Lecture: Topics in Cooperative Game Theory

PD Dr. André Casajus
Leipzig University

October 2012

Solution concepts

Definition

A solution concept φ assigns to any TU game (N, v) a payoff vector

$$
\varphi(N, v) \in \mathbb{R}^{N}
$$

■ payoff of player $i \in N: \quad \varphi_{i}(N, v)$

- sum of payoffs of players in $K \subseteq N$

$$
\varphi_{K}(N, v)=\sum_{i \in K} \varphi_{i}(N, v)
$$

- sometimes solution concepts are restricted
- to a fixed player set
- to subsets of $\mathbb{V}(N)$, e.g., the superadditive coalition functions

Marginal contributions

Definition

For $v \in \mathbb{V}(N)$, the marginal contribution of $i \in N$ to $K \subseteq N \backslash\{i\}$ is given by

$$
M C_{i}^{v}(K)=v(K \cup\{i\})-v(K) .
$$

- measure of a player's productivity
- marginal contributions are additive in the coalition function

$$
M C_{i}^{v+w}(K)=M C_{i}^{v}(K)+M C_{i}^{w}(K)
$$

- marginal contributions in terms of Harsanyi dividends

$$
M C_{i}^{v}(K)=\sum_{T \in \mathcal{K}(K)} \lambda_{T \cup\{i\}}(v)
$$

Order of players and marginal contributions

- An order on N is a bijection $\sigma: N \rightarrow\{1, \ldots,|N|\}$.
- set of all orders on $N: \Sigma(N)$
- player i 's position in σ is $\sigma(i)$
- players before or equal to i in σ

$$
K_{i}(\sigma):=\{j \in N \mid \sigma(j) \leq \sigma(i)\}
$$

- marginal contribution of i in σ

$$
M C_{i}^{\vee}(\sigma):=M C_{i}^{\vee}\left(K_{i}(\sigma) \backslash\{i\}\right)=v\left(K_{i}(\sigma)\right)-v\left(K_{i}(\sigma) \backslash\{i\}\right)
$$

The Shapley value

■ Lloyd S. Shapley (1953): A value for n-person games. In H. Kuhn \& A. Tucker, Contributions to the theory of games (Vol. II, pp. 307-317). Princeton: Princeton University Press.

Definition

The Shapley value assigns to any TU game (N, v) and $i \in N$ the payoff

$$
\mathrm{Sh}_{i}(N, v):=|\Sigma(N)|^{-1} \sum_{\sigma \in \Sigma(N)} M C_{i}^{v}(\sigma) .
$$

- alternatively

$$
\begin{aligned}
\mathrm{Sh}_{i}(N, v) & =\sum_{K \subseteq N \backslash\{i\}} p(|K|) \cdot M C_{i}^{v}(K) \\
p(k) & =\frac{k!(|N|-k-1)!}{|N|!}, \quad k=0, \ldots,|N|-1
\end{aligned}
$$

- assigns to any player the average marginal contribution over all orders
- average productivity = fair???

Linearity, Additivity, Homogeneity \#1

Linearity (L) if for all $v, w \in \mathbb{V}(N)$ and $\alpha, \beta \in \mathbb{R}$

$$
\varphi(N, \alpha v+\beta w)=\alpha \cdot \varphi(N, v)+\beta \cdot \varphi(N, w) .
$$

Additivity (A) if for all $v, w \in \mathbb{V}(N)$

$$
\varphi(N, v+w)=\varphi(N, v)+\varphi(N, w) .
$$

Homogeneity (H) for all $v \in \mathbb{V}(N)$ and $\alpha \in \mathbb{R}$

$$
\varphi(N, \alpha v)=\alpha \cdot \varphi(N, v)
$$

Null Game (NG) $\varphi(N, \mathbf{0})=\mathbf{0} \in \mathbb{R}^{N}$.

Linearity, Additivity, Homogeneity \#2

- $\mathbf{L} \Longleftrightarrow \mathbf{A}$ and \mathbf{H}

■ $\mathrm{L} \Rightarrow$ NG, $\mathrm{H} \Rightarrow$ NG, $A \Rightarrow$ NG

$$
\mathbf{0}=\mathbf{0}+\mathbf{0} \quad \stackrel{\mathbf{A}}{\Rightarrow} \quad \varphi(N, \mathbf{0})=\varphi(N, \mathbf{0})+\varphi(N, \mathbf{0})=\mathbf{0} \in \mathbb{R}^{N}
$$

- A $\Rightarrow \mathbf{H}$ for rational scalars $\alpha= \pm \frac{\beta}{\gamma}, \beta, \gamma \in \mathbb{N}, \gamma>0$

$$
\begin{gathered}
\beta \in \mathbb{N}: \beta v=\underbrace{v+\cdots+v}_{\beta \text { summands }} \stackrel{A}{\Rightarrow} \varphi(N, \beta v)=\beta \cdot \varphi(N, v) \\
\gamma \in \mathbb{N}: v=\underbrace{\frac{1}{\gamma} v+\cdots+\frac{1}{\gamma} v}_{\gamma \text { summands }} \stackrel{A}{\Rightarrow} \varphi\left(N, \frac{1}{\gamma} v\right)=\frac{1}{\gamma} \cdot \varphi(N, v) \\
\mathbf{0}=v+(-v) \stackrel{A}{\Rightarrow} \varphi(N, v)+\varphi(N,-v)=\varphi(N, \mathbf{0}) \\
\stackrel{\text { NG }}{\Rightarrow} \varphi(N,-v)=-\varphi(N, v)
\end{gathered}
$$

Efficiency

Efficiency (E) $\varphi_{N}(N, v)=v(N)$ for all $v \in \mathbb{V}(N)$.

- the whole worth produced by the grand coalition is distributed among the players
- in general, the grand coalition must cooperate in order to create this worth
- no external subsidies, no losses

■ makes sense in superadditive games, else???

- example: $N=\{1,2\}, v(\{1\})=v(\{2\})=2, v(N)=3$

Null player

Definition

Player $i \in N$ is a Null player in (N, v), if $v(K \cup\{i\})=v(K)$ for all $K \subseteq N \backslash\{i\}$.

■ Null players are unproductive, $M C_{i}^{v}(K)=0$ for all $K \subseteq N \backslash\{i\}$
■ example: in $\left(N, \lambda u_{T}\right), \varnothing \neq T \subseteq N, \lambda \in \mathbb{R}$ all $i \in N \backslash T$ are Null players
■ characterization: i is a Null player in (N, v) iff $\lambda_{T}(v)=0$ for all $T \subseteq N$, $i \in T$

Null player (N) $\varphi_{i}(N, v)=0$ for all $v \in \mathbb{V}(N)$ and all Null players i in (N, v).

- excludes solidarity with unproductive players

Symmetry

Definition

Players $i, j \in N$ are symmetric in (N, v), if $v(K \cup\{i\})=v(K \cup\{j\})$ for all $K \subseteq N \backslash\{i, j\}$.

- symmetric players have the same productivity: $M C_{i}^{v}(K)=M C_{j}^{v}(K)$ for all $K \subseteq N \backslash\{i, j\}$
■ example: in $\left(N, \lambda u_{T}\right), T \in \mathcal{K}(N), \lambda \in \mathbb{R}$ all $i, j \in T$ and all $i, j \in N \backslash T$ are symmetric
- characterization: i and j are symmetric in (N, v) iff $\lambda_{T \cup\{i\}}(v)=\lambda_{T \cup\{j\}}(v)$ for all $T \subseteq N \backslash\{i, j\}$

Symmetry (S) $\varphi_{i}(N, v)=\varphi_{j}(N, v)$ for all $v \in \mathbb{V}(N)$ and all i, j who are symmetric in (N, v).

■ payoffs do not depend on the players' names (given by the game theorist)

- only modelled properties of the players matter (productivity in the sense of v)

Isomorphism invariance

Definition

An isomorphism from (N, v) to $\left(N^{\prime}, v^{\prime}\right)$ is a bijection $f: N \rightarrow N^{\prime}$ such that

$$
v(K)=v^{\prime}(f(K)), \quad K \subseteq N
$$

Definition

A symmetry (mapping) of (N, v) is an isomorphism of (N, v) into itself.

Isomorphism invariance (I) $\varphi_{i}(N, v)=\varphi_{f(i)}\left(N^{\prime}, v^{\prime}\right)$ for all $i \in N$, $v \in \mathbb{V}(N), v^{\prime} \in \mathbb{V}\left(N^{\prime}\right)$ and all isomorphisms f from (N, v) to $\left(N^{\prime}, v^{\prime}\right)$.

Strong symmetry (\mathbf{S}^{+}) $\varphi_{i}(N, v)=\varphi_{f(i)}(N, v)$ for all $i \in N, v \in \mathbb{V}(N)$ and all symmetries f of (N, v).

■ \mathbf{S}^{+}implies \mathbf{S}, but not conversely

Shapley value: Properties \#1

Lemma

Die Shapley value obeys E, A, S, and N.
Proof. Sh obeys E:

$$
\begin{aligned}
\mathrm{Sh}_{N}(N, v) & =\sum_{i \in N} \frac{1}{|\Sigma(N)|} \sum_{\sigma \in \Sigma(N)} M C_{i}^{v}(\sigma)=\frac{1}{|\Sigma(N)|} \sum_{\sigma \in \Sigma(N)} \sum_{i \in N} M C_{i}^{v}(\sigma) \\
& =\frac{1}{|\Sigma(N)|} \sum_{\sigma \in \Sigma(N)} v(N)=v(N)
\end{aligned}
$$

Sh obeys N: Let i be a Null player in (N, v). We have

$$
\mathrm{Sh}_{i}(N, v)=\frac{1}{|\Sigma(N)|} \sum_{\sigma \in \Sigma(N)} M C_{i}^{v}(\sigma)=\frac{1}{|\Sigma(N)|} \sum_{\sigma \in \Sigma(N)} 0=0
$$

Sh satisfies \mathbf{A} : Since $M C_{i}^{v+w}(\sigma)=M C_{i}^{v}(\sigma)+M C_{i}^{w}(\sigma)$ for all $v, w \in \mathbb{V}(N), i \in N$, and $\sigma \in \Sigma(N)$, this is immediate from the definition.

Shapley value: Properties \#2

Let i and j be symmetric in (N, v). From $\sigma \in \Sigma(N)$ obtain $\bar{\sigma} \in \Sigma(N)$ by changing the position of i and $j: \sigma(k)=\bar{\sigma}(k)$ for all $k \in N \backslash\{i, j\}$, $\bar{\sigma}(j)=\sigma(i)$ and $\bar{\sigma}(i)=\sigma(j)$. Let

$$
\Sigma^{\prime}(N):=\{\sigma \in \Sigma(N) \mid \sigma(i)<\sigma(j)\} .
$$

This gives

$$
\begin{array}{ll}
& |\Sigma(N)| \cdot \operatorname{Sh}_{i}(N, v) \\
\text { def. Sh } & \sum_{\sigma \in \Sigma^{\prime}(N)} v\left(K_{i}(\sigma)\right)-v\left(K_{i}(\sigma) \backslash\{i\}\right)+v\left(K_{i}(\bar{\sigma})\right)-v\left(K_{i}(\bar{\sigma}) \backslash\{i\}\right) \\
= & \sum_{\sigma \in \Sigma^{\prime}(N)} v\left(K_{j}(\bar{\sigma})\right)-v\left(K_{j}(\bar{\sigma}) \backslash\{j\}\right)+v\left(K_{j}(\sigma)\right)-v\left(K_{j}(\sigma) \backslash\{j\}\right) \\
\stackrel{\text { def. Sh }}{=} & |\Sigma(N)| \cdot \operatorname{Sh}_{j}(N, v) .
\end{array}
$$

Shapley value: Properties \#3

The second equation drops from the following facts:
$1 K_{i}(\sigma) \backslash\{i\}=K_{j}(\bar{\sigma}) \backslash\{j\} \subseteq N \backslash\{i, j\}$ and i, j are symmetric
2 $K_{i}(\bar{\sigma})=K_{j}(\sigma)$
3 $K_{i}(\bar{\sigma}) \backslash\{i, j\}=K_{j}(\sigma) \backslash\{i, j\} \subseteq N \backslash\{i, j\}$ and i, j are symmetric

Shapley value: Uniqueness \#1

Lemma

There is at most one solution that satisfies $\mathbf{E}, \mathbf{A}, \mathbf{S}$, and \mathbf{N}.
Proof. Let φ obey E, A, S and N. Any TU game (N, v) can be uniquely represented by unanimity games: $v=\sum_{T \in \mathcal{K}(N)} \lambda_{T}(v) \cdot u_{T}$. By A, we thus have

$$
\varphi(N, v)=\sum_{T \in \mathcal{K}(N)} \varphi\left(N, \lambda_{T}(v) \cdot u_{T}\right) .
$$

In $\left(N, \lambda_{T}(v) \cdot u_{T}\right)$ all $i \in N \backslash T$ are Null players. By \mathbf{N}, $\varphi_{i}\left(N, \lambda_{T}(v) \cdot u_{T}\right)=0$. Therefore and by \mathbf{E}, we have

$$
\begin{aligned}
\varphi_{T}\left(N, \lambda_{T}(v) \cdot u_{T}\right) & =\varphi_{N}\left(N, \lambda_{T}(v) \cdot u_{T}\right)-\varphi_{N \backslash T}\left(N, \lambda_{T}(v) \cdot u_{T}\right) \\
& =\lambda_{T}(v) \cdot u_{T}(N)-|N \backslash T| \cdot 0=\lambda_{T}(v)
\end{aligned}
$$

Shapley value: Uniqueness \#2

Finally, the players in T are pairwise symmetric in $\left(N, \lambda_{T}(v) \cdot u_{T}\right)$. By \mathbf{S}, we have for $i \in T$

$$
\lambda_{T}(v)=\varphi_{T}\left(N, \lambda_{T}(v) \cdot u_{T}\right)=|T| \cdot \varphi_{i}\left(N, \lambda_{T}(v) \cdot u_{T}\right)
$$

i.e.,

$$
\varphi_{i}\left(N, \lambda_{T}(v) \cdot u_{T}\right)=\frac{\lambda_{T}(v)}{|T|}
$$

If there is a solution concept that satisfies $\mathbf{E}, \mathbf{A}, \mathbf{S}$, and \mathbf{N}, then it must be given by

$$
\varphi_{i}(N, v)=\sum_{T \subseteq N, i \in T} \frac{\lambda_{T}(v)}{|T|}, \quad i \in N
$$

i.e., it is unique.

Shapley value: The standard characterization

Theorem (Shapley 1953)
The Shapley value is the unique solution that meets $\mathbf{E}, \mathbf{A}, \mathbf{S}$ and \mathbf{N}.

- the Shapley value is completely determined by the axioms $\mathbf{E}, \mathbf{A}, \mathbf{S}$ and \mathbf{N}
- if you buy $\mathbf{E}, \mathbf{A}, \mathbf{S}$ and \mathbf{N} as plausible properties, then you buy the Shapley value
- axiomatic characterizations provide insights in the driving forces behind solution concepts given by some computational rule
- facilitates comparison of solution concepts

Shapley value: Independence

- a good characterization should be non-redundant, i.e., the axiom should be independent
- i.e., the characterization should not work with a subset of the axioms
- i.e., no axiom is implied by the other axioms
- how to prove?
- find examples (solutions) that satisfy all but one axiom
$■ \mathbf{E}+\mathbf{A}+\mathbf{S}, \neg \mathbf{N}: \varphi_{i}(N, v)=|N|^{-1} \cdot v(N), i \in N, v \in \mathbb{V}(N), \equiv$ (efficient) egalitarian solution
■ A+S+N, $\neg \mathbf{E}: \varphi_{i}(N, v)=0, i \in N, v \in \mathbb{V}(N), \equiv$ Null solution
■ $\mathbf{E}+\mathbf{A}+\mathbf{N}, \neg \mathbf{S}: w \in \mathbb{R}_{++}^{N}, \varphi_{i}(N, v)=\sum_{T \in \mathcal{K}(N): i \in T} \lambda_{T}(v) \cdot \frac{w_{i}}{\sum_{j \in T} w_{j}}, \equiv$ simple weighted Shapley value
■ $\mathbf{E}+\mathbf{S}+\mathbf{N}, \neg \mathbf{A}: N_{0}(v):=\{i \in N \mid i$ is a Null player in $(N, v)\}$,

$$
\varphi_{i}(N, v)= \begin{cases}\left|N \backslash N_{0}(v)\right|^{-1} v(N), & i \in N \backslash N_{0}(v), \\ 0, & i \in N_{0}(v)\end{cases}
$$

\equiv (efficient) egalitarian solution on non-Null players

Monotonicity and Marginality

- H. P. Young (1985). Monotonic solutions of cooperative games. International Journal of Game Theory 14, 65-72.

Monotonicity (Mo) φ obeys Mo, if for all $v, w \in \mathbb{V}(N)$ and $i \in N$ such that $v(K \cup\{i\})-v(K) \geq w(K \cup\{i\})-w(K)$ for all $K \subseteq N \backslash\{i\}$, we have $\varphi_{i}(N, v) \geq \varphi_{i}(N, w)$.

- a player's payoff (in different situations) does not decrease with increasing productivity

Marginality (M) φ obeys \mathbf{M}, if for all $v, w \in \mathbb{V}(N)$ and $i \in N$ such that $v(K \cup\{i\})-v(K)=w(K \cup\{i\})-w(K)$ for all $K \subseteq N \backslash\{i\}$, we have $\varphi_{i}(N, v)=\varphi_{i}(N, w)$.

- obviously, $\mathbf{M o} \Rightarrow \mathbf{M}$
- M requires a player's payoff to depend on his own productivity (measured by marginal contributions) only

Cousins of marginality

- Chun, Y. (1989). A new axiomatization of the Shapley value. Games and Economic Behavior 1, 119-130.

Coalitional strategic equivalence (CSE) φ obeys $\mathbf{C S E}$, if for all $v \in \mathbb{V}(N)$, $T \in \mathcal{K}(N), \lambda \in \mathbb{R}$, and $i \in N \backslash T$, we have $\varphi_{i}(N, v)=\varphi_{i}\left(N, v+\lambda u_{T}\right)$.

- van den Brink, R. (2007). Null or nullifying players: The difference between the Shapley value and equal division solutions. Journal of Economic Theory, 136, 767-775.
van den Brink Null player (BN) φ obeys BN, if for all $v, w \in \mathbb{V}(N)$ such that i is a Null player in (N, w), we have $\varphi_{i}(N, v)=\varphi_{i}(N, v+w)$.

■ observation: M, CSE, and BN are equivalent. Homework! Partly not too easy. Hint: Use the presentation of coalition functions by unanimity games and the characterization marginal contributions by Harsanyi dividends.

Marginality and the Null player axiom \#1

Lemma

NG and M imply \mathbf{N}.
Proof. Let φ meet NG and \mathbf{M}, and let $i \in N$ be a Null player in (N, v). For $\mathbf{0} \in \mathbb{V}(N)$, we have $M C_{i}^{v}(K)=0=M C_{i}^{0}(K)$ for all $K \subseteq N \backslash\{i\}$. Hence by $\mathbf{M}, \varphi_{i}(N, v)=\varphi_{i}(N, \mathbf{0})$. Further by $\mathbf{N G}, \varphi_{i}(N, \mathbf{0})=0$, which proves the claim.

■ \mathbf{N} does not imply $\mathbf{M}: \varphi_{i}(N, v)=v(\{i\}) \cdot v(N)$

Marginality and the Null player axiom \#2

Lemma

\mathbf{A} and \mathbf{N} imply \mathbf{M}.
Proof. Let φ meet \mathbf{A} and \mathbf{N}, and let $i \in N, v, w \in \mathbb{V}(N)$ be such that $M C_{i}^{v}(K)=M C_{i}^{w}(K)$ for all $K \subseteq N \backslash\{i\}$.
Since the marginal contributions are additive in the coalition function, we have $M C_{i}^{v-w}(K)=M C_{i}^{v}(K)-M C_{i}^{w}(K)=0$ for all $K \subseteq N \backslash\{i\}$. Hence, i is a Null player in $(N, v-w)$.
By \mathbf{N}, we thus have $\varphi_{i}(N, v-w)=0$. Finally, \mathbf{A} entails
$\varphi_{i}(N, v)=\varphi_{i}(N, v-w)+\varphi_{i}(N, w)$, i.e., $\varphi_{i}(N, v)=\varphi_{i}(N, w)$, and we are done.

■ M does not imply $\mathbf{N}: \varphi_{i}(N, v)=\operatorname{Sh}_{i}(N, v)+1$
■ M does not imply $\mathbf{A}: \varphi_{i}(N, v)=[v(\{i\})]^{2}$

Shapley value: The Young characterization

Theorem (Young 1985)
The Shapley value is the unique solution that meets \mathbf{E}, \mathbf{S}, and \mathbf{M}.

■ very elegant by the use of \mathbf{M}

- characterization without additivity

Proof. We have already shown that Sh obeys \mathbf{E} and \mathbf{S}. Since Sh_{i} "is" a player's average marginal contribution, it is immediate that Sh meets M.

■ Uniqueness: Next lecture. If you are up for a great challenge try it yourself. Hint: Induction on the cardinality of the set

$$
\mathcal{T}(v):=\left\{T \in \mathcal{K}(N) \mid \lambda_{T}(v) \neq 0\right\} .
$$

