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Coalition structures

so far, no groupings of the players were considered

in reality, people often form groups in order to achieve their goals

how to model: partitions P of the player set N, i.e., set of subsets of N
which are pairwise disjoint and mutually exhaustive

for all P, P’ € P either P=P or PNP' =Q

N = UPEP P

component containing i € N : P (i)

for K g N: P(K) = UiEKP(i)

for KC N: P[K]={P(i)]i € K}

set of all partitions on N: IP (N

atomic coalition structure: [N] = {{i}|i € N}; trivial one: {N}

coalition structures = partitions of the player set
CS games: (N,v,P); TU game (N,v), v € V (N), with a coalition
structure P € P (N)

CS solution, ¢: assigns a vector ¢ (N, v, P) € RV to any CS game
(N,v,P)
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Efficient versus component efficient solutions

m basically, two interpretations of coalition structures
Efficiency (E) For all (N,v,P), ¢ (N,v,P) =v(N).
m all players cooperate as grand coalition and bargain on the distribution of
v (N)
m components of P may be viewed as bargaining blocs/units in this process

m concepts: Owen value

Component efficiency (CE) For all (N,v,P) and P € P,
¢p (N,v,P) = v (P).

m components P of P are the productive units, create a worth of v (P),
respectively

m players in P € P bargain on the distribution of v (P)

m concepts: AD value, Wiese value, x-value



The Owen value: definition

m Owen, G. (1977). Values of games with a priori unions. In R. Henn & O.
Moeschlin (Eds.), Essays in Mathematical Economics & Game Theory

CS-values

ol (pp. 76-88). Berlin: Springer

E vs CE

Ow def

gw ;leh m set of orders compatible with P:

Ow

o (N, P):={c€X(N)|VPEP, i,jeP:|o(i)—c(j) <|P}
Ow & IG

SC

ouch #1 mijkeN, jEP>) o) <ok)<o()=keP()

Bechar m any 0 € (N, P) induces a unique order p (¢) € % (P): for all P, P’ € P,
AD form

AD char p(0)(P)<p(o)(P) iff o (i) <o (j) for some/all i € P and j € P

Definition

The Owen value assigns to any CS game (N, v,P) and i € N the payoff

ow; (N,v,P):=|Z(N,P)|"" Y MCY (o).
geX(N,P)
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Owen value versus Shapley value

m observation: X (N, {N}) =X (N, [N]) =X (N)
m entailing Ow (N, v, {N}) = Ow (N, v, [N]) = Sh (N, v)

m A probability distribution p € W (IP (N)) is called symmetric if we have
p(P) =p(rt(P)) for all P € P (N) and all bijections 7t : N — N where
n(P):={n(P)|P e P}.

m Casajus, A. (2008): The Shapley value, the Owen value, and the veil of
ignorance, in: International Game Theory Review, forthcoming.

Theorem (2008)
Ifp e W (P (N)) is symmetric then
Sh(N,v)= Y p(P)Ow(N,v,P).
PEP(N)

m p({N})=1and p([N]) =1 are symmetric, this generalizes the remarks
above
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The Owen value: properties #1

m from the definition, it is clear that the Owen value obeys E as well as the
following axioms:

Additivity, A. For all v,w € V (N) and P € P (N),
e(N,v+w,P)=¢(N,v,P)+¢(N,w,P).

Null player, N. For all v,w € V (N), P € IP(N), and Null player i in (N, v),
¢;(N,v,P)=0.

Marginality, M. If MCY (K) = MC (K) for all K C N\ {i} then

¢ (N,v,P) = ¢;(N,w,P).

m by now, it should be clear to you that the Owen value does not meet the
following ones:

Symmetry, S. For all v € V (N), P € P (N), and symmetric players i, in
(N.v), @i(N,v,P) = ¢;(N,v,P).

Differential marginality, DM. If MCy (K) — MC} (K) =

MCY (K) — MC (K) for all K. C N\ {i, j} then ¢; (N,v,P) —¢; (N, v, P)
=¢;(N,w,P)—¢;(N,w,P).
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The Owen value: properties #2

m instead of S and DM, Ow satisfies component restricted versions of
these axioms

Symmetry within components, CS. For all v € V (N), P € P (N), and
symmetric players i,j in (N,v), j € P (i), ¢;(N,v,P) = ¢;(N,v,P).
Differential marginality within components, CDM. If MCY (K) — mcy (K)
= MCY (K) — MCY (K) for all K C N\ {i,j}.j € P (i) then

¢; (N.v,P) = ¢;(N.v,P) = ¢;(N,w,P) — ¢; (N, w,P).

m and, of course, we have

Lemma

(a) A and CS imply CDM. (b) NG and CDM imply CS.




Intermediate game property

m for (N, v, P) consider the TU game <P,VP) ,vP eV (P), the

intermediate game, i.e, the game between components

CS-values
. m player set: P; the components now are the players
et m the coalition function is defined as follows:
Ow #1
Ow #2
P
16 =
I v (K) v(U P>, KCcpP
e Pek
OwCh #1
e Intermediate game, IG. For all v € V(N), P € P(N), and P € P,
DOw
AD form

AD char (PP (Nv v, P) = (PP <P, Vp' {P}> -
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The Owen value and the intermediate game property

Proposition. The Owen value satisfies the IG.
Proof. Owp (N, v, P) = ¥;cp Ow; (N, v, P)

ZNPITTY Y MG (o)

i€P o€ (N, P)

= z(NvP) It Y. Y MC/ (0) (changing the finite sums)
ceX(N,P)ieP

= EWP)T Y M (p(0),
ceX(N,P)

we now sum over the orders of p € X (P) and count how often the same order
o with respect to X (N, P) appears. This is [Tprep |P’|!, independent of the
order p (o), because we can permute any elements of P’ € P. So we have:

=PI P X McE (o)

PeP peX(P)

Pe; mcY" (p) = Shp (P,ﬁ’) OWP( {73}) O
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Symmetry between components

Definition. Components P, P’ € P are symmetric in (N, v, P) iff they are
symmetric players in the intermediate game, i.e.,
V(P(KYUP)=v(P(K)UP) forall K C N\ (PUP').

Symmetry between components (SC) If P, P’ € P are symmetric in
(N,v,P), then ¢p (N, v,P) = @p (N, v,P).

m roughly speaking, SC is something like S in the intermediate game

m since Ow meets IG and Sh obeys S, it should be clear that Ow satisfies
SC
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Standard characterization #1

Theorem
C;“'"es The Owen value is the unique CS solution that satisfies E, A, N, CS, and SC.
E vs CE
Ow def Proof.
Ow vs Sh
Ow #1 m We have already seen that Ow meets E, A, N, CS, and SC.
e m Let ¢ satisfy E, A, N, CS, and SC.
S&”@“G | ] By A, QD(N,V,P):ZTEK(N)QD(N,/\T (V)-UT,P).
OwCh #1 miIn (N, Ar(v)-ur,P)all i€ N\T are Null players. By N,
OwCh #2
altChar (P, (N,AT (V)UT,P) =0.
o m all P, P’ € P[T] are symmetric in the intermediate game

AD char

since ¢ meets SC, ¢p (N,v,P) = ¢p (N, v,P), P,P' € P[T]
mfor P e P[T]

Y. ¢p (N AT (v)ur,P)
P'eP(T]

[Im

At (v) ur (N)

- )Y ep(NAT(V)ur,P)
PeP\P[T]

PITI - 9p (N AT (V)ur, P) €Y A7 (v)+0



CS-values
cs

E vs CE
Ow def
Ow vs Sh
Ow #1
Ow #2
1G

Ow & IG
S

OwCh #1
OwCh #2
altChar
DOw

AD form
AD char

Standard characterization #2

malli,j e PNT are symmetric in (N, v); hence, forie PN T

A
IPOT] @; (N, At (v) UTvP)+(PP\T(Nv/\T(V) ur,P) =

IPONT|-@; (N, A7 (v)ur,P)+0=

L)
o (A ) or P) = TR Gy

m ie., @ is unique

m from this we know for T € K (N) and

{ 0, i€ N\T,
OW,‘ (N,)LUT,P) = A .

- , €T
PITIP ()N T

PIT



CS-values
cs

E vs CE
Ow def
Ow vs Sh
Ow #1
Ow #2
IG

Ow & IG
S

OwCh #1
OwCh #2
altChar
DOw

AD form
AD char

Further characterizations

m Khmelnitskaya, A. B., & Yanovskaya, E. B. (2007). Owen coalitional
value without additivity axiom. Mathematical Methods of Operations
Research, 66 (2), 255-261.

Theorem

The Owen value is the unique CS solution that satisfies E, M, CS, and SC.

m using IG, one has

Theorem

The Owen value is the unique CS solution that satisfies E, A, N, CS, and IG.

|
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Disadvantages of the Owen-value

m the Owen-value obeys the E, but what if the components are the
productive units?

m efficiency does not seem plausible in any application, if we have coalition

structures

m sometimes a concept is required, which uses the axiom CE and is geared

to the Shapley value
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The Aumann-Dreze value (AD-value)

m Aumann, R.J., Dréze, J.H., 1974. Cooperative games with coalition
structures. Int. J. Game Theory 3, 217-237.

m in fact, they consider this concept as the Shapley value
Definition. The AD-value assigns to any CS game (N, v,P) and i € N the
payoff
AD; (N, v, P) := Sh; (77 (i), v\p(,)> .

m i.e., the AD-value is the Shapley value restricted to the components of
the coalition structure

m since Sh obeys E, it is immediate that AD meets CE

m further most characterizations of Sh have an analogon for AD: just
replace E by CE and—if appropriate—employ component restricted
versions of the other axioms
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The AD-value: Characterizations

Theorem The AD-value is the unique CS-solution that obeys any of the
following systems of axioms:

1

2

3

CE A N, and CS,

CE M, and CS,

CE and CBC (CBC “is" BC restricted to j € P (i))

CE, N, and CDM (or CBF which "“is" BF restricted to j € P (i))

proof of (1) and (3) is roughly as for Sh: fix P € P and mimic the
original arguments

for (4), follow Remark 2 in Casajus (2009). Another characterization of
the Owen value without the additivity axiom. Theory and Decision
(forthcoming)

for (2), combine the idea in the last paragraph of the proof of Theorem 2
in the paper just mentioned and the proof of the Young characterization
of Sh
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