Applied cooperative game theory: Dividends

Harald Wiese

University of Leipzig

April 2010

Overview "Dividends"

- Definition and interpretation
- Coalition functions as vectors
- Spanning and linear independence
- The basis of unanimity games

Definition (Harsanyi dividend)

Let $v \in \mathbb{V}_N$ be a coalition function. The dividend (also called Harsanyi dividend) is a coalition function d^v on N defined by

$$d^{v}(T) = \sum_{K \subseteq T} (-1)^{|T| - |K|} v(K).$$

Theorem (Harsanyi dividend)

For any coalition function $v \in \mathbb{V}_N,$ its Harsanyi dividends are defined by the induction formula

$$\begin{array}{lll} d^{v}\left(S\right) & = & v\left(S\right) \; \textit{ for } \; |S| = 1, \\ d^{v}\left(S\right) & = & v\left(S\right) - \sum_{K \subset S} d^{v}\left(K\right) \; \textit{ for } \; |S| > 1 \end{array}$$

Definition and interpretation of dividends II

- Consider a player *i* who is a member of 2^{n-1} coalitions $T \subseteq N$.
- Player *i* "owns" coalition *T* together with the other players from *T* where his ownership fraction is ¹/_{|T|}.
- Each coalition T brings forth a dividend $d^{v}(T)$.
- Player *i* should obtain

$$\sum_{i\in T\subseteq N}\frac{d^{v}\left(T\right)}{\left|T\right|}=Sh_{i}\left(v\right).$$

Coalition functions as vectors I

- We need 2ⁿ − 1 entries to describe any game v ∈ V_N. (The worth of Ø is always zero!)
- For example, $u_{\{1,2\}} \in V\left(\{1,2,3\}\right)$ can be identified with the vector from \mathbb{R}^7

$$\left(\underbrace{0}_{\{1\}},\underbrace{0}_{\{2\}},\underbrace{0}_{\{3\}},\underbrace{1}_{\{1,2\}},\underbrace{0}_{\{1,3\}},\underbrace{0}_{\{2,3\}},\underbrace{1}_{\{1,2,3\}}\right)$$

Problem

Write down the vector that describes the Maschler game

$$v(K) = \begin{cases} 0, & |K| = 1\\ 60, & |K| = 2\\ 72, & |K| = 3 \end{cases}$$

Coalition functions as vectors II

You know how to sum vectors. We can also multiply a vector by a real number (scalar multiplication). Both operations proceed entry by entry:

Problem

Consider
$$v = (1, 3, 3)$$
, $w = (2, 7, 8)$ and $\alpha = \frac{1}{2}$ and determine $v + w$ and αw .

Spanning and linear independence I Spanning

 \mathbb{R}^m , $m \ge 1$, is a prominent class of vector spaces some of which obey $m = 2^n - 1$.

Definition (linear combination, spanning)

A vector $w \in \mathbb{R}^m$ is called a linear combination of vectors $v_1, ..., v_k \in \mathbb{R}^m$ if there exist scalars (also called coefficients) $\alpha_1, ..., \alpha_k \in \mathbb{R}$ such that

$$w = \sum_{\ell=1}^{k} \alpha_{\ell} v_{\ell}$$

holds. The set of vectors $\{v_1, ..., v_k\}$ is said to span \mathbb{R}^m if every vector from \mathbb{R}^m is a linear combinations of the vectors $v_1, ..., v_k$.

Spanning and linear independence II Spanning

Consider, for example, \mathbb{R}^2 and the set of vectors

 $\left\{ \left(1,2\right)$, $\left(0,1\right)$, $\left(1,1\right)\right\}$.

Any vector (x_1, x_2) is a linear combination of these vectors by

$$2x_1(1,2) - (3x_1 - x_2)(0,1) - x_1(1,1)$$

= $(2x_1 - x_1, 4x_1 - (3x_1 - x_2) - x_1)$
= (x_1, x_2) .

Spanning and linear independence III Spanning

Problem

Show that (0,1) is a linear combination of the other two vectors, (1,2) and (1,1)!

Using the result of the above exercise, we have

$$2x_1 (1, 2) - (3x_1 - x_2) (0, 1) - x_1 (1, 1)$$

= $2x_1 (1, 2) - (3x_1 - x_2) [(1, 2) - (1, 1)] - x_1 (1, 1)$
= $[2x_1 - (3x_1 - x_2)] (1, 2) - [x_1 + (3x_1 - x_2)] (1, 1)$

so that any vector from \mathbb{R}^2 is a linear combination of just (1,2) and (1,1) .

Spanning and linear independence IV

Linear independence

If we want to span \mathbb{R}^2 (or any \mathbb{R}^m), we try to find a minimal way to do so. Any vector in a spanning set that is a linear combination of other vectors in that set, can be eliminated.

Definition (linear independence)

A set of vectors $\{v_1, ..., v_k\}$ is called linearly independent if no vector from that set is a linear combination of other vectors from that set.

Problem

Are the vectors (1, 3, 3), (2, 1, 1) and (8, 9, 9) linearly independent?

Spanning and linear independence V $_{\mbox{\scriptsize Basis}}$

Definition (basis)

A set of vectors $\{v_1, ..., v_k\}$ is called a basis for \mathbb{R}^m if it spans \mathbb{R}^m and is linearly independent.

An obvious basis for \mathbb{R}^m consists of the m unit vectors

(1, 0, ..., 0), (0, 1, 0, ...,), ..., (0, ..., 0, 1).

Spanning and linear independence VI Basis

Any $x = (x_1, ..., x_m)$ is a linear combination of these vectors by

$$\begin{aligned} x_1 & (1, 0, ..., 0) + x_2 & (0, 1, 0, ...,) + ... + x_m & (0, ..., 0, 1) \\ = & (x_1, 0, ..., 0) + & (0, x_2, 0, ...,) + ... + & (0, ..., 0, x_m) \\ = & (x_1, ..., x_m) \,. \end{aligned}$$

This proves that the unit vectors do indeed span \mathbb{R}^m .

In order to show linear independence, consider any linear combination of m-1 unit vectors, for example

$$\alpha_1$$
 (1, 0, ..., 0) + α_2 (0, 1, 0, ...,) + ... + α_{m-1} (0, ..., 0, 1, 0)

which is equal to $(\alpha_1, ..., \alpha_{m-1}, 0)$ and unequal to (0, ..., 0, 1) for any coefficients $\alpha_1, ..., \alpha_{m-1}$.

Theorem (basis criterion)

Every basis of the vector space \mathbb{R}^m has m elements. Any set of m elements of the vector space \mathbb{R}^m that span \mathbb{R}^m form a basis. Any set of m elements of the vector space \mathbb{R}^m that are linearly independent form a basis.

Theorem (uniquely determined coefficients)

Let $\{v_1,...,v_m\}$ be a basis of \mathbb{R}^m and let x be any vector such that

$$x = \sum_{i=1}^m \alpha_i v_i = \sum_{i=1}^m \beta_i v_i.$$

Then $\alpha_i = \beta_i$ for all i = 1, ..., m.

The basis of unit games

Unit vectors form a basis. For the vector space \mathbb{V}_N , this means that the $2^n - 1$ coalition functions v_T , $T \neq \emptyset$, given by

$$v_{T}(S) = \begin{cases} 1, S = T \\ 0, S \neq T \end{cases}$$

form a basis.

Lemma (unanimity games form basis)

The $2^n - 1$ unanimity games u_T , $T \neq \emptyset$, form a basis of the vector space \mathbb{V}_N .

Thus, there exist uniquely determined coefficients $\lambda^{v}(T)$ such that

$$v = \sum_{T \in 2^{N} \setminus \{\emptyset\}} \lambda^{v}(T) u_{T}$$

or

$$v\left(S
ight)=\sum_{T\in2^{N}\setminus\{\varnothing\}}\lambda^{v}\left(T
ight)u_{T}\left(S
ight)$$
 , $S\subseteq N$.

holds.

Lemma

The coefficients for the linear combination of v are

$$\lambda^{v}(T):=d^{v}(T).$$

The coefficients: an example I

Consider $N := \{1, 2, 3\}$ and the coalition function v given by

$$v(S) = \begin{cases} 0, & |S| = 1\\ 60, & S = \{1, 2\}\\ 48, & S = \{1, 3\}\\ 30, & S = \{2, 3\}\\ 72, & S = N \end{cases}$$

This coalition function can also be expressed by the vector

$$\begin{pmatrix} 0 & (\{1\}) \\ 0 & (\{2\}) \\ 0 & (\{3\}) \\ 60 & (\{1,2\}) \\ 48 & (\{1,3\}) \\ 30 & (\{2,3\}) \\ 72 & (\{1,2,3\}) \end{pmatrix}$$

The coefficients: an example II

$$d^{v} (\{1\}) = d^{v} (\{2\}) = d^{v} (\{3\}) = 0,$$

$$d^{v} (\{1,2\}) = \sum_{K \in 2^{\{1,2\}} \setminus \{\emptyset\}} (-1)^{|\{1,2\}| - |K|} v (K)$$

$$= (-1)^{2-1} v (\{1\}) + (-1)^{2-1} v (\{2\}) + (-1)^{2-2} v (\{1,2\})$$

$$= 0 + 0 + 60,$$

$$d^{v} (\{1,3\}) = (-1)^{2-1} v (\{1\}) + (-1)^{2-1} v (\{3\}) + (-1)^{2-2} v (\{1,3\})$$

$$= 48,$$

$$d^{v} (\{2,3\}) = (-1)^{2-1} v (\{2\}) + (-1)^{2-1} v (\{3\}) + (-1)^{2-2} v (\{2,3\})$$

$$= 30 \text{ and}$$

$$d^{v} (\{1,2,3\}) = \sum_{K \in 2^{N} \setminus \{\emptyset\}} (-1)^{|N| - |K|} v (K)$$

$$= \dots = -66$$

$$d^{v} (\{1,2\}) u_{\{1,2\}} + d^{v} (\{1,3\}) u_{\{1,3\}} + d^{v} (\{2,3\}) u_{\{2,3\}} + d^{v} (N) u_{N}$$

$$= 60 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} + 48 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} + 30 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} - 66 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Harald Wiese (Chair of Microeconomics)

Problem

Calculate the coefficients for the following games on $N = \{1, 2, 3\}$:

- $v \in \mathbb{V}_N$ is defined by $v(\{1,2\}) = v(\{2,3\}) = v(\{1,2,3\}) = 1$ and $v(\{1\}) = v(\{2\}) = v(\{3\}) = v(\{1,3\}) = 0.$
- $v \in \mathbb{V}_N$ is defined by

$$v(S) = \begin{cases} 0, & |S| \le 1\\ 8, & |S| = 2\\ 9, & S = N \end{cases}$$

Lemma (unanimity games form basis)

The $2^{n} - 1$ unanimity games u_{T} , $T \neq \emptyset$, form a basis of the vector space \mathbb{V}_{N} .

- It is sufficient to show that the unanimity games are linearly independent.
- We use a proof by contradiction and assume that there is a unanimity game u_T that is a linear combination of the others:

$$u_T = \sum_{\ell=1}^{k.} \beta_\ell u_{T_\ell}$$

where

- the coalitions T, T_1 , ..., T_k are all pairwise different,
- $k \leq 2^n 2$ holds and
- $\beta_{\ell} \neq 0$ holds for all $\ell = 1, ..., k$.

The proof of the lemma II

- Let us assume $|T| \leq |T_{\ell}|$ for all $\ell = 1, ..., k$. If not, rearrange and rename.
- Using the coalition T as an argument, we now obtain

$$1 = u_{T}(T)$$
$$= \sum_{\ell=1}^{k} \beta_{\ell} u_{T_{\ell}}(T)$$
$$= \sum_{\ell=1}^{k} \beta_{\ell} \cdot 0$$
$$= 0$$

and hence the desired contradiction.

Problem

In the above proof, do you see why $u_{T_{\ell}}(T) = 0$ holds for all $\ell = 1, ..., k$?

Harald Wiese (Chair of Microeconomics)