Applied Cooperative Game Theory

André Casajus, Martin Kohl, and Maria Näther
University of Leipzig

November 2013

Multilinear extentions of TU games and the Shapley value \#1

- Owen, G. (1972). Multi-linear extensions of games, Management Science 18, 64-79.

Definition

The multilinear extention of $v \in \mathbb{V}(N)$ is the mapping $f_{v}:[0,1]^{N} \rightarrow \mathbb{R}$ given by

$$
f_{v}(x)=\sum_{S \subseteq N, S \neq \varnothing}\left[\prod_{i \in S} x_{i} \prod_{i \in N \backslash S}\left(1-x_{i}\right)\right] \cdot v(S), \quad x \in[0,1]^{N}
$$

- x_{i} : probability that $i \in N$ is present in a coalition
- probabilities are independent
- probability that $S \subseteq N$ forms: $\prod_{i \in S} x_{i} \prod_{i \in N \backslash S}\left(1-x_{i}\right)$

Multilinear extentions of TU games and the Shapley value \#2

Theorem

Banzhaf

For all $v \in \mathbb{V}(N)$ and $i \in N$,

$$
\operatorname{Sh}_{i}(N, v)=\left.\int_{0}^{1} \frac{\partial f_{v}}{\partial x_{i}}\right|_{x=(t, \ldots, t)} d t
$$

Multilinear extentions of TU games and the Shapley value \#3

Proof. We have

$$
\frac{\partial f_{v}}{\partial x_{i}}=\sum_{S \subseteq N, i \in S} \prod_{k \in S \backslash\{i\}} x_{k} \prod_{k \in N \backslash S}\left(1-x_{k}\right) \cdot v(S)
$$

$$
-\sum_{S \subseteq N, S \neq \varnothing, i \notin S} \prod_{k \in S} x_{k} \prod_{k \in(N \backslash S) \backslash\{i\}}\left(1-x_{k}\right) \cdot v(S)
$$

$$
\left.\frac{\partial f_{v}}{\partial x_{i}}\right|_{x=(t, \ldots, t)}=\sum_{S \subseteq N, i \in S} t^{|S|-1}(1-t)^{|N|-|S|} \cdot v(S)
$$

$$
-\sum_{S \subseteq N, S \neq \varnothing, i \notin S} t^{|S|} \cdot(1-t)^{|N|-|S|-1} v(S)
$$

$$
=\sum_{S \subseteq N \backslash\{i\}, S \neq \varnothing} t^{|S|}(1-t)^{|N|-|S|-1} \cdot(v(S \cup\{i\})-v(S))
$$

and

$$
\int_{0}^{1} t^{|S|}(1-t)^{|N|-|S|-1} d t=\frac{|S|!(|N|-|S|-1)!}{|N|!}
$$

(Exercise!)

Done.

The Banzhaf value: simple, monotonic games

- Banzhaf, J. F. (1965). Weighted voting does not work: A mathematical analysis, Rutgers Law Review 19: 317-343.
- simple games: $(N, v), v(K) \in\{0,1\}, K \subseteq N$
- consider a simple and monotonic game (N, v)
- player $i \in N$ is pivotal for $K \subseteq N \backslash\{i\}$ iff

$$
v(K)=0 \quad \text { and } \quad v(K \cup\{i\})=1
$$

- $K \subseteq N \backslash\{i\}$ is a swing for $i \in N$ iff

$$
i \text { is pivotal for } K
$$

Definition. The Banzhaf value assigns to a simple, monotonic TU game (N, v) and $i \in N$ the payoff
$\mathrm{Ba}_{i}(N, v)=\frac{\text { number of swings for } i}{\text { number of potential swings for } i}=\frac{\text { number of swings for } i}{2^{|N|-1}}$

The Banzhaf value: general TU games

- extension to general TU games
- Owen, G. (1975). Multilinear extensions and the Banzhaf value, Naval Research Logistic Quarterly 22: 741-750.

Definition

The Banzhaf value assigns to any TU game (N, v) and $i \in N$ the payoff

$$
\mathrm{Ba}_{i}(N, v)=\sum_{K \subseteq N \backslash\{i\}} \frac{1}{2^{|N|-1}}(v(K \cup\{i\})-v(K)) .
$$

- compare with the Shapley value

$$
\mathrm{Sh}_{i}(N, v)=\sum_{K \subseteq N \backslash\{i\}} \frac{|K|!(|N|-|K|-1)!}{|N|!}(v(K \cup\{i\})-v(K))
$$

The Banzhaf value: properties \#1

■ the Shapley value is characterized by $\mathbf{E}, \mathbf{A}, \mathbf{S}$, and \mathbf{N}

- so the Banzhaf value must violate (at least) one of the axioms; guess which one!
■ exactly: it's \mathbf{E} (for $|N|>2$); all other axioms are met; \mathbf{N} and \mathbf{A} are obvious, \mathbf{S} is almost obvious
- let i, j be symmetric in (N, v) ; then, we have

$$
\begin{aligned}
& \operatorname{Ba}_{i}(N, v) \\
= & \frac{1}{2^{|N|-1}} \sum_{K \subseteq N \backslash\{i, j\}}[v(K \cup\{i\})-v(K)+v(K \cup\{i, j\})-v(K \cup\{j\})] \\
= & \frac{1}{2^{|N|-1}} \sum_{K \subseteq N \backslash\{i, j\}}[v(K \cup\{j\})-v(K)+v(K \cup\{i, j\})-v(K \cup\{i\})] \\
= & \operatorname{Ba}_{j}(N, v)
\end{aligned}
$$

The Banzhaf value: properties \#2

- payoffs for $\left(N, \lambda \cdot u_{T}\right), T \in \mathcal{K}(N), \lambda \in \mathbb{R}$
- we have

$$
M C_{i}^{\lambda \cdot u_{T}}(K)=\left\{\begin{array}{ll}
0, & i \in N \backslash T \\
0 & i \in T, T \backslash\{i\} \nsubseteq K, \\
\lambda & i \in T, T \backslash\{i\} \subseteq K,
\end{array} \quad K \subseteq N \backslash\{i\}\right.
$$

■ in the last case, there are $\left|2^{N \backslash T}\right|=2^{|N|-|T|}$ such coalitions

$$
\mathrm{Ba}_{i}\left(N, \lambda u_{T}\right)= \begin{cases}0, & i \in N \backslash T \\ \frac{2^{|N|-|T|}}{2^{|N|-1}} \lambda=\frac{\lambda}{2^{|T|-1}} & i \in T,\end{cases}
$$

- since Ba is additive, this gives

$$
\mathrm{Ba}_{i}(N, v)=\sum_{T \subseteq N: i \in T} \frac{\lambda_{T}(v)}{2^{|T|-1}}
$$

Banzhaf value versus Shapley value

- compare

$$
\mathrm{Ba}_{i}(N, v)=\sum_{T \subseteq N: i \in T} \frac{\lambda_{T}(v)}{2^{T T-1}} \quad \sum_{T \subseteq N: i \in T} \frac{\lambda_{T}(v)}{|T|}=\mathrm{Sh}_{i}(N, v)
$$

- observe

$$
2^{|T|-1}=|T| \text { if }|T| \leq 2 \quad \text { and } \quad 2^{|T|-1} \neq|T| \text { if }|T|>2
$$

- implication

$$
\mathrm{Ba}(N, v)=\operatorname{Sh}(N, v) \text { if }|N| \leq 2 \quad \text { and } \quad 2^{|T|-1} \neq|T| \text { if }|T|>2
$$

- note

$$
\operatorname{Ba}_{N}(N, v)=\sum_{T \subseteq N} \frac{|T|}{2^{|T|-1}} \lambda_{T}(v) \quad \operatorname{Sh}_{N}(N, v)=\sum_{T \subseteq N} \lambda_{T}(v)=v(N)
$$

Banzhaf value-Uniqueness by Banzhaf efficiency

Banzhaf efficiency (BaE) For all $v \in \mathbb{V}(N)$,
$\varphi_{N}(N, v)=\sum_{T \subseteq N} \frac{|T|}{2^{|T|-1}} \lambda_{T}(v)=\mathrm{Ba}_{N}(N, v)$.
Theorem
The Banzhaf value is the unique value that satisfies $\mathbf{B a E}, \mathbf{A}, \mathbf{S}$, and \mathbf{N}.

Proof. We have already shown that Ba satisfies $\mathbf{B a E}, \mathbf{A}, \mathbf{S}$, and \mathbf{N}. Remains the uniqueness part.
Uniqueness: Homework! Hint: Follow the uniqueness proof of the standard characterization of the Shapley value!

Dummy player axiom

Definition

Player $i \in N$ is a Dummy player in (N, v) if $M C_{i}^{v}(K)=v(\{i\})$ for all $K \subseteq N \backslash\{i\}$.

Dummy player (D) For all $v \in \mathbb{V}(N), \varphi_{i}(N, v)=v(\{i\})$ whenever i is a Dummy player in (N, v).

- Sh obeys D because it is the weighted average of a player's marginal contribution
- Ba obeys D because for any Dummy player i in (N, v)

$$
\mathrm{Ba}_{i}(N, v)=\frac{1}{2^{|N|-1}} \sum_{K \subseteq N \backslash\{i\}} M C_{i}^{v}(K)=\frac{1}{2^{|N|-1}} \sum_{K \subseteq N \backslash\{i\}} v(\{i\})=v(\{i\})
$$

2-Efficiency \#1

■ Lehrer, E. (1988): An Axiomatization of the Banzhaf Value. International Journal of Game Theory 17 (2), 89-99.

Definition

For $i, j \in N, i \neq j$, the amalgamated game $\left(N_{i j}, v_{i j}\right)$ is given by $N_{i j}=N \backslash\{j\}, v_{i j} \in \mathbb{V}(N \backslash\{j\})$,

$$
v_{i j}(K)=\left\{\begin{array}{ll}
v(K), & i \notin K, \\
v(K \cup\{j\}), & i \in K,
\end{array} \quad K \subseteq N_{i j}\right.
$$

Superadditivity (SA) $\varphi_{i}\left(N_{i j}, v_{i j}\right) \geq \varphi_{i}(N, v)+\varphi_{j}(N, v)$ for all $i, j \in N$.
2-Efficiency (2E) $\varphi_{i}\left(N_{i j}, v_{i j}\right)=\varphi_{i}(N, v)+\varphi_{j}(N, v)$ for all $i, j \in N$.

- Sh fails both SA and 2E: $|N|>2, i, j \in N, i \neq j, v=u_{N}$:

$$
v_{i j}=u_{N \backslash\{j\}}=u_{N_{i j}}
$$

$\varphi_{i}\left(N_{i j}, v_{i j}\right)=\varphi_{i}\left(N_{i j}, u_{N_{i j}}\right)=\frac{1}{\left|N_{i j}\right|}=\frac{1}{|N|-1}<\varphi_{i}\left(N, u_{N}\right)+\varphi_{j}\left(N, u_{N}\right)=\frac{2}{|N|}$

2-Efficiency \#2

■ Ba obeys both SA and 2E: (very pedantic)

$$
\begin{aligned}
& \mathrm{Ba}_{i}(N, v)+\mathrm{Ba}_{j}(N, v) \\
= & \frac{1}{2^{|N|-1}} \sum_{K \subseteq N \backslash\{i\}} M C_{i}^{\vee}(K)+\frac{1}{2^{|N|-1}} \sum_{K \subseteq N \backslash\{j\}} M C_{j}^{\vee}(K) \\
= & \frac{1}{2^{|N|-1}} \sum_{K \subseteq N \backslash\{i, j\}} M C_{i}^{\vee}(K)+M C_{i}^{\vee}(K \cup\{j\})+M C_{j}^{\vee}(K)+M C_{j}^{\vee}(K \cup\{i\}) \\
= & \frac{1}{2^{|N|-1}} \sum_{K \subseteq N \backslash\{i, j\}} M C_{i}^{\vee}(K)+M C_{j}^{\vee}(K \cup\{i\})+M C_{j}^{\vee}(K)+M C_{i}^{\vee}(K \cup\{j\}) \\
= & \frac{1}{2^{|N|-1}} \sum_{K \subseteq N\{i, j\}} 2(v(K \cup\{i, j\})-v(K)) \\
= & \frac{1}{2^{\left|N_{j i}\right|-1}} \sum_{K \subseteq N_{i j} \backslash\{i\}} M C_{i}^{V_{j}}(K) \\
= & \mathrm{Ba}_{i}\left(N_{i j}, v_{i j}\right)
\end{aligned}
$$

Banzhaf value: The Lehrer characterizations \#1

Theorem (Lehrer 1988)
The Banzhaf value is the unique value that satisfies D, S, A, and SA.

Proof. We have already shown that Ba obeys D, S, A, SA, and 2E. Uniqueness: See the paper. Possible theme for the Seminar.

Theorem (Lehrer 1988)
The Banzhaf value is the unique value that satisfies 2E and that coincides with Ba for $|N|=2$.

Banzhaf value: The Lehrer characterizations \#2

Proof. We have already shown that Ba obeys 2E. Obviously, Ba coincides with itself, in particular for $|N|=2$.
Uniqueness: Let φ obey 2 E and let $\varphi=\mathrm{Ba}$ for $|N|=2$. $|N|=1$, w.l.o.g., $N=\{1\}$. Let $v \in \mathbb{V}(N)$. Set $N^{\prime}=\{1,2\}$ and $v^{\prime} \in \mathbb{V}\left(N^{\prime}\right), v^{\prime}\left(N^{\prime}\right)=v(N)$ and $v(K)=0$ for $K \subsetneq N^{\prime}$. We than have $N=N_{12}^{\prime}$ and $v=v_{12}^{\prime}$. Hence by $2 \mathbf{E}$,

$$
\begin{aligned}
\varphi_{1}(N, v) & =\varphi_{1}\left(N_{12}^{\prime}, v_{12}^{\prime}\right)=\varphi_{1}\left(N^{\prime}, v^{\prime}\right)+\varphi_{2}\left(N^{\prime}, v^{\prime}\right) \\
& =\operatorname{Ba}_{1}\left(N^{\prime}, v^{\prime}\right)+\operatorname{Ba}_{2}\left(N^{\prime}, v^{\prime}\right)=v^{\prime}(N)=v(N)=\operatorname{Ba}_{1}(N, v)
\end{aligned}
$$

where the last equation drops from $\left|N^{\prime}\right|=2$. We proceed by induction on $|N|$. Induction basis: By assumption, $\varphi=\mathrm{Ba}$ for $|N|=2$.
Induction hypothesis (H): $\varphi=\mathrm{Ba}$ for $|N|=k$.
Induction step: Let $|N|=k+1$. By $2 \mathbf{E}$, the $\varphi_{i}(N, v), i \in N$ are a solution to the following system of linear equations

$$
\begin{equation*}
\varphi_{i}(N, v)+\varphi_{j}(N, v)=\varphi_{i}\left(N_{i j}, v_{i j}\right) \stackrel{\mathrm{H}}{=} \mathrm{Ba}_{i}\left(N_{i j}, v_{i j}\right), \quad i, j \in N, i \neq j \tag{*}
\end{equation*}
$$

Since Ba obeys 2 E , we know that $\left(^{*}\right)$ has a solution, $\mathrm{Ba}_{i}(N, v), i \in N$. Remains to show that this solution is unique. From the structure of $\left(^{*}\right)$, however, this is not too difficult.

Banzhaf value: Further characterizations

- Nowak, A. S. (1997). On an axiomatization of the Banzhaf value without the additivity axiom, International Journal of Game Theory 26: 137-141.

```
Theorem (Nowak 1997)
The Banzhaf value is the unique value that satisfies 2E, S, D, and M.
```

- in this characterization, 2E cannot be relaxed into SA
- Casajus (2010a) below provides a short proof using the second Lehrer characterization
- Casajus, A. (2010a). Marginality, differential marginality, and the Banzhaf value, Theory and Decision, forthcoming.

```
Theorem (Casajus 2010a)
The Banzhaf value is the unique value that satisfies SA, D, and DM.
```

- does not hold within the class of superadditive games, for example

Banzhaf value: New insights

- Casajus, A. (2010b). Amalgamating players, symmetry, and the Banzhaf value, working paper, LSI and IMW.
- the characterizations of Lehrer (1988), Nowak (1997) and Casajus (2009) are redundant. one can drop S

Theorem (Casajus 2010b)
The Banzhaf value is the unique value that satisfies
${ }_{11}$ D, A, and SA.
${ }_{2} \mathbf{D}$ and $\mathbf{2 E}$.

Multilinear extentions of TU games and the Banzhaf value \#1

- Owen, G. (1975). Multi-linear extensions and the Banzhaf value, Management ScienceNaval Research Logistics Quarterly, 22, 741-750.

Theorem

For all $v \in \mathbb{V}(N)$ and $i \in N$,

$$
\operatorname{Ba}_{i}(N, v)=\left.\int_{0}^{1} \frac{\partial f_{v}}{\partial x_{i}}\right|_{x=\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)} d t .
$$

Proof. We have

$$
\begin{aligned}
\left.\frac{\partial f_{v}}{\partial x_{i}}\right|_{x=(t, \ldots, t)} & =\sum_{S \subseteq N \backslash\{i\}, S \neq \varnothing} t^{|S|}(1-t)^{|N|-|S|-1} \cdot(v(S \cup\{i\})-v(S \\
\left.\frac{\partial f_{v}}{\partial x_{i}}\right|_{x=\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)} & =\sum_{S \subseteq N \backslash\{i\}, S \neq \varnothing} \frac{1}{2^{|N|-1}}(v(S \cup\{i\})-v(S)) \\
\left.\int_{0}^{1} \frac{\partial f_{v}}{\partial x_{i}}\right|_{x=\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)} d t & =\frac{1}{2^{|N|-1}} \sum_{S \subseteq N \backslash\{i\}, S \neq \varnothing}(v(S \cup\{i\})-v(S)) \\
& =\operatorname{Ba}_{i}(N, v)
\end{aligned}
$$

Problem: Nullifying players

Definition

A player $i \in N$ is nullifying in (N, v) if $v(K)=0$ for all $K \subseteq N$ such that $i \in K$.

■ Consider the following axiom. Is it plausible?
Nullifying player (Nf) If i is nullifying in (N, v), then $\varphi_{i}(N, v)=0$.
Try to prove the following claim. Make use of the standard basis of $\mathbb{V}(N)$ and follow the idea of the proof of the standard characterization of the Shapley value.

Theorem

There is a unique solution concept that satisfies E, A, S, and Nf.

Problem: 2-efficiency and additivity

Problem

Prove or disprove the following claim: If φ is additive for two-player games and meets 2E, then φ satisfies A.

