Overview "The union value"

- Introduction
- Partitions and rank orders
- Union formula and axiomatization
- Examples

Does it pay to unionize?

- Chances of a German citizen to become a EU commissioner versus those of an Irish citizen
- Productive players in a unanimity game profit when they dissociate themselves from other productive players.
- Left-glove owners may benefit from forming a cartel of left-gloves holders.

subpartitions

 $\mathcal{P}(i) \in 2^{N} = \text{component that contains player } i$ $\mathcal{P}(R) \subseteq 2^{N} = \text{subpartition of } \mathcal{P} \text{ fulfilling } C \cap R \neq 0 \Leftrightarrow C \in \mathcal{P}(R) \text{ for all } C \in \mathcal{P}$

Problem

Express $\mathcal{P}(T)$ and $\mathcal{P}(i) \cap T$ in your own words.

union of components

Definition (union of components)

Let $\mathcal{P} = \{C_1, ..., C_k\}$ be a partition of *N*. We denote the union of *R*-components by

$$\int \mathcal{P}(R) := \bigcup_{i \in R} \mathcal{P}(i)$$
.

Thus, $\bigcup \mathcal{P}(R)$ is the set with partition $\mathcal{P}(R)$.

Problem

Consider $\mathcal{P}=\{\{1\},\{2\},\{3,4\},\{5,6,7\}\}$ and find $\mathcal{P}\left(\{2,5\}\right)$ and $\bigcup \mathcal{P}\left(\{2,5\}\right)$.

rank orders consistent with partitions

Consider the partition $\mathcal{P} = \{\{1\}, \{2\}, \{3, 4\}\}$.

- ullet The rank order $\rho=({\tt 3},{\tt 1},{\tt 2},{\tt 4})$ tears the component $\{{\tt 3},{\tt 4}\}$ apart while
- the rank order ho=(3,4,1,2) does not.

Problem

Which of the following rank oders are consistent with the partition $\mathcal{P} = \{\{1\}, \{2\}, \{3, 4\}, \{5, 6, 7\}\}$?

- $\rho = (1, 2, 3, 4, 5, 6, 7)$
- *ρ* = (2, 1, 4, 5, 6, 7, 3)

•
$$ho = (1, 5, 2, 3, 4, 6, 7)$$

•
$$\rho = (1, 4, 3, 7, 5, 6, 2)$$

rank orders consistent with partitions

Problem

Which rank orders from RO7 are consistent with

•
$$\mathcal{P} = \{\{1, 2, 3, 4, 5, 6, 7\}\}$$
 or

 $\bullet \ \mathcal{P} = \{\{1\} \, , \, \{2\} \, , \, \{3\} \, , \, \{4\} \, , \, \{5\} \, , \, \{6\} \, , \, \{7\}\}?$

how many consistent rank orders are there

How many rank orders are consistent with a partition

$$\mathcal{P} = \{S_1, ..., S_k\}$$
?

Note:

- We have k! possibilities to rank the components S_1 through S_k .
- Within component S_j , there are $|S_j|!$ possibilities to rank its players.

Thus, we find

$$\left| RO_n^{\mathcal{P}} \right| = k! \cdot |S_1|! \cdot \ldots \cdot |S_k|!$$

Definition

The union, or Owen, formula is given by

$$Ow_{i}(v, \mathcal{P}) = \frac{1}{|RO_{n}^{\mathcal{P}}|} \sum_{\rho \in RO_{n}^{\mathcal{P}}} [v(K_{i}(\rho)) - v(K_{i}(\rho) \setminus \{i\})], i \in N.$$

Do you see that $\mathcal{P} = \{\{1, 2, ..., n\}\}$ and $\mathcal{P} = \{\{1\}, \{2\}, ..., \{n\}\}$ lead to the same Owen values?

Union formula calculating the Owen payoffs

Example

$${m N}=\{1,2,3\},\ v_{\{1,2\},\{3\}},\ {\cal P}=\{\{1,2\},\{3\}\}$$
 with consistent rank orders

$$\left(1,2,3\right)$$
 , $\left(2,1,3\right)$, $\left(3,1,2\right)\;$ and $\;\left(3,2,1\right)$.

We obtain player 1's Owen payoff:

Union value axiomatization I

The Owen value is a solution function σ on (N, \mathfrak{P}_N) that obeys

- the efficiency axiom,
- the symmetry axiom (payoff equality for \mathcal{P} -symmetric players),
- the null-player axiom, and
- the additivity axiom.

These axioms do not suffice to pin down the Owen value.

Definition (component symmetry)

Consider a partition $\mathcal{P} \in \mathfrak{P}_N$. Two components C and C' from \mathcal{P} are called symmetric if

$$v\left(\bigcup \mathcal{P}\left(K\right)\cup C\right)=v\left(\bigcup \mathcal{P}\left(K\right)\cup C'\right)$$

holds for all $K \subseteq N \setminus (C \cup C')$.

Definition (symmetry axiom for components)

A solution function (on $\mathbb{V}^{\mathrm{part}})$ σ is said to obey symmetry between components if

$$\sigma_{C}(\mathbf{v},\mathcal{P}) = \sigma_{C'}(\mathbf{v},\mathcal{P})$$

holds for all symmetric components C and C' from \mathcal{P} .

Theorem (Axiomatization of the Owen value)

The Owen formula is the unique solution function that fulfills the symmetry axiom, the symmetry axiom for components, the efficiency axiom, the null-player axiom and the additivity axiom.

Union value axiomatization IV

Again: gloves game $v_{\{1,2\},\{3\}}$, partition $\mathcal{P} = \{\{1,2\},\{3\}\}$

• Both components are needed to produce the worth of 1. Therefore, the symmetry axiom for components yields

$$Ow_1\left(v_{\{1,2\},\{3\}},\mathcal{P}\right)+Ow_2\left(v_{\{1,2\},\{3\}},\mathcal{P}\right)=Ow_3\left(v_{\{1,2\},\{3\}},\mathcal{P}\right).$$

• Efficiency then leads to

$$\begin{array}{lll} Ow_3\left(v_{\{1,2\},\{3\}},\mathcal{P}\right) &=& 1-\left(Ow_1\left(v_{\{1,2\},\{3\}},\mathcal{P}\right)+Ow_2\left(v_{\{1,2\},\{3\}},\mathcal{P}\right)\right) \\ &=& 1-Ow_3\left(v_{\{1,2\},\{3\}},\mathcal{P}\right) \end{array}$$

and hence to $\mathit{Ow}_3\left(\mathit{v}_{\{1,2\},\{3\}},\mathcal{P}\right)=rac{1}{2}.$

• The symmetry between players 1 and 2 produces $Ow_1(v_{\{1,2\},\{3\}}, \mathcal{P}) = Ow_2(v_{\{1,2\},\{3\}}, \mathcal{P}) = \frac{1}{4}.$

- Disregard null components $C \subseteq N \setminus T$.
- Each component in $\mathcal{P}(T)$ has the same probability $\frac{1}{|\mathcal{P}(T)|}$ to be the last component.
- Within each of these components, every *i* ∈ *T* player has the same probability ¹_{|P(i)∩T|} to complete *T*.

Thus, the Owen value yields the following payoffs for a unanimity game u_T , $T \neq \emptyset$:

$$\mathit{Ow}_i\left(\mathit{u}_{\mathcal{T}},\mathcal{P}
ight) = \left\{egin{array}{cc} rac{1}{|\mathcal{P}(\mathcal{T})|}rac{1}{|\mathcal{P}(i)\cap\mathcal{T}|}, & i\in\mathcal{T}\ 0, & ext{otherwise} \end{array}
ight.$$

Breaking off pays.

Symmetric players need not be \mathcal{P} -symmetric. Consider $N = \{1, 2, 3\}, \mathcal{P} = \{\{1, 2\}, \{3\}\}$ and the coalition function v given by $\alpha \in \mathbb{R}$ and

$$v(S) = \begin{cases} 0, & |S| \le 1\\ \alpha, & |S| = 2\\ 1, & |S| = 3 \end{cases}$$

rank order	marginal contribution for player 1
1-2-3	0
2-1-3	α
3-1-2	α
3-2-1	1-lpha
sum	$1 + \alpha$
Owen payoff	$\frac{1+\alpha}{4}$

Since players 1 and 2 are \mathcal{P} -symmetric, we have $Ow_2(v, \mathcal{P}) = Ow_1(v, \mathcal{P}) = \frac{1+\alpha}{4}$. Efficiency yields

$$Ow_{3}(v, \mathcal{P}) = 1 - Ow_{1}(v, \mathcal{P}) - Ow_{2}(v, \mathcal{P})$$

= $1 - 2 \cdot \frac{1 + \alpha}{4} = \frac{1}{2} - \frac{1}{2}\alpha.$

Thus, we obtain $Ow_3(v, \mathcal{P}) \neq Ow_1(v, \mathcal{P})$ unless $\alpha = \frac{1}{3}$ happens to hold.

apex games

Problem

Find the Owen payoffs for the n-player apex game h_1 and the partition $\mathcal{P} = \{\{1\}, \{2, ..., n\}\}$.

If the unimportant players form several components, the apex player obtains a positive payoff. For example, if the players 2 to *n* form two components, the apex player obtains the marginal payoff 1 in one out of three cases – therefore, we have $Ow_1(v, \mathcal{P}) = \frac{1}{3}$.

Problem

Can you find a partition $\mathcal{P} = \{\{1\}, C_1, C_2\}$ such that a player $j \in \{2, ..., n\}$ obtains a higher payoff than $\frac{1}{n-1}$?

The Shapley value is an average of Owen values probability distribution I

Definition (probability distribution)

Let M be a nonempty set. A probability distribution on M is a function

prob:
$$2^M o [0, 1]$$

such that

• prob
$$(\emptyset) = 0$$
,

- $prob(A \cup B) = prob(A) + prob(B)$ for all $A, B \in 2^{M}$ obeying $A \cap B = \emptyset$ and
- prob (M) = 1.

The Shapley value is an average of Owen values probability distribution II

Problem

Probability for the events

- "the number of pips (spots) is 2",
- "the number of pips is odd", and, applying the definition
- "the number of pips is 1, 2, 3 or 5".

The Shapley value is an average of Owen values symmetric probability distribution I

prob on $M = \mathfrak{P}_N$

onot symmetric:

$$\mathsf{prob}_1\left(\{\{1,2\},\{3\}\}
ight)=rac{1}{2}=\mathsf{prob}_1\left(\{\{1\},\{2,3\}\}
ight)$$

onot symmetric:

$$\mathsf{prob}_2\left(\left\{\left\{1,2
ight\},\left\{3
ight\}
ight)=1$$

symmetric:

$$prob_1 \left(\{ \{1,2\}, \{3\} \} \right) = prob_1 \left(\{ \{1\}, \{2,3\} \} \right)$$

= $prob_1 \left(\{ \{2\}, \{1,3\} \} \right) = \frac{1}{3}$,
 $prob_2 \left(\{ \{1,2,...,n\} \} \right) = 1$, and
 $prob_3 \left(\{ \{1\}, \{2\}, ..., \{n\} \} \right) = 1$

The Shapley value is an average of Owen values symmetric probability distribution II

• bijection $\pi: N \to N$. For example, for $N = \{1, 2, 3\}$, a bijection π is defined by

$$egin{array}{rcl} \pi \left(1
ight) &=& {
m 3,} \ \pi \left(2
ight) &=& {
m 1,} \ {
m and} \ \pi \left(3
ight) &=& {
m 2.} \end{array}$$

• For a partition \mathcal{P} , $\pi(\mathcal{P})$ is the partition $\{\pi(\mathcal{C}) : \mathcal{C} \in \mathcal{P}\}$.

Problem

Let $\mathcal{P} = \{\{1,2\},\{3\}\}$. Find $\pi(\mathcal{P})$ for the above bijection $\pi!$

The Shapley value is an average of Owen values symmetric probability distribution III

Definition

Let prob be a probability distribution on \mathfrak{P}_N . prob is called symmetric if every bijection $\pi: N \to N$ yields

prob
$$(\mathcal{P})=$$
 prob $(\pi\left(\mathcal{P}
ight))$.

Do you see:

- $\pi(\{1, 2, ..., n\}) = \{1, 2, ..., n\}$ for every bijection π .
- Every partition π keeps the atomic partition intact.

The Shapley value is an average of Owen values probabilistic Owen value

Definition (probabilistic Owen value)

The probabilistic Owen value on \mathbb{V}^{part} is the solution function Ow given by

$$\mathit{Ow}_{i}\left(\textit{v},\textit{prob}
ight) = \sum_{\mathcal{P} \in \mathfrak{P}_{\mathcal{N}}} \mathit{prob}\left(\mathcal{P}
ight) \mathit{Ow}_{i}\left(\textit{v},\mathcal{P}
ight)$$
 , $i \in \mathcal{N}$,

where $prob \in Prob(\mathfrak{P}_N)$ is a probability distribution on the set of partitions of N.

Theorem (Casajus in IGTR)

For any symmetric probability distribution prob on \mathfrak{P}_N , we have

$$Ow(v, prob) = Sh(v)$$
.

Further exercises: Problem 1

Assume two men, Max (M) and Onno (O), who both love Ada (A). Their coalition function is given

$$v(K) = \begin{cases} 0, & |K| \le 1\\ 6, & K = \{M, A\}\\ 4, & K = \{O, A\}\\ 1, & K = \{M, O\}\\ 2, & K = \{M, O, A\} \end{cases}$$

Calculate the Owen payoffs for the partition \$\mathcal{P} = \{\{M, O\}, \{A\}\}\$
Comment!