Applied Cooperative Game Theory

André Casajus and Martin Kohl

University of Leipzig

November 2012

Overview

- Potential of the Shapley value
- Self-duality
- Marginal Contributions
- Recursion formulas
- The Shapley Value and the core

The potential to the Shapley value \#1

Definition

A potential P for TU games is an operator that assigns to any TU game (N, v) a number $P(N, v) \in \mathbb{R}$ such that

```
(i) \(P(\varnothing, v)=0\),
(ii) \(\sum_{i \in N}\left[P(N, v)-P\left(N \backslash\{i\},\left.v\right|_{N \backslash\{i\}}\right)\right]=v(N)\).
```


Theorem

There is a unique potential for TU games, which satisfies

$$
P(N, v)-P\left(N \backslash\{i\},\left.v\right|_{N \backslash\{i\}}\right)=\operatorname{Sh}_{i}(N, v), i \in N .
$$

The potential to the Shapley value \#2

Proof. Uniqueness: Let P, Q be two potentials. We show $P=Q$.
■ Induction basis: $|N|=1$. by (i+ii), $P(\{i\}, v)=Q(\{i\}, v)=v(\{i\})$.

- Induction hypothesis (H): $P=Q$ for $|N| \leq k$

■ Induction step: let $|N|=k+1$. this implies

$$
P(N, v) \stackrel{(\text { ii) }}{=} \frac{v(N)+\sum_{i \in N} P\left(N \backslash\{i\},\left.v\right|_{N \backslash\{i\}}\right)}{|N|} \stackrel{H}{=} Q(N, v)
$$

The potential to the Shapley value \#3

■ existence: consider the operator P given by

$$
P(N, v):=\sum_{T \subseteq N, T \neq \varnothing} \frac{\lambda_{T}(v)}{|T|}
$$

- this gives $P(\varnothing, v)=0$ and

$$
\begin{aligned}
& \sum_{i \in N} P(N, v)-P\left(N \backslash\{i\},\left.v\right|_{N}\right) \\
= & \sum_{i \in N} \sum_{T \subseteq N, T \neq \varnothing} \frac{\lambda_{T}(v)}{|T|}-\sum_{i \in N} \sum_{T \subseteq N, T \neq \varnothing, i \notin T} \frac{\lambda_{T}(v)}{|T|} \\
= & \sum_{i \in N} \sum_{T \subseteq N, T \neq \varnothing, i \in T} \frac{\lambda_{T}(v)}{|T|} \\
= & \sum_{i \in N} \operatorname{Sh}_{i}(N, v)=v(N)
\end{aligned}
$$

Self-duality

Definition

The dual game $\left(N, v^{*}\right)$ of a TU game (N, v) is defined by

$$
\begin{equation*}
v^{*}(S)=v(N)-v(N \backslash S) \text { for } S \subseteq N \tag{1}
\end{equation*}
$$

Interpretation: Lose of the great coalition, if the players of S leave.

Definition

A value ϕ for a TU game (N, v) is called self-dual, if

$$
\begin{equation*}
\phi(N, v)=\phi\left(N, v^{*}\right) . \tag{2}
\end{equation*}
$$

Self-duality

Theorem

The Shapley value is self-dual.
Proof:For $i \in N$ and $K \subseteq N \backslash\{i\}$, we have

$$
\begin{aligned}
M C_{i}^{v^{*}}(K) & =v^{*}(K \cup\{i\})-v^{*}(K) \\
& =v(N)-v(N \backslash(K \cup\{i\}))-(v(N)-v(N \backslash K)) \\
& =v(N \backslash K)-v((N \backslash K) \backslash\{i\}) \\
& =M C_{i}^{v}((N \backslash K) \backslash\{i\}) .
\end{aligned}
$$

Further,

$$
\begin{aligned}
\operatorname{Sh}_{i}\left(N, v^{*}\right) & =\sum_{K \subseteq N \backslash\{i\}} \frac{|K|!(|N|-|K|-1)!}{|N|!} M C_{i}^{v^{*}}(K) \\
& =\sum_{K \subseteq N \backslash\{i\}} \frac{(|N|-|K|-1)!|K|!}{|N|!} M C_{i}^{v}((N \backslash K) \backslash\{i\}) \\
& =\operatorname{Sh}_{i}(N, v)
\end{aligned}
$$

Marginal Contributions Property 1

Definition

Let $S \subseteq N$ and $v \in \mathbb{V}(N)$. The TU game ($N \backslash S, v^{S}$) defined by

$$
\begin{equation*}
v^{S}(T)=v(S \cup T)-v(S) \text { for all } T \subseteq N \backslash S \tag{3}
\end{equation*}
$$

is called the S - marginal game of (N, v).
Interpretation: The first players in a rank order of N are the players of coalition S. If the coalition T joins $S, v^{S}(T)$ describes the contribution of T to S.

Problem

Show: For any $S \subseteq N$ and any monotonic game $v \in \mathbb{V}(N), v^{S} \in \mathbb{V}(N \backslash S)$ is nonnegative.

Marginal Contributions Property 2

Definition

A value ϕ suffices the marginal contributions property, if for any TU game (N, v) and any $i, j \in N, i \neq j$

$$
\phi_{i}(N, v)-\phi_{i}\left(N \backslash\{j\}, v^{j}\right)=\phi_{j}(N, v)-\phi_{j}\left(N \backslash\{i\}, v^{i}\right) .
$$

Theorem

The Shapley value suffices the marginal contributions property.

Recursion formulas for the Shapley value 1

Theorem
For all $v \in \mathbb{V}(N)$ and $i \in N$,

$$
S h_{i}(N, v)=\frac{1}{|N|}\left(v(N)-v(N \backslash\{i\})+\frac{1}{|N|} \sum_{j \in N \backslash\{i\}} S h_{i}\left(N \backslash\{j\},\left.v\right|_{N \backslash\{j\}}\right) .\right.
$$

Interpretation: The Shapley value of i is the sum of the marginal contribution to $N \backslash\{i\}$ (i is the last player in the rank order) and the sum of all Shapley values, such that another player is the last player.

Recursion formulas for the Shapley value 2

Proof: For $|N|=1$ the claim is immediate. Let now $|N|>1$. The Shapley value satisfies $B C$ and E. By $B C$ we get

$$
S h_{i}(N, v)-S h_{j}(N, v)=S h_{i}\left(N \backslash\{j\},\left.v\right|_{N \backslash\{j\}}\right)-S h_{j}\left(N \backslash\{i\},\left.v\right|_{N \backslash\{i\}}\right) .
$$

By summing up over $j \in N \backslash\{i\}$ we get

$$
\begin{aligned}
& \sum_{j \in N \backslash\{i\}} S h_{i}\left(N \backslash\{j\},\left.v\right|_{N \backslash\{j\}}\right)-S h_{N \backslash\{i\}}\left(N \backslash\{i\},\left.v\right|_{N \backslash\{i\}}\right)= \\
& (|N|-1) S h_{i}(N, v)-S h_{N \backslash\{i\}}(N, v)
\end{aligned}
$$

Recursion Formulas for the Shapley value 3

Adding a zero term leads to

$$
\begin{aligned}
& |N| S h_{i}(N, v)-S h_{N}(N, v) \\
= & \sum_{j \in N \backslash\{i\}} S h_{i}\left(N \backslash\{j\},\left.v\right|_{N \backslash\{j\}}\right)-S h_{N \backslash\{i\}}\left(N \backslash\{i\},\left.v\right|_{N \backslash\{i\}}\right) .
\end{aligned}
$$

Using efficiency

$$
|N| S h_{i}(N, v)-v(N)=\sum_{j \in N \backslash\{i\}} S h_{i}\left(N \backslash\{j\},\left.v\right|_{N \backslash\{j\}}\right)-v(N \backslash\{i\})
$$

Hence

$$
S h_{i}(N, v)=\frac{1}{|N|}\left(v(N)-v(N \backslash\{i\})+\frac{1}{|N|} \sum_{j \in N \backslash\{i\}} S h_{i}\left(N \backslash\{j\},\left.v\right|_{N \backslash\{j\}}\right) .\right.
$$

and we are done.

Recursion Formulas for the Shapley value 4

Theorem

For all $v \in \mathbb{V}(N)$ and $i \in N$,

$$
S h_{i}(N, v)=\frac{1}{|N|} v(\{i\})+\frac{1}{|N|} \sum_{j \in N \backslash\{i\}} S h_{i}\left(N \backslash\{j\}, v^{j}\right)
$$

Proof For $j \in N$ and $S \in N \backslash\{j\}$:

$$
\begin{aligned}
\left(v^{j}\right)^{*}(S) & =v^{j}(N \backslash j)-v^{j}(N \backslash\{j\} \backslash S) \\
& =v(N)-v(\{j\})-v(N \backslash S)+v(\{j\}) \\
& =v(N)-v(N \backslash S) \\
& =v^{*}(S)
\end{aligned}
$$

Recursion Formulas for the Shapley value 5

By using this equation and the self-duality of the Shapley value we get

$$
\begin{aligned}
\operatorname{Sh}(N, v)= & \operatorname{Sh}\left(N, v^{*}\right) \\
= & \frac{1}{|N|}\left(v^{*}(N)-v^{*}(N \backslash\{i\})\right)+ \\
& \frac{1}{|N|} \sum_{j \in N \backslash\{i\}} S_{i}\left(N \backslash\{j\}, v^{*} \mid N \backslash\{j\}\right) \\
= & \frac{1}{|N|}(v(N)-v(\varnothing)-v(N)+v(\{i\}))+ \\
& \frac{1}{|N|} \sum_{j \in N \backslash\{i\}} S_{i}\left(N \backslash\{j\},\left(v^{j}\right)^{*}\right) \\
= & \frac{1}{|N|} v(\{i\})+\frac{1}{|N|} \sum_{j \in N \backslash\{i\}} S h_{i}\left(N \backslash\{j\}, v^{j}\right)
\end{aligned}
$$

and we are done.

The Shapley value and the core 1

Theorem

Let (N, v) be a convex TU-game. Then the Shapley payoff $\left(S h_{i}(N, v)\right)_{i \in N}$ lies in the core of the game (N, v)

Proof:
Efficiency: The Shapley payoffs fulfill the efficiency axiom, therefore $\sum_{i \in N} S h_{i}(N, v)=v(N)$,

The Shapley value and the core 2

Non-blockability: Let $S \subseteq N$, we have to show

$$
\sum_{i \in S} S h_{i}(N, v) \geq v(S)
$$

Let $\sigma \in \Sigma(N)$ be an order of N and define $\tau: S \rightarrow S$ the induced order of S which is defined by

$$
\sigma(i)>\sigma(j) \Longrightarrow \tau(i)>\tau(j)
$$

Because of convexity of v and $K_{i}(\tau) \subseteq K_{i}(\sigma)$ we have:

$$
M C_{i}(\tau) \leq M C_{i}(\sigma)
$$

Therefore we have

$$
\sum_{i \in S} M C_{i}(\sigma) \geq \sum_{i \in S} M C_{i}(\tau)=v(S)
$$

The Shapley value and the core 3

Now we obtain

$$
\begin{aligned}
\sum_{i \in S} S h_{i}(N, v) & =\sum_{i \in S} \frac{1}{|\Sigma(N)|} \sum_{\sigma \in \Sigma(N)} M C_{i}(\sigma) \\
& =\frac{1}{|\Sigma(N)|} \sum_{\sigma \in \Sigma(N)} \sum_{i \in S} M C_{i}(\sigma) \\
& \geq \frac{1}{|\Sigma(N)|} \sum_{\sigma \in \Sigma(N)} v(S) \\
& \geq v(S)
\end{aligned}
$$

Therefore for convex games the Shapley payoffs fulfills non-blockability.

