Applied Cooperative Game Theory

André Casajus, Martin Kohl and Maria Näther

University of Leipzig

January 2014

Games with nontransferable utility

■ TU- Games: every coalition can achieve a fixed payoff, which can be allocated in any combination.

- A cooperative game (N, V) with non-transferable utility (non-TU) is described by a non-empty and finite set N (the players) and a mapping, which assigns every coalition $S \subseteq N$ a subset of \mathbb{R}^{S}, which suffices the following conditions

Definition

- $V(\varnothing)=\varnothing$
- $V(T) \neq \varnothing$ for $T \neq \varnothing$
- for any $T \subset N: V(T)$ is convex and closed

For a fixed player set N the set of all games with non-transferable utility is given by $\mathbf{V}(N)$.

Solutions for Non-TU games

Fact

Any coalition function v with transferable utility can be transformed into a coalition function V with non-transferable utility by choosing

$$
\begin{equation*}
V(K)=\left\{x_{K} \in \mathbb{R}^{K} \mid \sum_{i \in K} x_{i} \leq v(K)\right\} . \tag{*}
\end{equation*}
$$

Definition

Given a non-empty and finite set N, a solution for a cooperative game with non-transferable utility is a map which assigns every non-TU game a set of payoff vectors of $\mathbb{R}^{|N|}$.

Remark: Many solutions are functions!

Definition

The core of a game (N, V) with non-transferable utility is the set of all utility vectors $u=\left(u_{i}\right)_{i \in N} \subseteq \mathbb{R}^{N}$, which satisfy the following properties

- $u \in V(N)$ (feasibility)
- there is no coalition K and no other utility vector $u^{\prime}=\left(u_{i}^{\prime}\right)_{i \in N} \subseteq \mathbb{R}^{N}$, which satisfy $u_{K}^{\prime} \in V(K)$ and $u_{i} \leq u_{i}^{\prime}$ for all $i \in K$ and strong inequality for at least one $i \in K$. (non-blocked)

Problem

Find the core for the game (N, V) given by $N=\{1,2\}$ and

$$
V(K)=\left\{\begin{array}{cc}
\left\{\left(x_{1}, x_{2}\right): x_{1} \leq 2, x_{2} \leq 2\right\} & K=\{1\} \\
\left\{\left(x_{1}, x_{2}\right): x_{1} \leq 1, x_{2} \leq 3\right\} & K=\{2\} \\
\left\{\left(x_{1}, x_{2}\right): 2 x_{1}+x_{2} \leq 5\right\} & K=\{1,2\}
\end{array} .\right.
$$

The Core \#2

Theorem

Given a TU game (N, v). Consider the TU core of (N, v) and the non-TU core of the associated Non-TU game (N, V), given by $(*)$. Then these cores coincide.

Hence, the Core of a game with non-transferable utility is the natural extension of the core of TU games.

Bargaining Games

Definition

A game is called bargaining game if there is a finite and non-empty set of players N, a disagreement point $r \in \mathbb{R}^{N}$ and a set of possible outcomes $S \subseteq \mathbb{R}^{N}$.

The players bargain for outcomes of S. If they do not reach an agreement, the outcome r is established. In most cases, the set S is chosen as a convex and compact set of outcomes.
For a given cooperative game with non-transferable utility (N, V), we can derive a bargaining game by choosing $r_{i}=v(i), i \in N$ and $S=\bigcup_{K \subseteq N} V(K)$, where we extend the vectors by some nulls, if needed. John Nash Jr.: The Bargaining Problem (1950) defined the bargaining solution $\Psi(N, r, S) \in \mathbb{R}^{N}$ by choosing the following four axioms.

Axiom 1 Pareto efficiency

Definition

For any $u \in S, u \geq \Psi(N, r, S) \Rightarrow u=\Psi(N, r, S)$
The players never agree on a payoff, if there is another payoff, which is preferred by all players.

The axiom can be motivated by assuming the players behave collectively rational.

Axiom 2 Invariance to equivalent utility representations

In microeconomics we learned, that an affine linear transformed utility function still represents the same preferences.

Definition

Let $\Psi(N, r, S)$ be a bargaining set. Suppose there are $a \in \mathbb{R}^{|N|}, a_{i}>0$, $b \in \mathbb{R}^{|N|}$ and S^{\prime} and r^{\prime} are defined by

$$
\begin{aligned}
S^{\prime} & =\left\{s^{\prime} \in \mathbb{R}^{N}: s_{i}^{\prime}=a_{i} s_{i}+b_{i}, i \in N, s \in S\right\} \\
r_{i}^{\prime} & =a_{i} r_{i}+b_{i}, i \in N
\end{aligned}
$$

Then $\Psi_{i}\left(N, r^{\prime}, S^{\prime}\right)=a_{i} \Psi_{i}(N, r, S)+b_{i}, i \in N$.

Axiom 3 Symmetry/Anonymity

Definition

Let (N, r, S) be a bargaining set. A solution is called symmetric, if for every permutation σ of N :
$\Psi(N, \sigma(r), \sigma(S))=\sigma(\Psi(N, r, S))$,
where $\sigma(S)=\left\{s^{\prime} \in \mathbb{R}^{N}:\right.$ for some $s \in S: s_{i}^{\prime}=s_{\sigma(i)}$ for all $\left.i \in N\right\}$.
The solution does not depend on which player is called player one.

Axiom 4 Independence of irrelevant alternatives

Definition

Let (N, r, S) be a bargaining set. A solution satisfies independence of irrelevant alternatives if for another NTU game $\left(N, r, S^{\prime}\right)$,
$S^{\prime} \subset S, \Psi(N, r, S) \in S^{\prime}$, then $\Psi(N, r, S)=\Psi\left(N, r, S^{\prime}\right)$.

The Nash bargaining formula

Theorem

Let (N, r, S) be a bargaining set. There is one bargaining solution, which satisfies

- Pareto efficiency,
- Invariance to equivalent utility representations,
- Symmetry and
- Independence of irrelevant alternatives.

The solution is given by the optimization problem

$$
N B(N, r, S)=\arg \max _{s \in S} \prod_{i \in N}\left(s_{i}-r_{i}\right) .
$$

The Nash bargaining formula- Graphical Solution

Example

Non TU

DefNonTU
SolNonTU
Core\#1
Core\#2
BG
AxNBS\#1
AxNBS\#2
AxNBS\#3
AxNBS\#4
DefNBS\#1 NBSGraph
DisAx\#1
DisAx\#2 DefKS
KSGraph

Discussion Axiom 4

Kalai/Smorodinsky: Other solutions to Nash's bargaining problem (1975)

The Nash bargaining solution does not seem fair in some situations.

Example

$N=2, r=0$,
$S_{1}=\operatorname{conv}\left((1,0)^{t},(0,1)^{t},(0.75,0.75)^{t}\right)$
$S_{2}=\operatorname{conv}\left((1,0)^{t},(0,1)^{t},(1,0.7)^{t}\right)$

Discussion Axiom 4 and Monotonicity

$S_{1} \subset S_{2}$ and player 2 should get more by playing $\left(N, r, S_{2}\right)$ than in the game (N, r, S_{1}). But the Nash bargaining solutions are:

$$
\begin{aligned}
& N B\left(N, r, S_{1}\right)=(0.75,0.75)^{t} \\
& N B\left(N, r, S_{2}\right)=(1,0.7)^{t}
\end{aligned}
$$

By playing (N, r, S_{2}) player 1 gets his maximal payoff and player 2 has to resign some payoff.
Instead of using axiom 4 Kalai and Smorodinsky suggested another axiom:

Definition

A solution Ψ satisfies the Monotonicity axiom, if for any $\left(N, r, S_{1}\right)$ and $\left(N, r, S_{2}\right), S_{1} \subseteq S_{2}$

$$
\Psi_{i}\left(N, r, S_{1}\right) \leq \Psi_{i}\left(N, r, S_{2}\right) \text { for every } i \in N
$$

Kalai Smorodinsky Solution

Theorem

Let (N, r, S) be a bargaining set. There is one bargaining solution, which satisfies

- Pareto efficiency,
- Invariance to equivalent utility representations,
- Symmetry and
- Monotonicity

Kalai Smorodinsky Solution- Graphical solution

The Kalai Smorodinsky solution can be derived graphically.

, where $x_{i}^{\max }=\max _{s \in S, s \geq r} s_{i}$.

