Applied cooperative game theory:
 The network value

Harald Wiese
University of Leipzig

May 2010

Overview part D: Shapley values on networks

- The network value
- Granovetter's network theory
- Permission and use values
- Hierarchy and wages

Overview "The network value"

- Introduction
- Links, networks, and subnetworks
- Trails and connectedness
- Networks and their partitions
- The Myerson game
- The network value
- Properties of the communicaton value

Introduction

Networks stand for relationships between players:

- knowing each other
- cooperating

Procedure:

- for a coalition function v and
- a network \mathcal{L}
define a new coalition function $v^{\mathcal{L}}$ and apply the Shapley value

Links, networks, and subnetworks I

Example

On the set $\{1,2,3,4\}$, player 1 may be linked with all the other players who do not have direct links with each other. This network is described by

$$
\{12,13,14\} .
$$

Definition (network)

Let N be a set (of players). The set of all subsets with exactly two elements is called the full network and is denoted by $\mathcal{L}^{\text {full }}$,

$$
\mathcal{L}^{\text {full }}=\{\{i, j\}: i, j \in N, i \neq j\} .
$$

Elements ℓ from $\mathcal{L}^{\text {full }}$ are called links. $\mathcal{L} \subseteq \mathcal{L}^{\text {full }}$ is called a network on N. The set of all networks on N is denoted by \mathfrak{L}_{N} or \mathfrak{L}. $\mathcal{L}_{1} \subseteq \mathcal{L}^{\text {full }}$ is called a subnetwork of $\mathcal{L}_{2} \subseteq \mathcal{L}^{\text {full }}$ if $\mathcal{L}_{1} \subseteq \mathcal{L}_{2}$ holds.

Links, networks, and subnetworks II

Definition (network)

The set $\mathcal{L}(i):=\{\ell \in \mathcal{L}: i \in \ell\} \subseteq \mathcal{L}$ is the set of all direct links entertained by player i.
Let R be a subset of N. The links on R induced by a network \mathcal{L} is denoted by $\mathcal{L}(R)$ and defined by

$$
\mathcal{L}(R):=\{\{i, j\}: i, j \in R,\{i, j\} \in \mathcal{L}\} .
$$

Problem

Consider $N=\{1,2,3,4\}$ and define the network \mathcal{L} where player 2 is directly linked to players 1 and 3 . Determine $\mathcal{L}(1), \mathcal{L}(2)$ und $\mathcal{L}(4)$.

Contrasting partitions and networks

partition		network	
symbol	meaning	symbol	meaning
\mathcal{P}	partition	\mathcal{L}	undirected graph
$\mathcal{P}(i)$	i 's component	$\mathcal{L}(i)$	set of i 's links
\mathfrak{P}_{N}	set of partitions	\mathfrak{L}_{N}	set of networks on Λ
$\mathcal{P}(R)$	set of components with R-players	$\mathcal{L}(R)$	set of links on R

Problem

Assume an arbitrary network \mathcal{L} on N. Can you find other expressions for

- $\mathcal{L}(N)$,
- $\mathcal{L}(\{1,2\})$ (case distinction!) and
- $\bigcup_{i \in N} \mathcal{L}(i)$?

Trails and connectedness

Definition

A path in \mathcal{L} from i to j (a $i-j$ path) $=$ network
$\left\{i=i_{0} i_{1}, \ldots, i_{k-1} i_{k}=j\right\} \subseteq \mathcal{L}$.
Players i and j are called connected or linked

- if an $i-j$ path exists or
- if $i=j$ holds.

Networks and their partitions

relations and equivalence classes

Definition

A relation on a set M is a subset of $M \times M$.
If a tuple $(a, b) \in M \times M$ is an element of this subset: $a \sim b$.

Definition

A relation \sim on a set M is:

- reflexive if $a \sim a$ holds for all $a \in M$;
- transitive if $a \sim b$ and $b \sim c$ imply $a \sim c$ for all $a, b, c \in M$;
- symmetric if $a \sim b$ implies $b \sim a$ for all $a, b \in M$,
- asymmetric if $a \sim b$ implies $b \nsim a$ (i.e., not $b \sim a$),
- antisymmetric if $a \sim b$ and $b \sim a$ imply $a=b$ for all $a, b \in M$, and
- complete if $a \sim b$ or $b \sim a$ holds for all $a, b \in M$.

Networks and their partitions

lemma

Lemma

On the set of integers \mathbb{Z}, the relation \sim defined by

$$
a \sim b: \Leftrightarrow a-b \text { is an even number }
$$

is reflexive, transitive, and symmetric, but neither antisymmetric nor complete.

Networks and their partitions

proof

Proof.

- reflexive: $a-a=0$ for all $a \in \mathbb{Z} \Rightarrow a \sim a$;
- transitive:
consider a, b, c so that $a \sim b$ and $b \sim c$.
The sum of two even numbers is even.
$\Rightarrow(a-b)+(b-c)=a-c$ is even.
$\Rightarrow a \sim c$;
- symmetric: a number is even iff its negative is even;
- not complete: $0 \nsim 1$ and $1 \nsim 0$;
- not antisymmetric: consider 0 and 2 .

Networks and their partitions

exercise

Problem

For any two inhabitants from Leipzig, we ask whether:

- one is the father of the other or
- they are of the same sex.

Which properties have the relations "is the father of" and "is of the same sex as"? Fill in "yes" or "no":

```
property is the father of is of the same sex as
reflexive
transitive
symmetric
asymmetric
antisymmetric
complete
```


Networks and their partitions

equivalence relation

Definition

Let \sim be a relation on a set M which obeys reflexivity, transitivity and symmetry. \Rightarrow

- equivalent elements: $a, b \in M$ with $a \sim b$;
- equivalence relation: \sim;
- equivalence class of $a \in M:[a]:=\{b \in M: b \sim a\}$.

Example

Our above relation \sim (even difference) on the set of integers \mathbb{Z} is an equivalence relation with

$$
\begin{aligned}
& {[0]=\{b \in M: b \sim 0\}=\{\ldots,-2,0,2,4, \ldots\} \text { and }} \\
& {[1]=\{b \in M: b \sim 1\}=\{\ldots,-3,-1,1,3, \ldots\}}
\end{aligned}
$$

Networks and their partitions

exercise

Problem

- Find the equivalence classes [17], [-23], and [100].
- Reconsider the relation "is of the same sex as". Can you describe its equivalence classes?

Networks and their partitions

lemma 1

Lemma

$a \sim b$ implies $[a]=[b]$.

Proof.

Consider any $a^{\prime} \in[a]$. We need to show $a^{\prime} \in[b]$:

- $a^{\prime} \in[a]$ means $a^{\prime} \sim a$;
- $a \sim b, a^{\prime} \sim b$ (transitivity) $\Rightarrow a^{\prime} \in[b] \Rightarrow[a] \subseteq[b]$.

Reversing the roles of a and $b,[b] \subseteq[a]$.

Networks and their partitions

 lemma 2
Lemma

Let \sim be an equivalence relation on a set $M . \Rightarrow$

$$
\begin{aligned}
\bigcup_{a \in M}[a] & =M \text { and } \\
{[a] } & \neq[b] \Rightarrow[a] \cap[b]=\varnothing
\end{aligned}
$$

Networks and their partitions

generating partitions from graphs I

Definition (connectedness as a relation)

Let \mathcal{L} be a network on N. If players i and j (not necessarily $i \neq j$) are connected, we write $i \sim^{\mathcal{L}} j$, i.e., $\sim \mathcal{L}$ is a relation on N.

Lemma

$\sim \mathcal{L}$ defines an equivalence relation on N.

Definition

Let $\sim^{\mathcal{L}}$ be the equivalence relation given above. We note the resulting partition by N / \mathcal{L}. For any nonempty subset $S \subseteq N, S$ is also partitioned (via $\sim^{\mathcal{L}(S)}$) and we define

$$
S / \mathcal{L}:=S /(\mathcal{L}(S)) .
$$

Networks and their partitions

generating partitions from graphs II

Problem

Determine the partitions of the player subset $\{1,3,4\}$ resulting from the four networks:

Networks and their partitions

generating partitions from graphs III

For any subset $S \subseteq N$, we find

- that S / \varnothing equals the atomic partition of S - every player is an island and
- that $S / \mathcal{L}^{\text {full }}$ equals the trivial partition $\{S\}$.

This observation can be generalized:

Lemma

Let \mathcal{L}_{1} and \mathcal{L}_{2} be networks on N such that \mathcal{L}_{1} is a subnetwork of \mathcal{L}_{2}, $\mathcal{L}_{1} \subseteq \mathcal{L}_{2}$. Then S / \mathcal{L}_{1} is finer than S / \mathcal{L}_{2} for every subset $S \subseteq N$.

The network value: definition

Definition (Myerson game)

Let (v, \mathcal{L}) be a network game. The Myerson game based on this network game is the coalition function $v^{\mathcal{L}}$ which is defined by

$$
v^{\mathcal{L}}(S)=\sum_{K \in S / \mathcal{L}} v(K)
$$

Definition (network value)

The network, or Myerson, value on $\mathbb{V}^{\text {net }}$ is given by

$$
M y_{i}(v, \mathcal{L})=S h_{i}\left(v^{\mathcal{L}}\right), i \in N(v)
$$

The Myerson game: an example

- A symmetric coalition function v

$$
v(S)= \begin{cases}0, & |S| \leq 1 \\ 60, & |S|=2 \\ 72 & S=N\end{cases}
$$

- and the network $\mathcal{L}=\{12,23\}$.
- While v is symmetrc, $v^{\mathcal{L}}$ is not. We obtain

$$
v^{\mathcal{L}}(S)= \begin{cases}0, & |S| \leq 1, S=\{1,3\} \\ 60, & S=\{1,2\}, S=\{2,3\} \\ 72 & S=N\end{cases}
$$

The Myerson game: a second example

Let us determine the Myerson game for $N=\{1,2,3,4\}$, the unanimity game $u_{\{1,3\}}$ and the network $\mathcal{L}=\{12,23,34\}$.

- The productive players 1 and 3 need player 2 in order to link up. Player 4 is of no help.
- Thus, we find

$$
u_{\{1,3\}}^{\mathcal{L}}(K)= \begin{cases}1, & K \supseteq\{1,2,3\} \\ 0, & \text { otherwise }\end{cases}
$$

and hence

- $u_{\{1,3\}}^{\mathcal{L}_{2}}=u_{\{1,2,3\}}$.

The Myerson game: exercises

Problem

Given any coaliton function $v \in \mathbb{V}_{N}$, determine the Myerson game $v^{\mathcal{L}}$ for $\mathcal{L}=\mathcal{L}^{\text {full }}$ and for $\mathcal{L}=\varnothing$.

Problem

Given $N=\{1,2,3,4\}$ and the coalition function $u_{\{1,3\}}$, determine the Myerson game for $\mathcal{L}=\{12,23,34,41\}$.

The Myerson game: inheritance of superadditivity I

The Myerson game: inheritance of superadditivity II

Lemma

Let \mathcal{L} be a network on N. If $v \in \mathbb{V}_{N}$ is superadditive, so is $v^{\mathcal{L}}$.
Proof:

$$
\begin{aligned}
v^{\mathcal{L}}(S \cup T) & =\sum_{C \in(S \cup T) / \mathcal{L}} v(C) \\
& \geq \sum_{C \in S / \mathcal{L}} v(C)+\sum_{C \in T / \mathcal{L}} v(C) \\
& =v^{\mathcal{L}}(R)+v^{\mathcal{L}}(S)
\end{aligned}
$$

The Myerson game: no inheritance of convexity I

Consider the network game on $N=\{1,2,3,4\}$, defined by the "cycle" $L=\{12,23,34,41\}$ and the coalition function v given by

$$
v(S)=|S|-1, S \neq \varnothing
$$

v is convex, because

- the marginal contribution is zero for any player who joins the empty set,

$$
v(\varnothing \cup\{i\})-v(\varnothing)=[|\{i\}|-1]-0=0,
$$

- while the marginal contribution with respect to any nonempty coalition is 1 .

The Myerson game: no inheritance of convexity II

However, $v^{\mathcal{L}}$ is not convex:

- The sets $\{1,2,3\},\{1,3,4\}$ and $\{1,2,3,4\}$ are internally connected while $\{1,3\}$ is not.
- Therefore, we obtain

$$
\begin{aligned}
v^{\mathcal{L}}(\{1,2,3\}) & =v(\{1,2,3\})=2, \\
v^{\mathcal{L}}(\{1,3,4\}) & =v(\{1,3,4\})=2, \\
v^{\mathcal{L}}(\{1,2,3,4\}) & =v(\{1,2,3,4\})=3 \text { und } \\
v^{\mathcal{L}}(\{1,3\}) & =v(\{1\})+v(\{3\})=0+0=0 .
\end{aligned}
$$

- and player 2's marginal contributions to coalitions $\{1,3\}$ and $\{1,3,4\}$

$$
\begin{aligned}
M C_{2}^{\{1,3\}}\left(v^{\mathcal{L}}\right) & =v^{\mathcal{L}}(\{1,2,3\})-v^{\mathcal{L}}(\{1,3\})=2-0 \\
& >3-2=v^{\mathcal{L}}(\{1,2,3,4\})-v^{\mathcal{L}}(\{1,3,4\}) \\
& =M C_{2}^{\{1,3,4\}}\left(v^{\mathcal{L}}\right)
\end{aligned}
$$

Generalization of the Shapley value

The network value is a generalization of the Shapley value:

Lemma

We have $\operatorname{My}\left(v, \mathcal{L}^{f u l l}\right)=\operatorname{Sh}(v)$.

Problem

Calculate the network payoffs for $N=\{1,2,3\}, \mathcal{L}=\{12,23\}$ and the coalition functions

- $u_{\{1,2\}}$ and
- $u_{\{1,3\}}$!

Components are islands: component decomposability

- We define $C_{i}=(N / \mathcal{L})(i)$ for networks \mathcal{L} on N.
- Very close the AD value, the network value treats components as islands.

Definition (component-decomposability axiom)

A solution function σ on $\mathbb{V}^{\text {net }}$ is said to obey component decomposability if

$$
\sigma_{i}(v, \mathcal{L})=\sigma_{i}\left(\left.v\right|_{C_{i}}, \mathcal{L}\left(C_{i}\right)\right)
$$

holds for all $i \in N$.
Thus, the payoff for a player does not depend on how the graph \mathcal{L} is structured outside player i's component. The payoff depends only on the coalition function restricted to C_{i} and on the network restricted to C_{i}.

Components are islands: component efficiency

Definition (component-efficiency axiom)

A solution function σ on $\mathbb{V}^{\text {net }}$ is said to obey the component-efficiency axiom if

$$
\sum_{i \in C_{i}} \sigma_{i}(v, \mathcal{L})=v\left(C_{i}\right)
$$

holds for all components $C_{i} \in N / \mathcal{L}$.

Problem

We may conjecture the equality of the Myerson and the Aumann-Dreze value whenever both deal with the same partition, $\mathcal{P}=N / \mathcal{L}$. That is, do we have

$$
\mu(v, \mathcal{L})=\varphi^{A D}(v, N / \mathcal{L})
$$

??

Components are islands, but

- For $N=\{1,2,3,4\}, \mathcal{L}=\{12,23,34,41\}$ and $u_{\{1,3\}}$, we find

$$
u_{\{1,3\}}^{\mathcal{L}}(K)= \begin{cases}1, & K \supseteq\{1,2,3\} \text { or } K \supseteq\{1,3,4\} \\ 0, & \text { otherwise }\end{cases}
$$

- You can confirm or believe the author that the Shapley payoffs are

$$
\left(\frac{5}{12}, \frac{1}{12}, \frac{5}{12}, \frac{1}{12}\right)
$$

Problem

Determine N / \mathcal{L} and $\varphi^{A D}(v, N / \mathcal{L})$.

Superfluous players

Definition (superfluous player)

Let (v, \mathcal{L}) be a network game. A player $i \in N$ is called superfluous if

$$
v^{\mathcal{L}}(S)=v^{\mathcal{L}}(S \cup i)
$$

holds for all $S \subseteq N$ gilt.

Definition (superfluous-player axiom)

A solution function σ on $\mathbb{V}^{\text {net }}$ is said to obey the superfluous-player axiom if

$$
\sigma(v, \mathcal{L})=\sigma(v, \mathcal{L} \backslash \mathcal{L}(i))
$$

holds for every superfluous player $i \in N$.

Superfluous links

Definition (superfluous link)

Let (v, \mathcal{L}) be a network game. A link $\ell \in \mathcal{L}$ is called superfluous if

$$
v^{\mathcal{L}}=v^{\mathcal{L} \backslash \ell}
$$

holds.

Problem

Superfluous link: $N=\{1,2,3\}, v=u_{\{1,2\}}$ and $\mathcal{L}=\{12,13\}$?

Definition (superfluous-link axiom)

A solution function σ on $\mathbb{V}^{\text {net }}$ is said to obey the superfluous-link axiom if

$$
\sigma(v, \mathcal{L})=\sigma(v, \mathcal{L} \backslash \ell)
$$

holds for every superfluous link $\ell \in \mathcal{L}$.

Balanced contributions

Definition (axiom of balanced contributions, one link)

A solution function σ on $\mathbb{V}^{\text {net }}$ is said to obey the axiom of balanced contributions if, for any coalition function v and any two players $i, j \in N$,

$$
\sigma_{i}(v, \mathcal{L})-\sigma_{i}(v, \mathcal{L} \backslash\{i j\})=\sigma_{j}(v, \mathcal{L})-\sigma_{j}(v, \mathcal{L} \backslash\{i j\})
$$

holds.

Definition (axiom of balanced contributions, all links)

A solution function σ on $\mathbb{V}^{\text {net }}$ is said to obey the axiom of balanced contributions if, for any coalition function v and any two players $i, j \in N$,

$$
\sigma_{i}(v, \mathcal{L})-\sigma_{i}(v, \mathcal{L} \backslash \mathcal{L}(j))=\sigma_{j}(v, \mathcal{L})-\sigma_{j}(v, \mathcal{L} \backslash \mathcal{L}(i))
$$

holds.

Properties of the network value

Theorem (properties of the communication value)
The network value obeys

- the component-decomposability axiom,
- the component-efficiency axiom,
- the superfluous-player axiom,
- the superfluous-link axioms,
- the additivity axiom,
- and the balanced-contributions axiom.

Axiomatization of the network value

Among the several known axiomatizations of the Myerson value, we like to highlight the two that make use of balanced contributions:

Theorem

A solution concept σ on $\mathbb{V}^{\text {net }}$ fulfills the two axioms of

- component efficiency and
- balanced contributions (for one link or for all links) for all player sets $N \subseteq \mathbb{N}$,
if and only if σ is the network value My.

Further exercises: Problem 1

Consider the coalition function v given by $N=\{1,2,3,4\}$ and

$$
v(K)= \begin{cases}0, & |K| \leq 1 \\ 2, & K \in\{\{1,2\},\{1,3\},\{1,4\}\} \\ 3 & K \in\{\{2,3\},\{2,4\}\} \\ 5 & K \in\{\{3,4\},\{1,2,3\},\{1,2,4\}\} \\ 7, & K \in\{\{1,3,4\},\{2,3,4\}, N\}\end{cases}
$$

(1) Consider three networks $\mathcal{L}_{a}=\{12,14,34\}, \mathcal{L}_{b}=\{12,14,24,34\}$, $\mathcal{L}_{c}=\{12,13,24,34\}$. Determine the three Myerson games associated with these networks. Determine the Shapley values of these games.
(2) Comment!

