CS-values

Applied Cooperative Game Theory

André Casajus and Martin Kohl

University of Leipzig

November 2013

Overview

CS-values CS E vs CE Ow def Ow vs Sh Ow #1 Ow #2 IG Ow & IG SC OwCh #1 OwCh #2 altChar

AD form AD char

- Coalition structures
- Efficiency vs Component efficiency
- The Owen value
- The Intermediate Game
- Characterizations of the Owen value
- The Aumann-Dreze value

Coalition structures

CS
E vs CE
Ow def
Ow vs Sh
Ow #1
Ow #2
IG
Ow & IG
SC
OwCh #1
OwCh #2
altChar
DOW

AD char

CS-values

- so far, no groupings of the players were considered
- in reality, people often form groups in order to achieve their goals
- how to model: partitions \mathcal{P} of the player set N, i.e., set of subsets of N which are pairwise disjoint and mutually exhaustive
 - lacksquare for all $P,P'\in\mathcal{P}$ either P=P' or $P\cap P'=\emptyset$
 - \blacksquare $N = \bigcup_{P \in \mathcal{P}} P$
 - **component** containing $i \in N : \mathcal{P}(i)$
 - for $K \subseteq N$: $\mathcal{P}(K) = \bigcup_{i \in K} \mathcal{P}(i)$
 - for $K \subseteq N$: $\mathcal{P}[K] = {\mathcal{P}(i) | i \in K}$
 - \blacksquare set of all partitions on $N: \mathbb{P}(N)$
 - **atomic** coalition structure: $[N] = \{\{i\} | i \in N\}$; **trivial** one: $\{N\}$
- coalition structures = partitions of the player set
- CS games: (N, v, \mathcal{P}) ; TU game (N, v), $v \in \mathbb{V}(N)$, with a coalition structure $\mathcal{P} \in \mathbb{P}(N)$
- **CS** solution, φ : assigns a vector $\varphi(N, v, \mathcal{P}) \in \mathbb{R}^N$ to any CS game (N, v, \mathcal{P})

Efficient versus component efficient solutions

CS-values CS E vs CE Ow def Ow vs Sh Ow #1 Ow #2 IG Ow & IG SC OwCh #1 OwCh #2

altChar

AD char

DOw AD form basically, two interpretations of coalition structures

Efficiency (E) For all
$$(N, v, P)$$
, $\varphi_N(N, v, P) = v(N)$.

- \blacksquare all players cooperate as grand coalition and bargain on the distribution of $v\left(N\right)$
- \blacksquare components of ${\mathcal P}$ may be viewed as bargaining blocs/units in this process
- concepts: Owen value

Component efficiency (CE) For all (N, v, P) and $P \in P$, $\varphi_P(N, v, P) = v(P)$.

- lacktriangledown components P of \mathcal{P} are the productive units, create a worth of $v\left(P\right)$, respectively
- \blacksquare players in $P \in \mathcal{P}$ bargain on the distribution of v(P)
- lacktriangle concepts: AD value, Wiese value, χ -value

The Owen value: definition

CS-values CS F vs CF Ow def Ow vs Sh Ow #1 Ow #2 IG Ow & IG SC OwCh #1 OwCh #2 altChar DOw AD form AD char

- Owen, G. (1977). Values of games with a priori unions. In R. Henn & O. Moeschlin (Eds.), Essays in Mathematical Economics & Game Theory (pp. 76–88). Berlin: Springer
- \blacksquare set of orders compatible with \mathcal{P} :

$$\Sigma\left(N,\mathcal{P}\right) := \left\{\sigma \in \Sigma\left(N\right) \left| \forall P \in \mathcal{P}, \ i,j \in P : \left|\sigma\left(i\right) - \sigma\left(j\right)\right| < \left|P\right| \right\}\right\}$$

- $\blacksquare i, j, k \in N, j \in \mathcal{P}(i), \sigma(i) \le \sigma(k) \le \sigma(j) \Rightarrow k \in \mathcal{P}(i)$
- $\blacksquare \text{ any } \sigma \in \Sigma \left(\textit{N}, \mathcal{P} \right) \text{ induces a unique order } \rho \left(\sigma \right) \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \mathcal{P}, \text{ and } \sigma \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \mathcal{P}, \text{ and } \sigma \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \mathcal{P}, \text{ and } \sigma \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \mathcal{P}, \text{ and } \sigma \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \mathcal{P}, \text{ and } \sigma \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \mathcal{P}, \text{ and } \sigma \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \mathcal{P}, \text{ and } \sigma \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \mathcal{P}, \text{ and } \sigma \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \mathcal{P}, \text{ and } \sigma \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \mathcal{P}, \text{ and } \sigma \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \mathcal{P}, \text{ and } \sigma \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \mathcal{P}, \text{ and } \sigma \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \mathcal{P}, \text{ and } \sigma \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \mathcal{P}, \text{ and } \sigma \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \mathcal{P}, \text{ and } \sigma \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \mathcal{P}, \text{ and } \sigma \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \mathcal{P}, \text{ and } \sigma \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \mathcal{P}, \text{ and } \sigma \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \mathcal{P}, \text{ and } \sigma \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \mathcal{P}, \text{ and } \sigma \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \mathcal{P}, \text{ and } \sigma \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \mathcal{P}, \text{ and } \sigma \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \mathcal{P}, \text{ and } \sigma \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P}, \textit{P}' \in \Sigma \left(\mathcal{P} \right) \text{: for all } \textit{P} \text{: for$

$$\rho\left(\sigma\right)\left(P\right)<\rho\left(\sigma\right)\left(P'\right)\qquad\text{iff}\qquad\sigma\left(i\right)<\sigma\left(j\right)\text{ for some/all }i\in P\text{ and }j\in P'$$

Definition

The Owen value assigns to any CS game (N, v, P) and $i \in N$ the payoff

$$\operatorname{Ow}_{i}\left(N, v, \mathcal{P}\right) := \left|\Sigma\left(N, \mathcal{P}\right)\right|^{-1} \sum_{\sigma \in \Sigma\left(N, \mathcal{P}\right)} MC_{i}^{v}\left(\sigma\right).$$

CS-values CS F vs CF Ow def Ow vs Sh Ow #1 Ow #2 IG Ow & IG SC OwCh #1 OwCh #2 altChar DOw AD form AD char

- lacktriangledown observation: $\Sigma\left(N,\left\{N\right\}\right)=\Sigma\left(N,\left[N\right]\right)=\Sigma\left(N\right)$
- lackentailing $\operatorname{Ow}(N, v, \{N\}) = \operatorname{Ow}(N, v, [N]) = \operatorname{Sh}(N, v)$
- A probability distribution $p \in W\left(\mathbb{P}\left(N\right)\right)$ is called *symmetric* if we have $p\left(\mathcal{P}\right) = p\left(\pi\left(\mathcal{P}\right)\right)$ for all $\mathcal{P} \in \mathbb{P}\left(N\right)$ and all bijections $\pi: N \to N$ where $\pi\left(\mathcal{P}\right) := \left\{\pi\left(P\right) \middle| P \in \mathcal{P}\right\}$.
- Casajus, A. (2008): The Shapley value, the Owen value, and the veil of ignorance, in: International Game Theory Review, forthcoming.

Theorem (2008)

If $p \in W(\mathbb{P}(N))$ is symmetric then

$$\mathrm{Sh}\left(N,v\right) = \sum_{\mathcal{P} \in \mathbb{P}(N)} p\left(\mathcal{P}\right) \mathrm{Ow}\left(N,v,\mathcal{P}\right).$$

■ $p(\{N\}) = 1$ and p([N]) = 1 are symmetric, this generalizes the remarks above

The Owen value: properties #1

CS-values
CS
E vs CE
Ow def
Ow vs Sh
Ow #1
Ow #2
IG
Ow & IG
SC
OwCh #1

OwCh #2 altChar DOw

AD form AD char from the definition, it is clear that the Owen value obeys E as well as the following axioms:

Additivity, A. For all $v, w \in \mathbb{V}(N)$ and $\mathcal{P} \in \mathbb{P}(N)$, $\varphi(N, v + w, \mathcal{P}) = \varphi(N, v, \mathcal{P}) + \varphi(N, w, \mathcal{P})$.

Null player, N. For all $v, w \in \mathbb{V}(N)$, $\mathcal{P} \in \mathbb{P}(N)$, and Null player i in (N, v), $\varphi_i(N, v, \mathcal{P}) = 0$.

Marginality, M. If $MC_{i}^{v}\left(K\right)=MC_{i}^{w}\left(K\right)$ for all $K\subseteq N\backslash\left\{ i\right\}$ then $\varphi_{i}\left(N,v,\mathcal{P}\right)=\varphi_{i}\left(N,w,\mathcal{P}\right)$.

by now, it should be clear to you that the Owen value does not meet the following ones:

Symmetry, S. For all $v \in \mathbb{V}(N)$, $\mathcal{P} \in \mathbb{P}(N)$, and symmetric players i, j in (N, v), $\varphi_i(N, v, \mathcal{P}) = \varphi_i(N, v, \mathcal{P})$.

Differential marginality, DM. If $MC_i^v(K) - MC_j^v(K) = MC_i^w(K) - MC_j^w(K)$ for all $K \subseteq N \setminus \{i,j\}$ then $\varphi_i(N, v, \mathcal{P}) - \varphi_j(N, v, \mathcal{P}) = \varphi_i(N, w, \mathcal{P}) - \varphi_j(N, w, \mathcal{P})$.

The Owen value: properties #2

CS-values
CS
E vs CE
Ow def
Ow vs Sh
Ow #1
Ow #2
IG
Ow & IG
SC
OwCh #1
OwCh #2
altChar

AD form AD char instead of S and DM, Ow satisfies component restricted versions of these axioms

Symmetry within components, CS. For all $v \in \mathbb{V}(N)$, $\mathcal{P} \in \mathbb{P}(N)$, and symmetric players i,j in (N,v), $j \in \mathcal{P}(i)$, $\varphi_{i}(N,v,\mathcal{P}) = \varphi_{i}(N,v,\mathcal{P})$.

 $\begin{array}{l} \textbf{Differential marginality within components, CDM. If } \ MC_{i}^{y}\left(K\right)-MC_{j}^{y}\left(K\right)\\ =MC_{i}^{w}\left(K\right)-MC_{j}^{w}\left(K\right) \ \text{for all } \ K\subseteq N\backslash\left\{ i,j\right\} ,\ j\in\mathcal{P}\left(i\right) \ \text{then}\\ \varphi_{i}\left(N,v,\mathcal{P}\right)-\varphi_{j}\left(N,v,\mathcal{P}\right)=\varphi_{i}\left(N,w,\mathcal{P}\right)-\varphi_{j}\left(N,w,\mathcal{P}\right). \end{array}$

■ and, of course, we have

Lemma

(a) A and CS imply CDM. (b) NG and CDM imply CS.

Intermediate game property

CS-values CS E vs CE Ow def Ow vs Sh Ow #1

Ow #2
IG
Ow & IG
SC
OwCh #1
OwCh #2
altChar
DOw
AD form
AD char

- for (N, v, \mathcal{P}) consider the TU game $(\mathcal{P}, v^{\mathcal{P}})$, $v^{\mathcal{P}} \in \mathbb{V}(\mathcal{P})$, the **intermediate game**, i.e, the game between components
- lacktriangle player set: \mathcal{P} ; the components now are the players
- the coalition function is defined as follows:

$$v^{\mathcal{P}}(\mathcal{K}) = v\left(\bigcup_{P \in \mathcal{K}} P\right), \qquad \mathcal{K} \subseteq \mathcal{P}$$

Intermediate game, IG. For all $v \in \mathbb{V}(N)$, $\mathcal{P} \in \mathbb{P}(N)$, and $P \in \mathcal{P}$,

$$\varphi_{P}(N, v, P) = \varphi_{P}(P, v^{P}, \{P\}).$$

The Owen value and the intermediate game property

CS-values
CS
E vs CE
Ow def
Ow vs Sh
Ow #1
Ow #2
IG
Ow & IG

Ow #1
Ow #2
IG
Ow & IG
SC
OwCh #1
OwCh #2
altChar
DOW
AD form
AD char

$$\begin{split} & \textbf{Proposition.} \text{ The Owen value satisfies the } \textbf{IG.} \\ & \textbf{Proof.} \text{ } \mathrm{Ow}_{P} \left(\textit{N}, \textit{v}, \mathcal{P} \right) = \sum_{i \in P} \mathrm{Ow}_{i} \left(\textit{N}, \textit{v}, \mathcal{P} \right) \\ & = \quad \left| \Sigma \left(\textit{N}, \mathcal{P} \right) \right|^{-1} \sum_{i \in P} \sum_{\sigma \in \Sigma \left(\textit{N}, \mathcal{P} \right)} \textit{MC}_{i}^{\textit{v}} \left(\sigma \right) \\ & = \quad \left| \Sigma \left(\textit{N}, \mathcal{P} \right) \right|^{-1} \sum_{\sigma \in \Sigma \left(\textit{N}, \mathcal{P} \right)} \sum_{i \in P} \textit{MC}_{i}^{\textit{v}} \left(\sigma \right) \text{ (changing the finite sums)} \\ & = \quad \left| \Sigma \left(\textit{N}, \mathcal{P} \right) \right|^{-1} \sum_{\sigma \in \Sigma \left(\textit{N}, \mathcal{P} \right)} \underbrace{\textit{MC}_{i}^{\textit{v}} \left(\rho \left(\sigma \right) \right)}_{\textit{N}}, \end{split}$$

we now sum over the orders of $\rho \in \Sigma\left(\mathcal{P}\right)$ and count how often the same order ρ with respect to $\Sigma\left(\mathcal{N},\mathcal{P}\right)$ appears. This is $\prod_{P'\in\mathcal{P}}|P'|!$, independent of the order $\rho\left(\sigma\right)$, because we can permute any elements of $P'\in\mathcal{P}$. So we have:

$$= |\Sigma(N, \mathcal{P})|^{-1} \prod_{P' \in \mathcal{P}} |P'|! \sum_{\rho \in \Sigma(\mathcal{P})} M C_P^{\nu^{\mathcal{P}}}(\rho)$$

$$= |\Sigma(\mathcal{P})|^{-1} \sum_{\rho \in \Sigma(\mathcal{P})} M C_i^{\nu^{\mathcal{P}}}(\rho) = \operatorname{Sh}_{\mathcal{P}}(\mathcal{P}, \nu^{\mathcal{P}}) = \operatorname{Ow}_{\mathcal{P}}(\mathcal{P}, \nu^{\mathcal{P}}, \{\mathcal{P}\})$$

CS-values
CS
E vs CE
Ow def
Ow vs Sh
Ow #1
Ow #2
IG
Ow & IG
SC
OwCh #1
OwCh #2
altChar

DOw AD form AD char **Definition.** Components $P,P'\in\mathcal{P}$ are symmetric in (N,v,\mathcal{P}) iff they are symmetric players in the intermediate game, i.e., $v\left(\mathcal{P}\left(K\right)\cup P\right)=v\left(\mathcal{P}\left(K\right)\cup P'\right)$ for all $K\subseteq N\backslash\left(P\cup P'\right)$. **Symmetry between components (SC)** If $P,P'\in\mathcal{P}$ are symmetric in (N,v,\mathcal{P}) , then $\varphi_{P}\left(N,v,\mathcal{P}\right)=\varphi_{P'}\left(N,v,\mathcal{P}\right)$.

- roughly speaking, **SC** is something like **S** in the intermediate game
- since Ow meets IG and Sh obeys S, it should be clear that Ow satisfies SC

Standard characterization #1

CS-values CS E vs CE Ow def Ow vs Sh Ow #1 Ow #2 IG Ow & IG

Ow & IG SC OwCh #1 OwCh #2 altChar DOw AD form AD char

Theorem

The Owen value is the unique CS solution that satisfies E, A, N, CS, and SC.

Proof.

- We have already seen that Ow meets E, A, N, CS, and SC.
- Let φ satisfy **E**, **A**, **N**, **CS**, and **SC**.
- By **A**, $\varphi(N, v, \mathcal{P}) = \sum_{T \in \mathcal{K}(N)} \varphi(N, \lambda_T(v) \cdot u_T, \mathcal{P})$.

 $|\mathcal{P}[T]| \cdot \varphi_{\mathcal{P}}(N, \lambda_{T}(v) u_{T}, \mathcal{P}) \stackrel{\mathsf{SC,N}}{=} \lambda_{T}(v) + 0$

- In $(N, \lambda_T(v) \cdot u_T, \mathcal{P})$ all $i \in N \setminus T$ are Null players. By \mathbf{N} , $\varphi_i(N, \lambda_T(v) \cdot u_T, \mathcal{P}) = 0$.
- \blacksquare all $P, P' \in \mathcal{P}[T]$ are symmetric in the intermediate game
- \blacksquare since φ meets **SC**, $\varphi_{P}(N, v, \mathcal{P}) = \varphi_{P'}(N, v, \mathcal{P})$, $P, P' \in \mathcal{P}[T]$
- for $P \in \mathcal{P}[T]$

$$\sum_{P' \in \mathcal{P}[T]} \varphi_{P'} (N, \lambda_T (v) u_T, \mathcal{P}) \qquad \stackrel{\mathbf{E}}{=} \qquad \lambda_T (v) u_T (N)$$

$$- \sum_{P \in \mathcal{P} \setminus \mathcal{P}[T]} \varphi_P (N, \lambda_T (v) u_T, \mathcal{P})$$

■ all $i, j \in P \cap T$ are symmetric in (N, v); hence, for $i \in P \cap T$

$$|P \cap T| \cdot \varphi_{i}(N, \lambda_{T}(v) u_{T}, \mathcal{P}) + \varphi_{P \setminus T}(N, \lambda_{T}(v) u_{T}, \mathcal{P}) = \frac{\lambda_{T}(v)}{|\mathcal{P}[T]|}$$

$$|P \cap T| \cdot \varphi_{i}(N, \lambda_{T}(v) u_{T}, \mathcal{P}) + 0 = \frac{\lambda_{T}(v)}{|\mathcal{P}[T]|}$$

$$\varphi_{i}(N, \lambda_{T}(v) u_{T}, \mathcal{P}) = \frac{\lambda_{T}(v)}{|\mathcal{P}[T]| |\mathcal{P}(i) \cap T|}$$

- lacksquare i.e., arphi is unique
- \blacksquare from this we know for $T \in \mathcal{K}(N)$ and

$$Ow_{i}(N, \lambda u_{T}, \mathcal{P}) = \begin{cases} 0, & i \in N \backslash T, \\ \frac{\lambda}{|\mathcal{P}[T]| |\mathcal{P}(i) \cap T|}, & i \in T \end{cases}$$

Further characterizations

CS-values CS F vs CF Ow def Ow vs Sh Ow #1 Ow #2 IG Ow & IG

altChar DOw AD form AD char

OwCh #2

SC OwCh #1 ■ Khmelnitskaya, A. B., & Yanovskaya, E. B. (2007). Owen coalitional value without additivity axiom. Mathematical Methods of Operations Research, 66 (2), 255-261.

Theorem

The Owen value is the unique CS solution that satisfies E, M, CS, and SC.

■ using **IG**, one has

Theorem

The Owen value is the unique CS solution that satisfies E, A, N, CS, and IG.

Disadvantages of the Owen-value

CS-values CS E vs CE Ow def Ow vs Sh Ow #1 Ow #2 IG Ow & IG SC OwCh #1

OwCh #2 altChar DOw

AD form AD char

- the Owen-value obeys the **E**, but what if the components are the productive units?
- efficiency does not seem plausible in any application, if we have coalition structures
- sometimes a concept is required, which uses the axiom **CE** and is geared to the Shapley value

The Aumann-Dreze value (AD-value)

CS-values
CS
E vs CE
Ow def
Ow vs Sh
Ow #1
Ow #2
IG
Ow & IG
SC
OwCh #1
OwCh #2
altChar

AD form AD char

- Aumann, R.J., Drèze, J.H., 1974. Cooperative games with coalition structures. Int. J. Game Theory 3, 217–237.
- in fact, they consider this concept as the Shapley value

Definition. The AD-value assigns to any CS game (N, v, \mathcal{P}) and $i \in N$ the payoff

$$\mathrm{AD}_{i}\left(\textit{N},\textit{v},\mathcal{P}\right):=\mathrm{Sh}_{i}\left(\mathcal{P}\left(\textit{i}\right),\textit{v}|_{\mathcal{P}\left(\textit{i}\right)}\right).$$

- i.e., the AD-value is the Shapley value restricted to the components of the coalition structure
- since Sh obeys **E**, it is immediate that AD meets **CE**
- further most characterizations of Sh have an analogon for AD: just replace **E** by **CE** and—if appropriate—employ component restricted versions of the other axioms

The AD-value: Characterizations

CS-values
CS
E vs CE
Ow def
Ow vs Sh
Ow #1
Ow #2
IG
Ow & IG
SC
OwCh #1
OwCh #2
altChar
DOW
AD form

AD char

Theorem The AD-value is the unique CS-solution that obeys any of the following systems of axioms:

- CE, A, N, and CS,
- 2 CE, M, and CS,
- **3 CE** and **CBC** (**CBC** "is" **BC** restricted to $j \in \mathcal{P}(i)$)
- **4 CE**, **N**, and **CDM** (or **CBF** which "is" **BF** restricted to $j \in \mathcal{P}(i)$)
- proof of (1) and (3) is roughly as for Sh: fix $P \in \mathcal{P}$ and mimic the original arguments
- for (4), follow Remark 2 in Casajus (2009). Another characterization of the Owen value without the additivity axiom. Theory and Decision (forthcoming)
- for (2), combine the idea in the last paragraph of the proof of Theorem 2 in the paper just mentioned and the proof of the Young characterization of Sh