Applied cooperative game theory:
 Dividends

Harald Wiese
University of Leipzig

April 2010

Overview "Dividends"

- Definition and interpretation
- Coalition functions as vectors
- Spanning and linear independence
- The basis of unanimity games

Definition and interpretation of dividends I

Definition (Harsanyi dividend)

Let $v \in \mathbb{V}_{N}$ be a coalition function. The dividend (also called Harsanyi dividend) is a coalition function d^{\vee} on N defined by

$$
d^{v}(T)=\sum_{K \subseteq T}(-1)^{|T|-|K|} v(K) .
$$

Theorem (Harsanyi dividend)

For any coalition function $v \in \mathbb{V}_{N}$, its Harsanyi dividends are defined by the induction formula

$$
\begin{aligned}
d^{v}(S) & =v(S) \text { for }|S|=1 \\
d^{v}(S) & =v(S)-\sum_{K \subset S} d^{v}(K) \text { for }|S|>1
\end{aligned}
$$

Definition and interpretation of dividends II

- Consider a player i who is a member of 2^{n-1} coalitions $T \subseteq N$.
- Player i "owns" coalition T together with the other players from T where his ownership fraction is $\frac{1}{|T|}$.
- Each coalition T brings forth a dividend $d^{v}(T)$.
- Player i should obtain

$$
\sum_{i \in T \subseteq N} \frac{d^{v}(T)}{|T|}=S h_{i}(v)
$$

Coalition functions as vectors I

- We need $2^{n}-1$ entries to describe any game $v \in \mathbb{V}_{N}$.
(The worth of \varnothing is always zero!)
- For example, $u_{\{1,2\}} \in V(\{1,2,3\})$ can be identified with the vector from \mathbb{R}^{7}

$$
(\underbrace{0}_{\{1\}}, \underbrace{0}_{\{2\}}, \underbrace{0}_{\{3\}}, \underbrace{1}_{\{1,2\}}, \underbrace{0}_{\{1,3\}}, \underbrace{0}_{\{2,3\}}, \underbrace{1}_{\{1,2,3\}})
$$

Problem

Write down the vector that describes the Maschler game

$$
v(K)= \begin{cases}0, & |K|=1 \\ 60, & |K|=2 \\ 72, & |K|=3\end{cases}
$$

Coalition functions as vectors II

You know how to sum vectors. We can also multiply a vector by a real number (scalar multiplication). Both operations proceed entry by entry:

Problem

Consider $v=(1,3,3), w=(2,7,8)$ and $\alpha=\frac{1}{2}$ and determine $v+w$ and αw.

Spanning and linear independence I

$\mathbb{R}^{m}, m \geq 1$, is a prominent class of vector spaces some of which obey $m=2^{n}-1$.

Definition (linear combination, spanning)

A vector $w \in \mathbb{R}^{m}$ is called a linear combination of vectors $v_{1}, \ldots, v_{k} \in \mathbb{R}^{m}$ if there exist scalars (also called coefficients) $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}$ such that

$$
w=\sum_{\ell=1}^{k} \alpha_{\ell} v_{\ell}
$$

holds. The set of vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ is said to span \mathbb{R}^{m} if every vector from \mathbb{R}^{m} is a linear combinations of the vectors v_{1}, \ldots, v_{k}.

Spanning and linear independence II

Spanning

Consider, for example, \mathbb{R}^{2} and the set of vectors

$$
\{(1,2),(0,1),(1,1)\}
$$

Any vector $\left(x_{1}, x_{2}\right)$ is a linear combination of these vectors by

$$
\begin{aligned}
& 2 x_{1}(1,2)-\left(3 x_{1}-x_{2}\right)(0,1)-x_{1}(1,1) \\
= & \left(2 x_{1}-x_{1}, 4 x_{1}-\left(3 x_{1}-x_{2}\right)-x_{1}\right) \\
= & \left(x_{1}, x_{2}\right) .
\end{aligned}
$$

Spanning and linear independence III

Problem

Show that $(0,1)$ is a linear combination of the other two vectors, $(1,2)$ and $(1,1)$!

Using the result of the above exercise, we have

$$
\begin{aligned}
& 2 x_{1}(1,2)-\left(3 x_{1}-x_{2}\right)(0,1)-x_{1}(1,1) \\
= & 2 x_{1}(1,2)-\left(3 x_{1}-x_{2}\right)[(1,2)-(1,1)]-x_{1}(1,1) \\
= & {\left[2 x_{1}-\left(3 x_{1}-x_{2}\right)\right](1,2)-\left[x_{1}+\left(3 x_{1}-x_{2}\right)\right](1,1) }
\end{aligned}
$$

so that any vector from \mathbb{R}^{2} is a linear combination of just $(1,2)$ and $(1,1)$.

Spanning and linear independence IV

Linear independence

If we want to span \mathbb{R}^{2} (or any \mathbb{R}^{m}), we try to find a minimal way to do so. Any vector in a spanning set that is a linear combination of other vectors in that set, can be eliminated.

Definition (linear independence)

A set of vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ is called linearly independent if no vector from that set is a linear combination of other vectors from that set.

Problem

Are the vectors $(1,3,3),(2,1,1)$ and $(8,9,9)$ linearly independent?

Spanning and linear independence V

Basis

Definition (basis)

A set of vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ is called a basis for \mathbb{R}^{m} if it spans \mathbb{R}^{m} and is linearly independent.

An obvious basis for \mathbb{R}^{m} consists of the m unit vectors

$$
\begin{aligned}
& (1,0, \ldots, 0), \\
& (0,1,0, \ldots,), \\
& \ldots \\
& (0, \ldots, 0,1) .
\end{aligned}
$$

Spanning and linear independence VI

Basis

Any $x=\left(x_{1}, \ldots, x_{m}\right)$ is a linear combination of these vectors by

$$
\begin{aligned}
& x_{1}(1,0, \ldots, 0)+x_{2}(0,1,0, \ldots,)+\ldots+x_{m}(0, \ldots, 0,1) \\
= & \left(x_{1}, 0, \ldots, 0\right)+\left(0, x_{2}, 0, \ldots,\right)+\ldots+\left(0, \ldots, 0, x_{m}\right) \\
= & \left(x_{1}, \ldots, x_{m}\right) .
\end{aligned}
$$

This proves that the unit vectors do indeed span \mathbb{R}^{m}.
In order to show linear independence, consider any linear combination of $m-1$ unit vectors, for example

$$
\alpha_{1}(1,0, \ldots, 0)+\alpha_{2}(0,1,0, \ldots,)+\ldots+\alpha_{m-1}(0, \ldots, 0,1,0)
$$

which is equal to $\left(\alpha_{1}, \ldots, \alpha_{m-1}, 0\right)$ and unequal to $(0, \ldots, 0,1)$ for any coefficients $\alpha_{1}, \ldots, \alpha_{m-1}$.

Spanning and linear independence VII

Theorem (basis criterion)

Every basis of the vector space \mathbb{R}^{m} has m elements. Any set of m elements of the vector space \mathbb{R}^{m} that span \mathbb{R}^{m} form a basis. Any set of m elements of the vector space \mathbb{R}^{m} that are linearly independent form a basis.

Theorem (uniquely determined coefficients)

Let $\left\{v_{1}, \ldots, v_{m}\right\}$ be a basis of \mathbb{R}^{m} and let x be any vector such that

$$
x=\sum_{i=1}^{m} \alpha_{i} v_{i}=\sum_{i=1}^{m} \beta_{i} v_{i} .
$$

Then $\alpha_{i}=\beta_{i}$ for all $i=1, \ldots, m$.

The basis of unit games

Unit vectors form a basis. For the vector space \mathbb{V}_{N}, this means that the $2^{n}-1$ coalition functions $v_{T}, T \neq \varnothing$, given by

$$
v_{T}(S)= \begin{cases}1, & S=T \\ 0, & S \neq T\end{cases}
$$

form a basis.

The basis of unanimity games I

Lemma (unanimity games form basis)

The $2^{n}-1$ unanimity games $u_{T}, T \neq \varnothing$, form a basis of the vector space \mathbb{V}_{N}.

Thus, there exist uniquely determined coefficients $\lambda^{v}(T)$ such that

$$
v=\sum_{T \in 2^{N} \backslash\{\varnothing\}} \lambda^{v}(T) u_{T}
$$

or

$$
v(S)=\sum_{T \in 2^{N} \backslash\{\varnothing\}} \lambda^{v}(T) u_{T}(S), S \subseteq N .
$$

holds.

The basis of unanimity games II

Lemma

The coefficients for the linear combination of v are

$$
\lambda^{v}(T):=d^{v}(T) .
$$

The coefficients: an example I

Consider $N:=\{1,2,3\}$ and the coalition function v given by

$$
v(S)= \begin{cases}0, & |S|=1 \\ 60, & S=\{1,2\} \\ 48, & S=\{1,3\} \\ 30, & S=\{2,3\} \\ 72, & S=N\end{cases}
$$

This coalition function can also be expressed by the vector

$$
\left(\begin{array}{l}
0(\{1\}) \\
0(\{2\}) \\
0(\{3\}) \\
60(\{1,2\}) \\
48(\{1,3\}) \\
30(\{2,3\}) \\
72(\{1,2,3\})
\end{array}\right)
$$

The coefficients: an example II

$$
\begin{aligned}
d^{\vee}(\{1\}) & =d^{\vee}(\{2\})=d^{\vee}(\{3\})=0, \\
d^{\vee}(\{1,2\}) & =\sum_{K \in 2^{\{1,2\}} \backslash\{\varnothing\}}(-1)^{|\{1,2\}|-|K|} v(K) \\
& =(-1)^{2-1} v(\{1\})+(-1)^{2-1} v(\{2\})+(-1)^{2-2} v(\{1,2\}, \\
& =0+0+60, \\
d^{\vee}(\{1,3\}) & =(-1)^{2-1} v(\{1\})+(-1)^{2-1} v(\{3\})+(-1)^{2-2} v(\{1,3\}, \\
& =48, \\
d^{\vee}(\{2,3\}) & =(-1)^{2-1} v(\{2\})+(-1)^{2-1} v(\{3\})+(-1)^{2-2} v(\{2,3\}, \\
& =30 \text { and } \\
d^{\vee}(\{1,2,3\}) & =\sum_{K \in 2^{N} \backslash\{\varnothing\}}(-1)^{|N|-|K|} v(K) \\
& =\ldots=-66
\end{aligned}
$$

The coefficients: an example III

$$
\begin{aligned}
& d^{v}(\{1,2\}) u_{\{1,2\}}+d^{v}(\{1,3\}) u_{\{1,3\}}+d^{v}(\{2,3\}) u_{\{2,3\}}+d^{v}(N) u_{N} \\
& =60\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0 \\
0 \\
1
\end{array}\right)+48\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
0 \\
1
\end{array}\right)+30\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right)-66\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

The coefficients: exercises

Problem

Calculate the coefficients for the following games on $N=\{1,2,3\}$:

- $v \in \mathbb{V}_{N}$ is defined by $v(\{1,2\})=v(\{2,3\})=v(\{1,2,3\})=1$ and $v(\{1\})=v(\{2\})=v(\{3\})=v(\{1,3\})=0$.
- $v \in \mathbb{V}_{N}$ is defined by

$$
v(S)= \begin{cases}0, & |S| \leq 1 \\ 8, & |S|=2 \\ 9, & S=N\end{cases}
$$

The proof of the lemma I

Lemma (unanimity games form basis)

The $2^{n}-1$ unanimity games $u_{T}, T \neq \varnothing$, form a basis of the vector space \mathbb{V}_{N}.

- It is sufficient to show that the unanimity games are linearly independent.
- We use a proof by contradiction and assume that there is a unanimity game u_{T} that is a linear combination of the others:

$$
u_{T}=\sum_{\ell=1}^{k .} \beta_{\ell} u_{T_{\ell}}
$$

where

- the coalitions T, T_{1}, \ldots, T_{k} are all pairwise different,
- $k \leq 2^{n}-2$ holds and
- $\beta_{\ell} \neq 0$ holds for all $\ell=1, \ldots, k$.

The proof of the lemma II

- Let us assume $|T| \leq\left|T_{\ell}\right|$ for all $\ell=1, \ldots, k$. If not, rearrange and rename.
- Using the coalition T as an argument, we now obtain

$$
\begin{aligned}
1 & =u_{T}(T) \\
& =\sum_{\ell=1}^{k} \beta_{\ell} u_{T_{\ell}}(T) \\
& =\sum_{\ell=1}^{k} \beta_{\ell} \cdot 0 \\
& =0
\end{aligned}
$$

and hence the desired contradiction.

Problem

In the above proof, do you see why $u_{T_{\ell}}(T)=0$ holds for all $\ell=1, \ldots, k$?

