Applied Cooperative Game Theory

André Casajus and Martin Kohl

University of Leipzig

November 22012

Overview

- The Young characterization
- Balanced Contributions
- The Myerson characterization

■ Differential Monotonicity and Marginality

- Cousins of Differential Monotonicity
- The van den Brink characterization

Shapley value: The Young characterization \#2

Theorem (Young 1985)
The Shapley value is the unique solution that meets \mathbf{E}, \mathbf{S}, and \mathbf{M}.

Proof. Uniqueness: Let φ satisfy \mathbf{E}, \mathbf{S}, and \mathbf{M}. In the following, we show $\varphi(N, v)$ is uniquely determined for all $v \in \mathbb{V}(N)$ by induction on $|\mathcal{T}(v)|$, where

$$
\mathcal{T}(v):=\left\{T \in \mathcal{K}(N) \mid \lambda_{T}(v) \neq 0\right\}
$$

Induction basis: If $|\mathcal{T}(v)|=0$, then $v=\mathbf{0}$. It is easy to check that \mathbf{E} and \mathbf{S} imply NG. Hence, $\varphi_{i}(N, \mathbf{0})=0$ for all $i \in N$.
Induction hypothesis: Suppose $\varphi(N, v)$ is uniquely determined for all $v \in \mathbb{V}(N)$ such that $|\mathcal{T}(v)| \leq k$.

Shapley value: The Young characterization \#3

Induction step: Let $v \in \mathbb{V}(N)$ such that $|\mathcal{T}(v)|=k+1$. Set $T(v):=\bigcap_{T \in \mathcal{T}(v)} T$. For $i \in N \backslash T(v)$ set

$$
v^{(i)}=\sum_{T \in \mathcal{T}(v): i \in T} \lambda_{T}(v) u_{T} .
$$

Then, $\mathcal{T}\left(v^{(i)}\right) \subsetneq \mathcal{T}(v)$, hence $\left|\mathcal{T}\left(v^{(i)}\right)\right|<|\mathcal{T}(v)|$, and $T \in \mathcal{T}(v)$ and $i \in T$ imply $T \in \mathcal{T}\left(v^{(i)}\right)$ and $\lambda_{T}(v)=\lambda_{T}\left(v^{(i)}\right)$. The latter entails

$$
M C_{i}^{v}(K)=M C_{i}^{v^{(i)}}(K)
$$

for $K \subseteq N \backslash\{i\}$, i.e., $v, v^{(i)}$, and i satisfy the hypothesis of M. Since φ obeys \mathbf{M}, we thus have

$$
\varphi_{i}(N, v)=\varphi_{i}\left(N, v^{(i)}\right)
$$

$\varphi_{i}(N, v)$ is uniquely determined by the induction hypothesis.

Shapley value: The Young characterization \#4

Finally, the players in $T(v)$ are symmetric: Whenever $i, j \in T(v)$, $T \in \mathcal{T}(v)$, then $i, j \in T$ entailing

$$
\lambda_{K \cup\{i\}}(v)=0=\lambda_{K \cup\{j\}}(v), \quad K \subseteq N \backslash\{i, j\} .
$$

(Recall the characterization of symmetric players in terms of Harsanyi dividends). Since φ obeys E and S, we have

$$
\varphi_{i}(N, v) \stackrel{\mathrm{s}}{=} \frac{\varphi_{T(v)}(N, v)}{|T(v)|} \stackrel{\mathrm{E}}{=} \frac{v(N)-\varphi_{N \backslash T(v)}(N, v)}{|T(v)|}
$$

for all $i \in T(v)$, where $\varphi_{N \backslash T(v)}(N, v)$ is determined by the previous step. Done.

The Young characterization: Independence

- E+S, $\neg \mathbf{M}: \varphi_{i}(N, v)=|N|^{-1} \cdot v(N), i \in N, v \in \mathbb{V}(N), \equiv$ (efficient) egalitarian solution
- $\mathbf{E}+\mathbf{M}, \neg \mathbf{S}: w \in \mathbb{R}_{++}^{N}, \varphi_{i}(N, v)=\sum_{T \in \mathcal{K}(N): i \in T} \lambda_{T}(v) \cdot \frac{w_{i}}{\sum_{j \in T} w_{j}}, i \in N$, \equiv simple weighted Shapley value
- S+M, $\neg \mathbf{E}: \varphi_{i}(N, v)=0, i \in N, v \in \mathbb{V}(N), \equiv$ Null solution

Balanced contributions

- Myerson, R. B. (1977). Graphs and cooperation in games, Mathematics of Operations Research 2: 225-229.

Balanced contributions (BC) for all $N, v \in \mathbb{V}(N)$ and $i, j \in N$,

$$
\varphi_{i}(N, v)-\varphi_{i}\left(N \backslash\{j\},\left.v\right|_{N \backslash\{j\}}\right)=\varphi_{j}(N, v)-\varphi_{j}\left(N \backslash\{i\},\left.v\right|_{N \backslash\{i\}}\right),
$$

where $\left.v\right|_{K}$ denotes the restriction of v to $K \subseteq N$.

- exit of j hurts/benefits i by the same amount as the exit of i hurts/benefits j
- plausible?
- in contrast to the other axiom considered so far, BC relates different player sets
- as we will see, $\mathbf{B C}$ is a very powerful axiom

Shapley value: The Myerson characterization \#1

Theorem (Myerson 1977)
The Shapley value is the unique solution that meets \mathbf{E} and $\mathbf{B C}$.

■ extremely elegant by the use of BC

- characterization on the domain of all TU games, in particular, with different player sets, even player sets with different cardinality
- characterization without additivity

Shapley value: The Myerson characterization \#2

Proof. We have already shown that Sh obeys E. To see BC, first observe

$$
\lambda_{T}(v)=\lambda_{T}\left(\left.v\right|_{N \backslash\{j\}}\right), \quad T \in \mathcal{K}(N \backslash\{j\}) .
$$

Hence, we have

$$
\begin{aligned}
& \operatorname{Sh}_{i}(N, v)-\operatorname{Sh}_{i}\left(N \backslash\{j\},\left.v\right|_{N \backslash\{j\}}\right) \\
= & \sum_{T \in \mathcal{K}(N): i \in T}|T|^{-1} \cdot \lambda_{T}(v)-\sum_{T \in \mathcal{K}(N \backslash\{j\}): i \in T}|T|^{-1} \cdot \lambda_{T}\left(\left.v\right|_{N \backslash\{j\}}\right) \\
= & \sum_{T \in \mathcal{K}(N): i \in T}|T|^{-1} \cdot \lambda_{T}(v)-\sum_{T \in \mathcal{K}(N \backslash\{j\}): i \in T}|T|^{-1} \cdot \lambda_{T}(v) \\
= & \sum_{T \in \mathcal{K}(N): i, j \in T}|T|^{-1} \cdot \lambda_{T}(v)
\end{aligned}
$$

Interchanging, i and j one obtains

$$
\operatorname{Sh}_{j}(N, v)-\operatorname{Sh}_{j}\left(N \backslash\{i\},\left.v\right|_{N \backslash\{i\}}\right)=\sum_{T \in \mathcal{K}(N): i, j \in T}|T|^{-1} \cdot \lambda_{T}(v)
$$

and we are done.

Shapley value: The Myerson characterization \#3

Uniqueness: Let φ obey \mathbf{E} and $\mathbf{B C}$. In the following, we show that $\varphi(N, v)$ is uniquely determined for all N and $v \in \mathbb{V}(N)$ by induction on $|N|$.

Induction basis: For $|N|=1$, i.e., $N=\{i\}$, the claim drops from \mathbf{E} : $\varphi_{i}(\{i\}, v)=\varphi_{\{i\}}(\{i\}, v)=v(\{i\})$.

Induction hypothesis: Suppose $\varphi(N, v)$ is uniquely determined for all N such that $|N| \leq k$ and $v \in \mathbb{V}(N)$.

Shapley value: The Myerson characterization \#4

Induction step: Let now $|N|=k+1$ and $v \in \mathbb{V}(N)$. By BC, for all $i, j \in N$, we have

$$
\varphi_{i}\left(N \backslash\{j\},\left.v\right|_{N \backslash\{j\}}\right)-\varphi_{j}\left(N \backslash\{i\},\left.v\right|_{N \backslash\{i\}}\right)=\varphi_{i}(N, v)-\varphi_{j}(N, v) .
$$

Summing up over $j \in N \backslash\{i\}$ gives

$$
\begin{aligned}
\sum_{j \in N \backslash\{i\}}(& \left.\varphi_{i}\left(N \backslash\{j\},\left.v\right|_{N \backslash\{j\}}\right)-\varphi_{j}\left(N \backslash\{i\},\left.v\right|_{N \backslash\{i\}}\right)\right) \\
& =(|N|-1) \cdot \varphi_{i}(N, v)-\varphi_{N \backslash\{i\}}(N, v) \\
& =|N| \cdot \varphi_{i}(N, v)-\varphi_{N}(N, v) \\
& =|N| \cdot \varphi_{i}(N, v)-v(N)
\end{aligned}
$$

where the last equation drops from \mathbf{E}. By the induction hypothesis, the first line is uniquely determined. Since i was arbitrarily chosen, $\varphi(N, v)$ is uniquely determined.

The Myerson characterization: Independence

- E, $\neg \mathbf{B C}: \varphi_{i}(N, v)=|N|^{-1} \cdot v(N), i \in N, v \in \mathbb{V}(N), \equiv$ (efficient) egalitarian solution

Differential monotonicity

Differential monotonicity (DMo) for all $v, w \in \mathbb{V}(N)$ and $i, j \in N$ such that

$$
v(K \cup\{i\})-v(K \cup\{j\}) \geq w(K \cup\{i\})-w(K \cup\{j\})
$$

for all $K \subseteq N \backslash\{i, j\}$, we have

$$
\varphi_{i}(N, v)-\varphi_{j}(N, v) \geq \varphi_{i}(N, w)-\varphi_{j}(N, w)
$$

- two player's payoff differential (in different situations) does not decrease with nowhere non-decreasing productivity differential

Differential marginality

- Casajus, A. (2009). Differential marginality, van den Brink fairness, and the Shapley value. Theory and Decision, forthcoming.

Differential marginality (DM) for all $v, w \in \mathbb{V}(N)$ and $i, j \in N$ such that

$$
v(K \cup\{i\})-v(K \cup\{j\})=w(K \cup\{i\})-w(K \cup\{j\})
$$

for all $K \subseteq N \backslash\{i, j\}$, we have

$$
\varphi_{i}(N, v)-\varphi_{j}(N, v)=\varphi_{i}(N, w)-\varphi_{j}(N, w)
$$

- obviously, $\mathbf{D M o} \Rightarrow$ Mo
- DM requires a two player's payoff differential to depend on the differentials of their productivities (measured by marginal contributions) only
- the hypothesis of DM is satisfied iff

$$
\lambda_{K \cup\{i\}}(v)-\lambda_{K \cup\{j\}}(v)=\lambda_{K \cup\{i\}}(w)-\lambda_{K \cup\{j\}}(w)
$$

for all $K \subseteq N \backslash\{i, j\}$. Homework! Hint: Use the characterization of marginal contributions by Harsanyi dividends and proceed by induction on K.

Cousins of differential marginality

- van den Brink, R. (2001). An axiomatization of the Shapley value using a fairness property. International Journal of Game Theory 30, 309-319.
van den Brink fairness (BF) for all $v, w \in \mathbb{V}(N)$ and $i, j \in N$ such that i and j are symmetric in (N, w), we have $\varphi_{i}(N, v+w)-\varphi_{i}(N, v)=\varphi_{j}(N, v+w)-\varphi_{j}(N, v)$.

■ observation: DM and BF are equivalent. Homework!

Differential marginality and the symmetry axiom \#1

Lemma

NG and DM imply S.

Proof.

- Let φ meet NG and DM, and let $i, j \in N$ be symmetric in (N, v).

■ For $\mathbf{0} \in \mathbb{V}(N)$, we have $M C_{i}^{v}(K)-M C_{j}^{v}(K)=0$
$=M C_{i}^{\mathbf{0}}(K)-M C_{j}^{\mathbf{0}}(K)$ for all $K \subseteq N \backslash\{i\}$.

- Hence by DM, $\varphi_{i}(N, v)-\varphi_{j}(N, v)=\varphi_{i}(N, \mathbf{0})-\varphi_{j}(N, \mathbf{0})$.

■ Further by NG, $\varphi_{i}(N, \mathbf{0})=0=\varphi_{j}(N, \mathbf{0})$, which proves the claim.

■ S does not imply DM: $\varphi_{i}(N, v)=[v(\{i\})]^{2}, i \in N, v \in \mathbb{V}(N)$

Differential marginality and the symmetry axiom \#2

Lemma

A and S imply DM.

Proof.

■ Let φ meet \mathbf{A} and \mathbf{S}, and let $i, j \in N, v, w \in \mathbb{V}(N)$ be such that $M C_{i}^{v}(K)-M C_{j}^{v}(K)=M C_{i}^{w}(K)-M C_{j}^{w}(K)$ for all $K \subseteq N \backslash\{i, j\}$.

- Since the marginal contributions are additive in the coalition function, we have $M C_{i}^{v-w}(K)-M C_{j}^{v-w}(K)=0$ for all $K \subseteq N \backslash\{i, j\}$.
■ Hence, i and j are symmetric in $(N, v-w)$.
- By S, we thus have $\varphi_{i}(N, v-w)=\varphi_{j}(N, v-w)$.
- Finally, A entails

$$
\begin{aligned}
\varphi_{i}(N, v)-\varphi_{i}(N, w) & =\varphi_{i}(N, v-w)=\varphi_{j}(N, v-w) \\
& =\varphi_{j}(N, v)-\varphi_{j}(N, w)
\end{aligned}
$$

i.e.,

$$
\varphi_{i}(N, v)-\varphi_{j}(N, v)=\varphi_{i}(N, w)-\varphi_{j}(N, w)
$$

and we are done.

Marginality versus Differential marginality

- DM does not imply $\mathbf{S}: g \in \mathbb{R}^{N}, g_{i} \neq g_{j}$ for some $i, j \in N$, $\varphi_{i}(N, v)=\operatorname{Sh}_{i}(N, v)+g_{i}$
- DM does not imply A: $\varphi_{i}(N, v)=1, i \in N, v \in \mathbb{V}(N)$
- DM does not imply $\mathbf{M}: \varphi_{i}(N, v)=|N|^{-1} \cdot v(N), i \in N, v \in \mathbb{V}(N)$, \equiv (efficient) egalitarian solution
- \mathbf{M} does not imply $\mathbf{D M}: \varphi_{i}(N, v)=[v(\{i\})]^{2}, i \in N, v \in \mathbb{V}(N)$

Shapley value: The van den Brink and the Casajus characterization

Theorem (van den Brink 2001)
The Shapley value is the unique solution that meets \mathbf{E}, \mathbf{N}, and $\mathbf{B F}$.

Theorem (Casajus 2009)
The Shapley value is the unique solution that meets E, N, and DM.

- another characterizations without additivity

Proof. See van den Brink (2001) or Casajus (2009) or Casajus (2009b) below. Possible theme for the Seminar.

- Casajus, A. (2009b). Another characterization of the Owen value without the additivity axiom. Theory and Decision 69 (4), 523-536.

