Applied Cooperative Game Theory

PD Dr. André Casajus and Martin Kohl

University of Leipzig

Dezember 2013

Balanced contributions \#1

■ $i \in N, L \subseteq L^{N}: L_{i}:=\{\lambda \in L \mid i \in \lambda\}$, set of player i 's links in L

Balanced contributions, BC For all $i, j \in N, i \neq j, v \in \mathbb{V}(N)$, and $L \subseteq L^{N}$,

$$
\varphi_{i}(N, v, L)-\varphi_{i}\left(N, v, L \backslash L_{j}\right)=\varphi_{j}(N, v, L)-\varphi_{j}\left(N, v, L \backslash L_{i}\right)
$$

Proposition μ satisfies BC.
■ let $\sigma, \rho \in \Sigma(N), \sigma(i)=\rho(j)>\sigma(j)=\sigma(i)$, and $\sigma(\ell)=\rho(\ell)$ for $\ell \in$ $N \backslash\{i, k\}$
■ by definition of μ it suffices to show

$$
\begin{aligned}
& M C_{i}\left(\sigma, v^{L}\right)-M C_{i}\left(\sigma, v^{L \backslash L_{j}}\right)+M C_{i}\left(\rho, v^{L}\right)-M C_{i}\left(\rho, v^{L \backslash L_{j}}\right) \\
= & M C_{j}\left(\sigma, v^{L}\right)-M C_{j}\left(\sigma, v^{L \backslash L_{i}}\right)+M C_{j}\left(\rho, v^{L}\right)-M C_{j}\left(\rho, v^{L \backslash L_{j}}\right)
\end{aligned}
$$

- by construction, we have ...

Balanced contributions \#2

$$
\begin{aligned}
& M C_{i}\left(\rho, v^{L}\right)-M C_{i}\left(\rho, v^{L \backslash L_{j}}\right)=0=M C_{j}\left(\sigma, v^{L}\right)-M C_{j}\left(\sigma, v^{L \backslash L_{i}}\right) \\
& M C_{i}\left(\sigma, v^{L}\right)-M C_{i}\left(\sigma, v^{L \backslash L_{j}}\right) \\
= & v^{L}\left(K_{i}(\sigma)\right)-v^{L}\left(K_{i}(\sigma) \backslash\{i\}\right)-\left(v^{L \backslash L_{j}}\left(K_{i}(\sigma)\right)-v^{L \backslash L_{j}}\left(K_{i}(\sigma) \backslash\{i\}\right)\right) \\
= & v^{L}\left(K_{i}(\sigma)\right)-v^{L}\left(K_{i}(\sigma) \backslash\{i\}\right) \\
& -\left(v(\{j\})+v^{L}\left(K_{i}(\sigma) \backslash\{j\}\right)-\left(v(\{j\})+v^{L}\left(K_{i}(\sigma) \backslash\{i, j\}\right)\right)\right) \\
= & v^{L}\left(K_{j}(\rho)\right)-v^{L}\left(K_{j}(\rho) \backslash\{i\}\right) \\
& -\left(v(\{i\})+v^{L}\left(K_{j}(\rho) \backslash\{j\}\right)-\left(v(\{i\})+v^{L}\left(K_{j}(\rho) \backslash\{i, j\}\right)\right)\right) \\
= & v^{L}\left(K_{j}(\rho)\right)-v^{L}\left(K_{j}(\rho) \backslash\{j\}\right) \\
& -\left(v(\{i\})+v^{L}\left(K_{j}(\rho) \backslash\{i\}\right)-\left(v(\{i\})+v^{L}\left(K_{j}(\rho) \backslash\{i, j\}\right)\right)\right) \\
= & v^{L}\left(K_{j}(\rho)\right)-v^{L}\left(K_{j}(\rho) \backslash\{j\}\right) \\
& -\left(v^{L \backslash L_{i}}\left(K_{j}(\rho)\right)-v^{L \backslash L_{i}}\left(K_{j}(\rho) \backslash\{j\}\right)\right)=M C_{j}\left(\rho, v^{L}\right)-M C_{j}\left(\rho, v^{L \backslash L_{i}}\right)
\end{aligned}
$$

Myerson value: Alternative characterization

Theorem μ is the unique CO-value that satisfies CE and BC.

- we already know that μ satisfies $\mathbf{C E}$ and $\mathbf{B C}$
- let φ, ψ both satisfy CE and BC, but $\varphi \neq \psi$
- there is some smallest L such that $\varphi_{i}(N, v, L) \neq \psi_{i}(N, v, L)$ for some $i \in N$
- by CE, $\left|C_{i}(N, L)\right|>1$
- obviously, $\left|L \backslash L_{j}\right|<|L|$ and $\left|L \backslash L_{i}\right|<|L|$
- by the minimality of L, for all $i, j \in C:=C_{i}(N, L)$, we have

$$
\begin{align*}
\varphi_{i}(N, v, L)-\varphi_{j}(N, v, L) & \stackrel{\mathrm{BC}}{=} \varphi_{i}\left(N, v, L \backslash L_{j}\right)-\varphi_{j}\left(N, v, L \backslash L_{i}\right) \\
& =\psi_{i}\left(N, v, L \backslash L_{j}\right)-\psi_{j}\left(N, v, L \backslash L_{i}\right) \\
& \stackrel{\mathrm{BC}}{=} \psi_{i}(N, v, L)-\psi_{j}(N, v, L) \tag{*}
\end{align*}
$$

■ summing up $\left(^{*}\right)$ over $j \in C$ gives

$$
|C| \cdot \varphi_{i}(N, v, L)-\varphi_{C}(N, v, L)=|C| \cdot \psi_{i}(N, v, L)-\psi_{C}(N, v, L)
$$

\square by CE, $\varphi_{C}(N, v, L)=\psi_{C}(N, v, L)=v(C)$, hence,

$$
\varphi_{i}(N, v, L)=\psi_{i}(N, v, L)
$$

- contradiction

The position value: Motivation

- consider the CO-game $\left(N, u_{N}, L\right), N=\{1,2,3\}, L=\{12,23\}$, i.e.

$$
L=\begin{array}{llll}
1 & 2 \\
\bullet & \bullet & \\
\bullet
\end{array}
$$

- this gives the Myerson payoffs

$$
\mu\left(N, u_{N}, L\right)=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)
$$

- the central/connecting role of player 2 is not accounted for by μ
- both links are necessary to "create" the worth of $u_{N}(N)=1$
- hence any link should earn $\frac{1}{2}$, which should be divided equally among the players forming this link
- this gives the payoffs

$$
\left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right)
$$

- this gives rise to the position value

The position value \#1

■ Meessen, R. (1988): Communication games, Master's thesis, Department of Mathematics. University of Nijmegen, the Netherlands (in Dutch)
■ Borm, P., Owen, G., Tijs, S. (1992): On the position value for communication situations. SIAM Journal of Discrete Mathematics 5:305-320

■ definition refers to 0 -normalized games, $v(\{i\})=0, i \in N$, but can easily be extended to arbitrary games
■ any $v \in \mathbb{V}(N)$ can be 0 -normalized as follows

- $\mathbb{V}_{0}(N)=\{v \in \mathbb{V}(N) \mid v$ is 0-normalized $\}$
- define $v_{0} \in \mathbb{V}_{0}(N)$ by

$$
v_{0}=v-\sum_{i \in N} v(\{i\}) \cdot u_{\{i\}}=v-\sum_{i \in N} \lambda_{\{i\}}(v) \cdot u_{\{i\}}
$$

- define: $\pi(N, v, L)=\pi\left(N, v_{0}, L\right)+v(\{i\})$

The position value \#2

- for $(N, v, L), v \in \mathbb{V}_{0}(N)$ define the TU game (link game) $\left(L, v^{N}\right)$
- the links are now the players
- for $L^{\prime} \subseteq L$, define $v^{N}\left(L^{\prime}\right)=v^{L^{\prime}}(N)$
- note, since $v \in \mathbb{V}_{0}(N), v^{N}(\varnothing)=v^{\varnothing}(N)=\sum_{i \in N} v(\{i\})=0$

Definition. The position value assigns to any CO-game $(N, v, L), v \in \mathbb{V}_{0}(N)$ and $i \in N$ the payoff

$$
\pi_{i}(N, v, L):=\sum_{\lambda \in L_{i}} \frac{1}{2} \operatorname{Sh}_{\lambda}\left(L, v^{N}\right)
$$

■ the players get half of the Shapley payoffs of their links in the link game
■ from the leading example, it is clear that $\pi \neq \mu$

The position value: Component efficiency

Proposition. π satisfies CE.

- let $C \in \mathcal{C}(N, v)$. then, $\pi_{C}(N, v, L)=\sum_{i \in C} \sum_{\lambda \in L_{i}} \frac{1}{2} \operatorname{Sh}_{\lambda}\left(L, v^{N}\right)$

$$
\begin{aligned}
& =\sum_{\left.\lambda \in L\right|_{C}} \operatorname{Sh}_{\lambda}\left(L, v^{N}\right)=\sum_{\left.\lambda \in L\right|_{C}} \frac{1}{|\Sigma(L)|} \sum_{\sigma \in \Sigma(L)} M C_{\lambda}^{\iota^{N}}(\sigma) \\
& =\frac{1}{|\Sigma(L)|} \sum_{\sigma \in \Sigma(L)} \sum_{\lambda \in L L_{C}} M C_{\lambda}^{\nu^{N}}(\sigma) \\
& =\frac{1}{|\Sigma(L)|} \sum_{\sigma \in \Sigma(L)} \sum_{\left.\lambda \in L\right|_{C}}\left(v^{N}\left(K_{\lambda}(\sigma)\right)-v^{N}\left(K_{\lambda}(\sigma) \backslash\{\lambda\}\right)\right) \\
& =\frac{1}{|\Sigma(L)|} \sum_{\sigma \in \Sigma(L)} \sum_{\lambda \in L L_{C}}\left(v^{K_{\lambda}(\sigma)}(N)-v^{K_{\lambda}(\sigma) \backslash\{\lambda\}}(N)\right) \\
& =\frac{1}{|\Sigma(L)|} \sum_{\sigma \in \Sigma(L)} \sum_{\lambda \in L L_{C}}\left(v^{K_{\lambda}(\sigma)}(C)-v^{K_{\lambda}(\sigma) \backslash\{\lambda\}}(C)\right) \\
& =\frac{1}{|\Sigma(L)|} \sum_{\sigma \in \Sigma(L)} v(C)=v(C)
\end{aligned}
$$

Balanced link contributions

- from the leading example, it is easy to check that π fails \mathbf{F} as well as $\mathbf{B C}$

Balanced link contributions, BLC For all $i, j \in N, i \neq j, v \in \mathbb{V}_{0}(N)$, and $L \subseteq L^{N}$,

$$
\sum_{\lambda \in L_{j}}\left(\varphi_{i}(N, v, L)-\varphi_{i}(N, v, L-\lambda)\right)=\sum_{\lambda \in L_{i}} \varphi_{j}(N, v, L)-\varphi_{j}(N, v, L-\lambda)
$$

- Slikker, M. (2005): A characterization of the position value, International Journal of Game Theory 33: 505-514

Proposition (Slikker 2005) π satisfies BLC.

The position value: Characterization \#1

Theorem (Slikker 2005) π is the unique CO-value that satisfies CE and BLC.

- we already know that π satisfies CE and BLC
- let φ, ψ both satisfy CE and BLC, but $\varphi \neq \psi$
- there is some smallest L such that $\varphi_{i}(N, v, L) \neq \psi_{i}(N, v, L)$ for some $i \in N$
- by CE, $\left|C_{i}(N, L)\right|>1$
- hence, $\left|L \backslash L_{j}\right|<|L|$ and $\left|L \backslash L_{i}\right|<|L|$
- by the minimality of L, for all $i, j \in C:=C_{i}(N, L)$, we have

$$
\begin{array}{ll}
& \sum_{\lambda \in L_{j}} \varphi_{i}(N, v, L)-\sum_{\lambda \in L_{i}} \varphi_{j}(N, v, L) \\
\text { BLC } & \sum_{\lambda \in L_{j}} \varphi_{i}(N, v, L-\lambda)-\sum_{\lambda \in L_{i}} \varphi_{j}(N, v, L-\lambda) \\
= & \sum_{\lambda \in L_{j}} \psi_{i}(N, v, L-\lambda)-\sum_{\lambda \in L_{i}} \psi_{j}(N, v, L-\lambda) \\
\stackrel{\text { BLC }}{=} & \sum_{\lambda \in L_{j}} \psi_{i}(N, v, L)-\sum_{\lambda \in L_{i}} \psi_{j}(N, v, L) \tag{*}
\end{array}
$$

The position value: Characterization \#2

■ summing up $\left(^{*}\right)$ over $j \in C$ gives

$$
\begin{aligned}
& |C| \cdot \sum_{\lambda \in L_{j}} \varphi_{i}(N, v, L)-\sum_{\lambda \in L_{i}} \varphi_{C}(N, v, L) \\
= & |C| \cdot \sum_{\lambda \in L_{j}} \psi_{i}(N, v, L)-\sum_{\lambda \in L_{i}} \psi_{C}(N, v, L)
\end{aligned}
$$

■ by CE, $\varphi_{C}(N, v, L)=\psi_{C}(N, v, L)=v(C)$, hence,

$$
\varphi_{i}(N, v, L)=\psi_{i}(N, v, L)
$$

- contradiction

