in \{g\} \cup \bar{\mathcal{S}}^{-1}$$

holds for all subordination games (v, S).

Note that the equality does not only apply to g himself but also to all players that dominate g (the players from $\overline{S}^{-1}(g)$).

Problem

Does the balanced-contribution axiom hold for the permission value and/or the use value?

Theorem (first axiomatization of the permission value)

The permission value on hierarchies is axiomatized by the additivity axiom, the inessential-player axiom, the necessary-player axiom, the efficiency axiom, the dominant-player axiom, and the balanced-contribution axiom.

Theorem (second axiomatization of the permission value)

The permission value on subordination structures is axiomatized by the additivity axiom, the inessential-player axiom, the necessary-player axiom, the efficiency axiom, and the superior-player axiom.