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Introduction

Networks stand for relationships between players:

knowing each other

cooperating

Procedure:

for a coalition function v and

a network L
de�ne a new coalition function vL and
apply the Shapley value
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Links, networks, and subnetworks I

Example
On the set f1, 2, 3, 4g , player 1 may be linked with all the other players
who do not have direct links with each other. This network is described by

f12, 13, 14g .

De�nition (network)

Let N be a set (of players). The set of all subsets with exactly two
elements is called the full network and is denoted by Lfull,

Lfull = ffi , jg : i , j 2 N, i 6= jg .

Elements ` from Lfull are called links. L � Lfull is called a network on N.
The set of all networks on N is denoted by LN or L. L1 � Lfull is called a
subnetwork of L2 � Lfull if L1 � L2 holds.
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Links, networks, and subnetworks II

De�nition (network)

The set L (i) := f` 2 L : i 2 `g � L is the set of all direct links
entertained by player i .
Let R be a subset of N. The links on R induced by a network L is denoted
by L (R) and de�ned by

L (R) := ffi , jg : i , j 2 R, fi , jg 2 Lg .

Problem
Consider N = f1, 2, 3, 4g and de�ne the network L where player 2 is
directly linked to players 1 and 3. Determine L (1) , L (2) und L (4) .
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Contrasting partitions and networks

partition network
symbol meaning symbol meaning
P partition L undirected graph
P (i) i�s component L (i) set of i�s links
PN set of partitions LN set of networks on N
P (R) set of components with R-players L (R) set of links on R

Problem
Assume an arbitrary network L on N. Can you �nd other expressions for

L (N) ,
L (f1, 2g) (case distinction!) andS
i2N L (i)?
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Trails and connectedness

De�nition
A path in L from i to j (a i � j path) = network
fi = i0i1, ..., ik�1ik = jg � L.
Players i and j are called connected or linked

if an i � j path exists or
if i = j holds.
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Networks and their partitions
relations and equivalence classes

De�nition
A relation on a set M is a subset of M �M.
If a tuple (a, b) 2 M �M is an element of this subset: a � b.

De�nition
A relation � on a set M is:

re�exive if a � a holds for all a 2 M;
transitive if a � b and b � c imply a � c for all a, b, c 2 M;
symmetric if a � b implies b � a for all a, b 2 M,
asymmetric if a � b implies b � a (i.e., not b � a),
antisymmetric if a � b and b � a imply a = b for all a, b 2 M, and
complete if a � b or b � a holds for all a, b 2 M.

Harald Wiese (Chair of Microeconomics) Applied cooperative game theory: May 2010 9 / 37



Networks and their partitions
lemma

Lemma
On the set of integers Z, the relation � de�ned by

a � b :, a� b is an even number

is re�exive, transitive, and symmetric, but neither antisymmetric nor
complete.
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Networks and their partitions
proof

Proof.
re�exive: a� a = 0 for all a 2 Z ) a � a;
transitive:
consider a, b, c so that a � b and b � c .
The sum of two even numbers is even.
) (a� b) + (b� c) = a� c is even.
) a � c ;
symmetric: a number is even i¤ its negative is even;

not complete: 0 � 1 and 1 � 0;
not antisymmetric: consider 0 and 2.
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Networks and their partitions
exercise

Problem
For any two inhabitants from Leipzig, we ask whether:

one is the father of the other or

they are of the same sex.

Which properties have the relations "is the father of" and "is of the same
sex as"? Fill in "yes" or "no":

property is the father of is of the same sex as
re�exive
transitive
symmetric
asymmetric
antisymmetric
complete
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Networks and their partitions
equivalence relation

De�nition
Let � be a relation on a set M which obeys re�exivity, transitivity and
symmetry. )

equivalent elements: a, b 2 M with a � b;
equivalence relation: �;
equivalence class of a 2 M : [a] := fb 2 M : b � ag .

Example
Our above relation � (even di¤erence) on the set of integers Z is an
equivalence relation with

[0] = fb 2 M : b � 0g = f...,�2, 0, 2, 4, ...g and
[1] = fb 2 M : b � 1g = f...,�3,�1, 1, 3, ...g
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Networks and their partitions
exercise

Problem
Find the equivalence classes [17] , [�23] , and [100].
Reconsider the relation "is of the same sex as". Can you describe its
equivalence classes?
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Networks and their partitions
lemma 1

Lemma
a � b implies [a] = [b].

Proof.
Consider any a0 2 [a] . We need to show a0 2 [b]:

a0 2 [a] means a0 � a;
a � b, a0 � b (transitivity) ) a0 2 [b]) [a] � [b] .

Reversing the roles of a and b, [b] � [a] .
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Networks and their partitions
lemma 2

Lemma
Let � be an equivalence relation on a set M. )[

a2M
[a] = M and

[a] 6= [b]) [a] \ [b] = ∅.
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Networks and their partitions
generating partitions from graphs I

De�nition (connectedness as a relation)

Let L be a network on N. If players i and j (not necessarily i 6= j) are
connected, we write i �L j , i.e., �L is a relation on N.

Lemma

�L de�nes an equivalence relation on N.

De�nition

Let �L be the equivalence relation given above. We note the resulting
partition by N/L. For any nonempty subset S � N, S is also partitioned
(via �L(S )) and we de�ne

S/L := S/ (L (S)) .
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Networks and their partitions
generating partitions from graphs II

Problem
Determine the partitions of the player subset f1, 3, 4g resulting from the
four networks:

(a) 2

4

1
3

5

(b) 2

4

1 3

5

(c) 2

1 3

4
5

(d) 2

1 3

4 5

Harald Wiese (Chair of Microeconomics) Applied cooperative game theory: May 2010 18 / 37



Networks and their partitions
generating partitions from graphs III

For any subset S � N, we �nd
that S/∅ equals the atomic partition of S �every player is an island
and

that S/Lfull equals the trivial partition fSg .
This observation can be generalized:

Lemma
Let L1 and L2 be networks on N such that L1 is a subnetwork of L2,
L1 � L2. Then S/L1 is �ner than S/L2 for every subset S � N.
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The network value: de�nition

De�nition (Myerson game)

Let (v ,L) be a network game. The Myerson game based on this network
game is the coalition function vL which is de�ned by

vL (S) = ∑
K2S/L

v (K ) .

De�nition (network value)

The network, or Myerson, value on Vnet is given by

Myi (v ,L) = Shi
�
vL
�
, i 2 N (v)
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The Myerson game: an example

A symmetric coalition function v

v (S) =

8<:
0, jS j � 1
60, jS j = 2
72 S = N

and the network L = f12, 23g .
While v is symmetrc, vL is not. We obtain

vL (S) =

8<:
0, jS j � 1,S = f1, 3g
60, S = f1, 2g ,S = f2, 3g
72 S = N
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The Myerson game: a second example

Let us determine the Myerson game for N = f1, 2, 3, 4g , the unanimity
game uf1,3g and the network L = f12, 23, 34g .

The productive players 1 and 3 need player 2 in order to link up.
Player 4 is of no help.

Thus, we �nd

uLf1,3g (K ) =
�
1, K � f1, 2, 3g
0, otherwise.

and hence

uL2f1,3g = uf1,2,3g.
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The Myerson game: exercises

Problem

Given any coaliton function v 2 VN , determine the Myerson game vL for
L = Lfull and for L = ∅.

Problem
Given N = f1, 2, 3, 4g and the coalition function uf1,3g, determine the
Myerson game for L = f12, 23, 34, 41g.
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The Myerson game: inheritance of superadditivity I

S T

TS ∪
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The Myerson game: inheritance of superadditivity II

Lemma

Let L be a network on N. If v 2 VN is superadditive, so is vL.

Proof:

vL (S [ T ) = ∑
C2(S[T )/L

v (C )

� ∑
C2S/L

v (C ) + ∑
C2T /L

v (C )

= vL (R) + vL (S) .
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The Myerson game: no inheritance of convexity I

Consider the network game on N = f1, 2, 3, 4g, de�ned by the "cycle"
L = f12, 23, 34, 41g and the coalition function v given by

v (S) = jS j � 1,S 6= ∅.

v is convex, because

the marginal contribution is zero for any player who joins the empty
set,

v (∅ [ fig)� v (∅) = [jfigj � 1]� 0 = 0,
while the marginal contribution with respect to any nonempty
coalition is 1.
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The Myerson game: no inheritance of convexity II

However, vL is not convex:

The sets f1, 2, 3g , f1, 3, 4g and f1, 2, 3, 4g are internally connected
while f1, 3g is not.
Therefore, we obtain

vL (f1, 2, 3g) = v (f1, 2, 3g) = 2,
vL (f1, 3, 4g) = v (f1, 3, 4g) = 2,

vL (f1, 2, 3, 4g) = v (f1, 2, 3, 4g) = 3 und
vL (f1, 3g) = v (f1g) + v (f3g) = 0+ 0 = 0.

and player 2�s marginal contributions to coalitions f1, 3g and f1, 3, 4g

MC f1,3g2

�
vL
�
= vL (f1, 2, 3g)� vL (f1, 3g) = 2� 0

> 3� 2 = vL (f1, 2, 3, 4g)� vL (f1, 3, 4g)
= MC f1,3,4g2

�
vL
�
.
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Generalization of the Shapley value

The network value is a generalization of the Shapley value:

Lemma

We have My
�
v ,Lfull

�
= Sh (v) .

Problem
Calculate the network payo¤s for N = f1, 2, 3g, L = f12, 23g and the
coalition functions

uf1,2g and

uf1,3g!
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Components are islands: component decomposability

We de�ne Ci = (N/L) (i) for networks L on N.
Very close the AD value, the network value treats components as
islands.

De�nition (component-decomposability axiom)

A solution function σ on Vnet is said to obey component decomposability if

σi (v ,L) = σi

�
v jCi ,L (Ci )

�
holds for all i 2 N.

Thus, the payo¤ for a player does not depend on how the graph L is
structured outside player i�s component. The payo¤ depends only on the
coalition function restricted to Ci and on the network restricted to Ci .
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Components are islands: component e¢ ciency

De�nition (component-e¢ ciency axiom)

A solution function σ on Vnet is said to obey the component-e¢ ciency
axiom if

∑
i2Ci

σi (v ,L) = v (Ci )

holds for all components Ci 2 N/L.

Problem
We may conjecture the equality of the Myerson and the Aumann-Dreze
value whenever both deal with the same partition, P = N/L. That is, do
we have

µ (v ,L) = ϕAD (v ,N/L) ??
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Components are islands, but

For N = f1, 2, 3, 4g, L = f12, 23, 34, 41g and uf1,3g, we �nd

uLf1,3g (K ) =
�
1, K � f1, 2, 3g or K � f1, 3, 4g
0, otherwise.

You can con�rm or believe the author that the Shapley payo¤s are�
5
12
,
1
12
,
5
12
,
1
12

�
.

Problem

Determine N/L and ϕAD (v ,N/L) .
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Super�uous players

De�nition (super�uous player)

Let (v ,L) be a network game. A player i 2 N is called super�uous if

vL (S) = vL (S [ i)

holds for all S � N gilt.

De�nition (super�uous-player axiom)

A solution function σ on Vnet is said to obey the super�uous-player axiom
if

σ (v ,L) = σ (v ,LnL (i))
holds for every super�uous player i 2 N.
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Super�uous links

De�nition (super�uous link)

Let (v ,L) be a network game. A link ` 2 L is called super�uous if

vL = vLn`

holds.

Problem
Super�uous link: N = f1, 2, 3g , v = uf1,2g and L = f12, 13g?

De�nition (super�uous-link axiom)

A solution function σ on Vnet is said to obey the super�uous-link axiom if

σ (v ,L) = σ (v ,Ln`)

holds for every super�uous link ` 2 L.
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Balanced contributions

De�nition (axiom of balanced contributions, one link)

A solution function σ on Vnet is said to obey the axiom of balanced
contributions if, for any coalition function v and any two players i , j 2 N,

σi (v ,L)� σi (v ,Ln fijg) = σj (v ,L)� σj (v ,Ln fijg)

holds.

De�nition (axiom of balanced contributions, all links)

A solution function σ on Vnet is said to obey the axiom of balanced
contributions if, for any coalition function v and any two players i , j 2 N,

σi (v ,L)� σi (v ,LnL (j)) = σj (v ,L)� σj (v ,LnL (i))

holds.
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Properties of the network value

Theorem (properties of the communication value)
The network value obeys

the component-decomposability axiom,

the component-e¢ ciency axiom,

the super�uous-player axiom,

the super�uous-link axioms,

the additivity axiom,

and the balanced-contributions axiom.
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Axiomatization of the network value

Among the several known axiomatizations of the Myerson value, we like to
highlight the two that make use of balanced contributions:

Theorem
A solution concept σ on Vnet ful�lls the two axioms of

component e¢ ciency and

balanced contributions (for one link or for all links) for all player sets
N � N,

if and only if σ is the network value My.
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Further exercises: Problem 1

Consider the coalition function v given by N = f1, 2, 3, 4g and

v (K ) =

8>>>><>>>>:
0, jK j � 1
2, K 2 ff1, 2g , f1, 3g , f1, 4gg
3 K 2 ff2, 3g , f2, 4gg
5 K 2 ff3, 4g , f1, 2, 3g , f1, 2, 4gg
7, K 2 ff1, 3, 4g , f2, 3, 4g ,Ng

1 Consider three networks La = f12, 14, 34g , Lb = f12, 14, 24, 34g ,
Lc = f12, 13, 24, 34g . Determine the three Myerson games
associated with these networks. Determine the Shapley values of
these games.

2 Comment!
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