Applied cooperative game theory: The network value

Harald Wiese

University of Leipzig

May 2010

Overview part D: Shapley values on networks

- The network value
- Granovetter's network theory
- Permission and use values
- Hierarchy and wages

Overview "The network value"

- Introduction
- Links, networks, and subnetworks
- Trails and connectedness
- Networks and their partitions
- The Myerson game
- The network value
- Properties of the communicaton value

Introduction

Networks stand for relationships between players:

- knowing each other
- cooperating

Procedure:

- for a coalition function v and
- ullet a network ${\cal L}$

define a new coalition function $v^{\mathcal{L}}$ and apply the Shapley value

Example

On the set $\{1, 2, 3, 4\}$, player 1 may be linked with all the other players who do not have direct links with each other. This network is described by

 $\{12, 13, 14\}$.

Definition (network)

Let N be a set (of players). The set of all subsets with exactly two elements is called the full network and is denoted by $\mathcal{L}^{\text{full}}$,

$$\mathcal{L}^{\mathsf{full}} = \{\{i, j\} : i, j \in \mathsf{N}, i \neq j\}.$$

Elements ℓ from $\mathcal{L}^{\text{full}}$ are called links. $\mathcal{L} \subseteq \mathcal{L}^{\text{full}}$ is called a network on N. The set of all networks on N is denoted by \mathfrak{L}_N or \mathfrak{L} . $\mathcal{L}_1 \subseteq \mathcal{L}^{\text{full}}$ is called a subnetwork of $\mathcal{L}_2 \subseteq \mathcal{L}^{\text{full}}$ if $\mathcal{L}_1 \subseteq \mathcal{L}_2$ holds.

Definition (network)

The set $\mathcal{L}(i) := \{\ell \in \mathcal{L} : i \in \ell\} \subseteq \mathcal{L}$ is the set of all direct links entertained by player *i*.

Let R be a subset of N. The links on R induced by a network \mathcal{L} is denoted by $\mathcal{L}(R)$ and defined by

$$\mathcal{L}(R) := \left\{ \{i, j\} : i, j \in R, \{i, j\} \in \mathcal{L} \right\}.$$

Problem

Consider $N = \{1, 2, 3, 4\}$ and define the network \mathcal{L} where player 2 is directly linked to players 1 and 3. Determine $\mathcal{L}(1)$, $\mathcal{L}(2)$ und $\mathcal{L}(4)$.

Contrasting partitions and networks

partition		network	
symbol	meaning	symbol	meaning
\mathcal{P}	partition	L	undirected graph
$\mathcal{P}\left(i ight)$	i's component	$\mathcal{L}(i)$	set of <i>i</i> 's links
\mathfrak{P}_N	set of partitions	\mathfrak{L}_N	set of networks on A
$\mathcal{P}\left(\mathbf{R} ight)$	set of components with <i>R</i> -players	$\mathcal{L}(R)$	set of links on <i>R</i>

Problem

Assume an arbitrary network $\mathcal L$ on N. Can you find other expressions for

•
$$\mathcal{L}(N)$$
 ,

•
$$\mathcal{L}\left(\{1,2\}\right)$$
 (case distinction!) and

•
$$\bigcup_{i\in N} \mathcal{L}(i)$$
?

Trails and connectedness

Definition

A path in \mathcal{L} from *i* to *j* (a *i* - *j* path) = network { $i = i_0 i_1, ..., i_{k-1} i_k = j$ } $\subseteq \mathcal{L}$. Players *i* and *j* are called connected or linked

• if i = j holds.

relations and equivalence classes

Definition

A relation on a set M is a subset of $M \times M$. If a tuple $(a, b) \in M \times M$ is an element of this subset: $a \sim b$.

Definition

A relation \sim on a set M is:

- reflexive if $a \sim a$ holds for all $a \in M$;
- transitive if $a \sim b$ and $b \sim c$ imply $a \sim c$ for all $a, b, c \in M$;
- symmetric if $a \sim b$ implies $b \sim a$ for all $a, b \in M$,
- asymmetric if $a \sim b$ implies $b \nsim a$ (i.e., not $b \sim a$),
- antisymmetric if $a \sim b$ and $b \sim a$ imply a = b for all $a, b \in M$, and
- complete if $a \sim b$ or $b \sim a$ holds for all $a, b \in M$.

Lemma

lemma

On the set of integers \mathbb{Z} , the relation \sim defined by

 $a \sim b :\Leftrightarrow a - b$ is an even number

is reflexive, transitive, and symmetric, but neither antisymmetric nor complete.

Networks and their partitions $_{\mbox{\tiny proof}}$

Proof.

- reflexive: a a = 0 for all $a \in \mathbb{Z} \Rightarrow a \sim a$;
- transitive:

consider *a*, *b*, *c* so that $a \sim b$ and $b \sim c$. The sum of two even numbers is even. $\Rightarrow (a - b) + (b - c) = a - c$ is even. $\Rightarrow a \sim c$:

- symmetric: a number is even iff its negative is even;
- not complete: $0 \approx 1$ and $1 \approx 0$;
- not antisymmetric: consider 0 and 2.

exercise

Problem

For any two inhabitants from Leipzig, we ask whether:

- one is the father of the other or
- they are of the same sex.

Which properties have the relations "is the father of" and "is of the same sex as"? Fill in "yes" or "no":

property is the father of is of the same sex as reflexive transitive symmetric asymmetric antisymmetric complete

equivalence relation

Definition

Let \sim be a relation on a set M which obeys reflexivity, transitivity and symmetry. \Rightarrow

- equivalent elements: $a, b \in M$ with $a \sim b$;
- equivalence relation: \sim ;
- equivalence class of $a \in M$: $[a] := \{b \in M : b \sim a\}$.

Example

Our above relation \sim (even difference) on the set of integers $\mathbb Z$ is an equivalence relation with

$$\begin{bmatrix} 0 \end{bmatrix} = \{ b \in M : b \sim 0 \} = \{ ..., -2, 0, 2, 4, ... \} \text{ and} \\ \begin{bmatrix} 1 \end{bmatrix} = \{ b \in M : b \sim 1 \} = \{ ..., -3, -1, 1, 3, ... \}$$

exercise

Problem

- Find the equivalence classes [17], [-23], and [100].
- Reconsider the relation "is of the same sex as". Can you describe its equivalence classes?

Lemma

$$a \sim b$$
 implies $[a] = [b]$.

Proof.

Consider any $a' \in [a]$. We need to show $a' \in [b]$:

•
$$a' \in [a]$$
 means $a' \sim a$;

•
$$a \sim b$$
, $a' \sim b$ (transitivity) $\Rightarrow a' \in [b] \Rightarrow [a] \subseteq [b]$.

Reversing the roles of a and b, $[b] \subseteq [a]$.

Lemma

Let \sim be an equivalence relation on a set $M. \Rightarrow$

$$\bigcup_{a \in M} [a] = M \text{ and}$$
$$[a] \neq [b] \Rightarrow [a] \cap [b] = \emptyset$$

Definition (connectedness as a relation)

Let \mathcal{L} be a network on N. If players i and j (not necessarily $i \neq j$) are connected, we write $i \sim^{\mathcal{L}} j$, i.e., $\sim^{\mathcal{L}}$ is a relation on N.

Lemma

 $\sim^{\mathcal{L}}$ defines an equivalence relation on N.

Definition

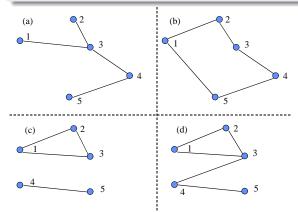
Let $\sim^{\mathcal{L}}$ be the equivalence relation given above. We note the resulting partition by N/\mathcal{L} . For any nonempty subset $S \subseteq N$, S is also partitioned (via $\sim^{\mathcal{L}(S)}$) and we define

$$S/\mathcal{L} := S/(\mathcal{L}(S))$$

generating partitions from graphs II

Problem

Determine the partitions of the player subset $\{1, 3, 4\}$ resulting from the four networks:



Networks and their partitions generating partitions from graphs III

For any subset $S \subseteq N$, we find

- that S/\emptyset equals the atomic partition of S every player is an island and
- that $S/\mathcal{L}^{\text{full}}$ equals the trivial partition $\{S\}$.

This observation can be generalized:

Lemma

Let \mathcal{L}_1 and \mathcal{L}_2 be networks on N such that \mathcal{L}_1 is a subnetwork of \mathcal{L}_2 , $\mathcal{L}_1 \subseteq \mathcal{L}_2$. Then S/\mathcal{L}_1 is finer than S/\mathcal{L}_2 for every subset $S \subseteq N$.

Definition (Myerson game)

Let (v, \mathcal{L}) be a network game. The Myerson game based on this network game is the coalition function $v^{\mathcal{L}}$ which is defined by

$$\mathbf{v}^{\mathcal{L}}\left(S
ight)=\sum_{K\in\mathcal{S}/\mathcal{L}}\mathbf{v}\left(K
ight).$$

Definition (network value)

The network, or Myerson, value on \mathbb{V}^{net} is given by

$$My_{i}\left(v,\mathcal{L}\right)=Sh_{i}\left(v^{\mathcal{L}}\right)$$
, $i\in N\left(v
ight)$

The Myerson game: an example

• A symmetric coalition function v

$$v(S) = \begin{cases} 0, & |S| \le 1\\ 60, & |S| = 2\\ 72, & S = N \end{cases}$$

• and the network $\mathcal{L} = \{12, 23\}$.

• While v is symmetrc, $v^{\mathcal{L}}$ is not. We obtain

$$v^{\mathcal{L}}(S) = \begin{cases} 0, & |S| \le 1, S = \{1, 3\} \\ 60, & S = \{1, 2\}, S = \{2, 3\} \\ 72, & S = N \end{cases}$$

The Myerson game: a second example

Let us determine the Myerson game for $N = \{1, 2, 3, 4\}$, the unanimity game $u_{\{1,3\}}$ and the network $\mathcal{L} = \{12, 23, 34\}$.

- The productive players 1 and 3 need player 2 in order to link up. Player 4 is of no help.
- Thus, we find

$$u_{\left\{1,3
ight\}}^{\mathcal{L}}\left(K
ight)=\left\{egin{array}{cc} 1, & K\supseteq\left\{1,2,3
ight\}\ 0, & ext{otherwise.} \end{array}
ight.$$

and hence

•
$$u_{\{1,3\}}^{\mathcal{L}_2} = u_{\{1,2,3\}}.$$

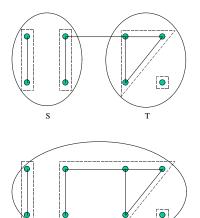
Problem

Given any coaliton function $v \in \mathbb{V}_N$, determine the Myerson game $v^{\mathcal{L}}$ for $\mathcal{L} = \mathcal{L}^{full}$ and for $\mathcal{L} = \emptyset$.

Problem

Given N = {1, 2, 3, 4} and the coalition function $u_{\{1,3\}}$, determine the Myerson game for $\mathcal{L} = \{12, 23, 34, 41\}$.

The Myerson game: inheritance of superadditivity I



The Myerson game: inheritance of superadditivity II

Lemma

Let \mathcal{L} be a network on N. If $v \in \mathbb{V}_N$ is superadditive, so is $v^{\mathcal{L}}$.

Proof:

$$v^{\mathcal{L}}(S \cup T) = \sum_{C \in (S \cup T)/\mathcal{L}} v(C)$$

$$\geq \sum_{C \in S/\mathcal{L}} v(C) + \sum_{C \in T/\mathcal{L}} v(C)$$

$$= v^{\mathcal{L}}(R) + v^{\mathcal{L}}(S).$$

The Myerson game: no inheritance of convexity I

Consider the network game on $N = \{1, 2, 3, 4\}$, defined by the "cycle" $L = \{12, 23, 34, 41\}$ and the coalition function v given by

$$v(S) = |S| - 1, S \neq \emptyset.$$

v is convex, because

 the marginal contribution is zero for any player who joins the empty set,

$$v(\emptyset \cup \{i\}) - v(\emptyset) = [|\{i\}| - 1] - 0 = 0,$$

• while the marginal contribution with respect to any nonempty coalition is 1.

The Myerson game: no inheritance of convexity II

However, $v^{\mathcal{L}}$ is not convex:

- The sets $\{1,2,3\}$, $\{1,3,4\}$ and $\{1,2,3,4\}$ are internally connected while $\{1,3\}$ is not.
- Therefore, we obtain

$$v^{\mathcal{L}}(\{1,2,3\}) = v(\{1,2,3\}) = 2,$$

$$v^{\mathcal{L}}(\{1,3,4\}) = v(\{1,3,4\}) = 2,$$

$$v^{\mathcal{L}}(\{1,2,3,4\}) = v(\{1,2,3,4\}) = 3 \text{ und}$$

$$v^{\mathcal{L}}(\{1,3\}) = v(\{1\}) + v(\{3\}) = 0 + 0 = 0.$$

 \bullet and player 2's marginal contributions to coalitions $\{1,3\}$ and $\{1,3,4\}$

$$MC_{2}^{\{1,3\}}\left(v^{\mathcal{L}}\right) = v^{\mathcal{L}}\left(\{1,2,3\}\right) - v^{\mathcal{L}}\left(\{1,3\}\right) = 2 - 0$$

> $3 - 2 = v^{\mathcal{L}}\left(\{1,2,3,4\}\right) - v^{\mathcal{L}}\left(\{1,3,4\}\right)$
= $MC_{2}^{\{1,3,4\}}\left(v^{\mathcal{L}}\right).$

Generalization of the Shapley value

The network value is a generalization of the Shapley value:

Lemma

We have
$$My\left(v,\mathcal{L}^{\mathit{full}}
ight)=\mathit{Sh}\left(v
ight).$$

Problem

Calculate the network payoffs for N = {1, 2, 3}, $\mathcal{L} =$ {12, 23} and the coalition functions

• u_{1,2} and

•
$$u_{\{1,3\}}!$$

Components are islands: component decomposability

- We define $C_i = (N/\mathcal{L})(i)$ for networks \mathcal{L} on N.
- Very close the AD value, the network value treats components as islands.

Definition (component-decomposability axiom)

A solution function σ on \mathbb{V}^{net} is said to obey component decomposability if

$$\sigma_{i}\left(\mathbf{v},\mathcal{L}\right)=\sigma_{i}\left(\mathbf{v}|_{C_{i}},\mathcal{L}\left(C_{i}\right)\right)$$

holds for all $i \in N$.

Thus, the payoff for a player does not depend on how the graph \mathcal{L} is structured outside player *i*'s component. The payoff depends only on the coalition function restricted to C_i and on the network restricted to C_i .

Definition (component-efficiency axiom)

A solution function σ on $\mathbb{V}^{\mathrm{net}}\,$ is said to obey the component-efficiency axiom if

$$\sum_{i\in C_i}\sigma_i(\mathbf{v},\mathcal{L})=\mathbf{v}(C_i)$$

holds for all components $C_i \in N/\mathcal{L}$.

Problem

We may conjecture the equality of the Myerson and the Aumann-Dreze value whenever both deal with the same partition, $\mathcal{P} = N/\mathcal{L}$. That is, do we have

$$\mu(\mathbf{v},\mathcal{L}) = \varphi^{AD}(\mathbf{v},\mathbf{N}/\mathcal{L}) \qquad ??$$

Components are islands, but

• For
$$N = \{1, 2, 3, 4\}$$
, $\mathcal{L} = \{12, 23, 34, 41\}$ and $u_{\{1,3\}}$, we find
 $u_{\{1,3\}}^{\mathcal{L}}(K) = \begin{cases} 1, & K \supseteq \{1, 2, 3\} \text{ or } K \supseteq \{1, 3, 4\} \\ 0, & \text{otherwise.} \end{cases}$

• You can confirm or believe the author that the Shapley payoffs are

$$\left(\frac{5}{12},\frac{1}{12},\frac{5}{12},\frac{1}{12}\right).$$

Problem

Determine N/\mathcal{L} and $\varphi^{AD}(v, N/\mathcal{L})$.

Definition (superfluous player)

Let (v, \mathcal{L}) be a network game. A player $i \in N$ is called superfluous if

$$v^{\mathcal{L}}(S) = v^{\mathcal{L}}(S \cup i)$$

holds for all $S \subseteq N$ gilt.

Definition (superfluous-player axiom)

A solution function σ on $\mathbb{V}^{\mathrm{net}}\,$ is said to obey the superfluous-player axiom if

$$\sigma(\mathbf{v},\mathcal{L})=\sigma(\mathbf{v},\mathcal{L}\backslash\mathcal{L}(i))$$

holds for every superfluous player $i \in N$.

Definition (superfluous link)

Let (v, \mathcal{L}) be a network game. A link $\ell \in \mathcal{L}$ is called superfluous if

$$v^{\mathcal{L}} = v^{\mathcal{L} \setminus \ell}$$

holds.

Problem

Superfluous link:
$$N = \{1, 2, 3\}$$
, $v = u_{\{1,2\}}$ and $\mathcal{L} = \{12, 13\}$?

Definition (superfluous-link axiom)

A solution function σ on $\mathbb{V}^{\mathsf{net}}$ is said to obey the superfluous-link axiom if

$$\sigma\left(\mathbf{v},\mathcal{L}\right)=\sigma\left(\mathbf{v},\mathcal{L}\backslash\ell\right)$$

holds for every superfluous link $\ell \in \mathcal{L}$.

Definition (axiom of balanced contributions, one link)

A solution function σ on \mathbb{V}^{net} is said to obey the axiom of balanced contributions if, for any coalition function v and any two players $i, j \in N$,

$$\sigma_{i}(\mathbf{v},\mathcal{L})-\sigma_{i}(\mathbf{v},\mathcal{L}\setminus\{ij\})=\sigma_{j}(\mathbf{v},\mathcal{L})-\sigma_{j}(\mathbf{v},\mathcal{L}\setminus\{ij\})$$

holds.

Definition (axiom of balanced contributions, all links)

A solution function σ on \mathbb{V}^{net} is said to obey the axiom of balanced contributions if, for any coalition function v and any two players $i, j \in N$,

$$\sigma_{i}(\mathbf{v},\mathcal{L}) - \sigma_{i}(\mathbf{v},\mathcal{L}\backslash\mathcal{L}(j)) = \sigma_{j}(\mathbf{v},\mathcal{L}) - \sigma_{j}(\mathbf{v},\mathcal{L}\backslash\mathcal{L}(i))$$

holds.

Theorem (properties of the communication value)

The network value obeys

- the component-decomposability axiom,
- the component-efficiency axiom,
- the superfluous-player axiom,
- the superfluous-link axioms,
- the additivity axiom,
- and the balanced-contributions axiom.

Axiomatization of the network value

Among the several known axiomatizations of the Myerson value, we like to highlight the two that make use of balanced contributions:

Theorem

A solution concept σ on $\mathbb{V}^{\mathit{net}}$ fulfills the two axioms of

- component efficiency and
- balanced contributions (for one link or for all links) for all player sets $N \subseteq \mathbb{N}$,

if and only if σ is the network value My.

Further exercises: Problem 1

Consider the coalition function v given by $N = \{1, 2, 3, 4\}$ and

$$v(K) = \begin{cases} 0, & |K| \le 1\\ 2, & K \in \{\{1, 2\}, \{1, 3\}, \{1, 4\}\}\\ 3 & K \in \{\{2, 3\}, \{2, 4\}\}\\ 5 & K \in \{\{3, 4\}, \{1, 2, 3\}, \{1, 2, 4\}\}\\ 7, & K \in \{\{1, 3, 4\}, \{2, 3, 4\}, N\} \end{cases}$$

- Consider three networks $\mathcal{L}_a = \{12, 14, 34\}$, $\mathcal{L}_b = \{12, 14, 24, 34\}$, $\mathcal{L}_c = \{12, 13, 24, 34\}$. Determine the three Myerson games associated with these networks. Determine the Shapley values of these games.
- ② Comment!