Applied Cooperative Game Theory

André Casajus and Martin Kohl

University of Leipzig

November 2013

Overview

■ Coalition structures

- Efficiency vs Component efficiency
- The Owen value
- The Intermediate Game

■ Characterizations of the Owen value

- The Aumann-Dreze value

Coalition structures

- so far, no groupings of the players were considered
- in reality, people often form groups in order to achieve their goals

■ how to model: partitions \mathcal{P} of the player set N, i.e., set of subsets of N which are pairwise disjoint and mutually exhaustive

- for all $P, P^{\prime} \in \mathcal{P}$ either $P=P^{\prime}$ or $P \cap P^{\prime}=\varnothing$
- $N=\bigcup_{P \in \mathcal{P}} P$
- component containing $i \in N: \mathcal{P}(i)$
- for $K \subseteq N: \mathcal{P}(K)=\bigcup_{i \in K} \mathcal{P}(i)$
- for $K \subseteq N: \mathcal{P}[K]=\{\mathcal{P}(i) \mid i \in K\}$
- set of all partitions on $N: \mathbb{P}(N)$
- atomic coalition structure: $[N]=\{\{i\} \mid i \in N\}$; trivial one: $\{N\}$
- coalition structures $=$ partitions of the player set

■ CS games: (N, v, \mathcal{P}); TU game $(N, v), v \in \mathbb{V}(N)$, with a coalition structure $\mathcal{P} \in \mathbb{P}(N)$

- CS solution, φ : assigns a vector $\varphi(N, v, \mathcal{P}) \in \mathbb{R}^{N}$ to any CS game (N, v, \mathcal{P})

Efficient versus component efficient solutions

- basically, two interpretations of coalition structures

Efficiency (E) For all $(N, v, \mathcal{P}), \varphi_{N}(N, v, \mathcal{P})=v(N)$.

- all players cooperate as grand coalition and bargain on the distribution of $v(N)$
- components of \mathcal{P} may be viewed as bargaining blocs/units in this process
- concepts: Owen value

Component efficiency (CE) For all (N, v, \mathcal{P}) and $P \in \mathcal{P}$, $\varphi_{P}(N, v, \mathcal{P})=v(P)$.

- components P of \mathcal{P} are the productive units, create a worth of $v(P)$, respectively
- players in $P \in \mathcal{P}$ bargain on the distribution of $v(P)$
- concepts: $A D$ value, Wiese value, χ-value

The Owen value: definition

- Owen, G. (1977). Values of games with a priori unions. In R. Henn \& O. Moeschlin (Eds.), Essays in Mathematical Economics \& Game Theory (pp. 76-88). Berlin: Springer
- set of orders compatible with \mathcal{P} :

$$
\begin{aligned}
& \Sigma(N, \mathcal{P}):=\{\sigma \in \Sigma(N)|\forall P \in \mathcal{P}, i, j \in P:|\sigma(i)-\sigma(j)|<|P|\} \\
& \square i, j, k \in N, j \in \mathcal{P}(i), \sigma(i) \leq \sigma(k) \leq \sigma(j) \Rightarrow k \in \mathcal{P}(i)
\end{aligned}
$$

- any $\sigma \in \Sigma(N, \mathcal{P})$ induces a unique order $\rho(\sigma) \in \Sigma(\mathcal{P})$: for all $P, P^{\prime} \in \mathcal{P}$,

$$
\rho(\sigma)(P)<\rho(\sigma)\left(P^{\prime}\right) \quad \text { iff } \quad \sigma(i)<\sigma(j) \text { for some } / \text { all } i \in P \text { and } j \in P^{\prime}
$$

Definition

The Owen value assigns to any CS game (N, v, \mathcal{P}) and $i \in N$ the payoff

$$
\mathrm{Ow}_{i}(N, v, \mathcal{P}):=|\Sigma(N, \mathcal{P})|^{-1} \sum_{\sigma \in \Sigma(N, \mathcal{P})} M C_{i}^{v}(\sigma)
$$

Owen value versus Shapley value

- observation: $\Sigma(N,\{N\})=\Sigma(N,[N])=\Sigma(N)$
- entailing $\operatorname{Ow}(N, v,\{N\})=\operatorname{Ow}(N, v,[N])=\operatorname{Sh}(N, v)$
- A probability distribution $p \in W(\mathbb{P}(N))$ is called symmetric if we have $p(\mathcal{P})=p(\pi(\mathcal{P}))$ for all $\mathcal{P} \in \mathbb{P}(N)$ and all bijections $\pi: N \rightarrow N$ where $\pi(\mathcal{P}):=\{\pi(P) \mid P \in \mathcal{P}\}$.
- Casajus, A. (2008): The Shapley value, the Owen value, and the veil of ignorance, in: International Game Theory Review, forthcoming.

Theorem (2008)
If $p \in W(\mathbb{P}(N))$ is symmetric then

$$
\operatorname{Sh}(N, v)=\sum_{\mathcal{P} \in \mathbb{P}(N)} p(\mathcal{P}) \operatorname{Ow}(N, v, \mathcal{P}) .
$$

- $p(\{N\})=1$ and $p([N])=1$ are symmetric, this generalizes the remarks above

The Owen value: properties \#1

- from the definition, it is clear that the Owen value obeys \mathbf{E} as well as the following axioms:

Additivity, A. For all $v, w \in \mathbb{V}(N)$ and $\mathcal{P} \in \mathbb{P}(N)$,
$\varphi(N, v+w, \mathcal{P})=\varphi(N, v, \mathcal{P})+\varphi(N, w, \mathcal{P})$.
Null player, \mathbf{N}. For all $v, w \in \mathbb{V}(N), \mathcal{P} \in \mathbb{P}(N)$, and Null player i in (N, v), $\varphi_{i}(N, v, \mathcal{P})=0$.
Marginality, M. If $M C_{i}^{v}(K)=M C_{i}^{w}(K)$ for all $K \subseteq N \backslash\{i\}$ then $\varphi_{i}(N, v, \mathcal{P})=\varphi_{i}(N, w, \mathcal{P})$.

- by now, it should be clear to you that the Owen value does not meet the following ones:

Symmetry, S. For all $v \in \mathbb{V}(N), \mathcal{P} \in \mathbb{P}(N)$, and symmetric players i, j in $(N, v), \varphi_{i}(N, v, \mathcal{P})=\varphi_{j}(N, v, \mathcal{P})$.
Differential marginality, DM. If $M C_{i}^{v}(K)-M C_{j}^{v}(K)=$ $M C_{i}^{w}(K)-M C_{j}^{w}(K)$ for all $K \subseteq N \backslash\{i, j\}$ then $\varphi_{i}(N, v, \mathcal{P})-\varphi_{j}(N, v, \mathcal{P})$ $=\varphi_{i}(N, w, \mathcal{P})-\varphi_{j}(N, w, \mathcal{P})$.

The Owen value: properties \#2

■ instead of S and DM, Ow satisfies component restricted versions of these axioms

Symmetry within components, CS. For all $v \in \mathbb{V}(N), \mathcal{P} \in \mathbb{P}(N)$, and symmetric players i, j in $(N, v), j \in \mathcal{P}(i), \varphi_{i}(N, v, \mathcal{P})=\varphi_{j}(N, v, \mathcal{P})$. Differential marginality within components, CDM. If $M C_{i}^{\vee}(K)-M C_{j}^{v}(K)$ $=M C_{i}^{w}(K)-M C_{j}^{w}(K)$ for all $K \subseteq N \backslash\{i, j\}, j \in \mathcal{P}(i)$ then $\varphi_{i}(N, v, \mathcal{P})-\varphi_{j}(N, v, \mathcal{P})=\varphi_{i}(N, w, \mathcal{P})-\varphi_{j}(N, w, \mathcal{P})$.

- and, of course, we have

Lemma
(a) A and CS imply CDM. (b) NG and CDM imply CS.

Intermediate game property

- for (N, v, \mathcal{P}) consider the TU game $\left(\mathcal{P}, v^{\mathcal{P}}\right), v^{\mathcal{P}} \in \mathbb{V}(\mathcal{P})$, the intermediate game, i.e, the game between components
- player set: \mathcal{P}; the components now are the players
- the coalition function is defined as follows:

$$
v^{\mathcal{P}}(\mathcal{K})=v\left(\bigcup_{P \in \mathcal{K}} P\right), \quad \mathcal{K} \subseteq \mathcal{P}
$$

Intermediate game, IG. For all $v \in \mathbb{V}(N), \mathcal{P} \in \mathbb{P}(N)$, and $P \in \mathcal{P}$,

$$
\varphi_{P}(N, v, \mathcal{P})=\varphi_{P}\left(\mathcal{P}, v^{\mathcal{P}},\{\mathcal{P}\}\right)
$$

The Owen value and the intermediate game property

Proposition. The Owen value satisfies the IG.
Proof. $\mathrm{Ow}_{P}(N, v, \mathcal{P})=\sum_{i \in P} \mathrm{Ow}_{i}(N, v, \mathcal{P})$

$$
\begin{aligned}
& =|\Sigma(N, \mathcal{P})|^{-1} \sum_{i \in P} \sum_{\sigma \in \Sigma(N, \mathcal{P})} M C_{i}^{v}(\sigma) \\
& =|\Sigma(N, \mathcal{P})|^{-1} \sum_{\sigma \in \Sigma(N, \mathcal{P})} \sum_{i \in P} M C_{i}^{v}(\sigma) \text { (changing the finite sums) } \\
& =|\Sigma(N, \mathcal{P})|^{-1} \sum_{\sigma \in \Sigma(N, \mathcal{P})} M C_{P}^{v^{\mathcal{P}}}(\rho(\sigma)),
\end{aligned}
$$

we now sum over the orders of $\rho \in \Sigma(\mathcal{P})$ and count how often the same order ρ with respect to $\Sigma(N, \mathcal{P})$ appears. This is $\prod_{P^{\prime} \in \mathcal{P}}\left|P^{\prime}\right|$!, independent of the order $\rho(\sigma)$, because we can permute any elements of $P^{\prime} \in \mathcal{P}$. So we have:

$$
\begin{aligned}
& =|\Sigma(N, \mathcal{P})|^{-1} \prod_{P^{\prime} \in \mathcal{P}}\left|P^{\prime}\right|!\sum_{\rho \in \Sigma(\mathcal{P})} M C_{P}^{v^{\mathcal{P}}}(\rho) \\
& =|\Sigma(\mathcal{P})|^{-1} \sum_{\rho \in \Sigma(\mathcal{P})} M C_{i}^{v^{\mathcal{P}}}(\rho)=\operatorname{Sh}_{P}\left(\mathcal{P}, v^{\mathcal{P}}\right)=\operatorname{Ow}_{P}\left(\mathcal{P}, v^{\mathcal{P}},\{\mathcal{P}\}\right)
\end{aligned}
$$

Symmetry between components

Definition. Components $P, P^{\prime} \in \mathcal{P}$ are symmetric in (N, v, \mathcal{P}) iff they are symmetric players in the intermediate game, i.e., $v(\mathcal{P}(K) \cup P)=v\left(\mathcal{P}(K) \cup P^{\prime}\right)$ for all $K \subseteq N \backslash\left(P \cup P^{\prime}\right)$.
Symmetry between components (SC) If $P, P^{\prime} \in \mathcal{P}$ are symmetric in (N, v, \mathcal{P}), then $\varphi_{P}(N, v, \mathcal{P})=\varphi_{P^{\prime}}(N, v, \mathcal{P})$.

- roughly speaking, $\mathbf{S C}$ is something like \mathbf{S} in the intermediate game

■ since Ow meets IG and Sh obeys \mathbf{S}, it should be clear that Ow satisfies SC

Standard characterization \#1

Theorem

The Owen value is the unique CS solution that satisfies E, A, N, CS, and SC.

Proof.

■ We have already seen that Ow meets $\mathbf{E}, \mathbf{A}, \mathbf{N}, \mathbf{C S}$, and $\mathbf{S C}$.

- Let φ satisfy $\mathbf{E}, \mathbf{A}, \mathbf{N}, \mathbf{C S}$, and $\mathbf{S C}$.

■ By A, $\varphi(N, v, \mathcal{P})=\sum_{T \in \mathcal{K}(N)} \varphi\left(N, \lambda_{T}(v) \cdot u_{T}, \mathcal{P}\right)$.
■ In $\left(N, \lambda_{T}(v) \cdot u_{T}, \mathcal{P}\right)$ all $i \in N \backslash T$ are Null players. By \mathbf{N},

$$
\varphi_{i}\left(N, \lambda_{T}(v) \cdot u_{T}, \mathcal{P}\right)=0
$$

- all $P, P^{\prime} \in \mathcal{P}[T]$ are symmetric in the intermediate game

■ since φ meets $\mathbf{S C}, \varphi_{P}(N, v, \mathcal{P})=\varphi_{P^{\prime}}(N, v, \mathcal{P}), P, P^{\prime} \in \mathcal{P}[T]$

- for $P \in \mathcal{P}[T]$

$$
\begin{array}{rll}
\sum_{P^{\prime} \in \mathcal{P}[T]} \varphi_{P^{\prime}}\left(N, \lambda_{T}(v) u_{T}, \mathcal{P}\right) \quad \stackrel{\mathrm{E}}{=} & \lambda_{T}(v) u_{T}(N) \\
& & \sum_{P \in \mathcal{P} \backslash \mathcal{P}[T]} \varphi_{P}\left(N, \lambda_{T}(v) u_{T}, \mathcal{P}\right) \\
|\mathcal{P}[T]| \cdot \varphi_{P}\left(N, \lambda_{T}(v) u_{T}, \mathcal{P}\right) \stackrel{\mathrm{SC}, \mathrm{~N}}{=} & \lambda_{T}(v)+0
\end{array}
$$

Standard characterization \#2

■ all $i, j \in P \cap T$ are symmetric in (N, v); hence, for $i \in P \cap T$

$$
\begin{gathered}
|P \cap T| \cdot \varphi_{i}\left(N, \lambda_{T}(v) u_{T}, \mathcal{P}\right)+\varphi_{P \backslash T}\left(N, \lambda_{T}(v) u_{T}, \mathcal{P}\right)=\frac{\lambda_{T}(v)}{|\mathcal{P}[T]|} \\
|P \cap T| \cdot \varphi_{i}\left(N, \lambda_{T}(v) u_{T}, \mathcal{P}\right)+0=\frac{\lambda_{T}(v)}{|\mathcal{P}[T]|} \\
\varphi_{i}\left(N, \lambda_{T}(v) u_{T}, \mathcal{P}\right)=\frac{\lambda_{T}(v)}{|\mathcal{P}[T]||\mathcal{P}(i) \cap T|}
\end{gathered}
$$

- i.e., φ is unique
- from this we know for $T \in \mathcal{K}(N)$ and

$$
\mathrm{Ow}_{i}\left(N, \lambda u_{T}, \mathcal{P}\right)= \begin{cases}0, & i \in N \backslash T \\ \frac{\lambda}{|\mathcal{P}[T]||\mathcal{P}(i) \cap T|}, & i \in T\end{cases}
$$

Further characterizations

- Khmelnitskaya, A. B., \& Yanovskaya, E. B. (2007). Owen coalitional value without additivity axiom. Mathematical Methods of Operations Research, 66 (2), 255-261.

Theorem

The Owen value is the unique CS solution that satisfies E, M, CS, and SC.

- using IG, one has

```
Theorem
The Owen value is the unique CS solution that satisfies E, A, N, CS, and IG.
```


Disadvantages of the Owen-value

- the Owen-value obeys the \mathbf{E}, but what if the components are the productive units?
■ efficiency does not seem plausible in any application, if we have coalition structures
- sometimes a concept is required, which uses the axiom CE and is geared to the Shapley value

The Aumann-Dreze value (AD-value)

- Aumann, R.J., Drèze, J.H., 1974. Cooperative games with coalition structures. Int. J. Game Theory 3, 217-237.
- in fact, they consider this concept as the Shapley value

Definition. The AD-value assigns to any CS game (N, v, \mathcal{P}) and $i \in N$ the payoff

$$
\mathrm{AD}_{i}(N, v, \mathcal{P}):=\mathrm{Sh}_{i}\left(\mathcal{P}(i),\left.v\right|_{\mathcal{P}(i)}\right) .
$$

- i.e., the AD-value is the Shapley value restricted to the components of the coalition structure
- since Sh obeys \mathbf{E}, it is immediate that AD meets CE
- further most characterizations of Sh have an analogon for AD: just replace E by CE and-if appropriate-employ component restricted versions of the other axioms

The AD-value: Characterizations

Theorem The AD-value is the unique CS-solution that obeys any of the following systems of axioms:

1 CE, A, N, and CS,
2 CE, M, and CS,
3 CE and CBC (CBC "is" BC restricted to $j \in \mathcal{P}(i))$
4 CE, N, and CDM (or CBF which "is" BF restricted to $j \in \mathcal{P}(i)$)

- proof of (1) and (3) is roughly as for Sh: fix $P \in \mathcal{P}$ and mimic the original arguments
- for (4), follow Remark 2 in Casajus (2009). Another characterization of the Owen value without the additivity axiom. Theory and Decision (forthcoming)
- for (2), combine the idea in the last paragraph of the proof of Theorem 2 in the paper just mentioned and the proof of the Young characterization of Sh

