Applied Cooperative Game Theory

André Casajus and Martin Kohl

University of Leipzig

January 42013

Communication and bilateral contracts

- coalition structures (partitions of the player set) are a rather coarse way to model restricted cooperation
- possibility of cooperation may depend on
- communication between players
- bilateral contracts

■ example: gloves game; one right-glove holder, r, and one left-glove holder, ℓ, actually sell their pair of gloves which is worth 1 via some agent, $A 1$, who is necessary do facilitate the deal

- therefore, the agent a should obtain some share of the proceeds of 1

■ how to model this? TU game $(N, v), N=\{r, \ell, a\}, v(K)=1$ if $\{r, \ell\} \subseteq K$, else $v(K)=0$

- coalition structure: $\mathcal{P}=\{N\}$? inadequate, because this does not reflect the fact that r and ℓ need a as a sales agent
■ indeed: $\mathrm{AD}_{a}(N, v, \mathcal{P})=\chi_{a}(N, v, \mathcal{P})=0$
- instead of \mathcal{P} consider the (undirected) graph

- Myerson value: $\mu_{a}(N, v, L)=\frac{1}{3}$; all players are necessary to generate the worth of 1

Undirected graphs and cooperation structures

- an undirected graph is a pair (N, L)
- non-empty and finite set N
- set of links $L: L \subseteq L^{N}:=\{\{i, j\} \mid i, j \in N, i \neq j\}$
- typical element of $L^{N}: \lambda$ or $i j:=\{i, j\}$

■ $i, j \in N, i \neq j$ are directly connected in (N, L) iff $i j \in L$
■ $i, j \in N, i \neq j$ are connected in (N, L) iff there is a finite sequence of players $\left(i_{1}, \ldots, i_{n}\right)$ such that $\left\{i_{k}, i_{k+1}\right\} \in L, k=1, \ldots, n-1$

- the binary relation "connected with" is reflexive, symmetric, and transitive, i.e., an equivalence relation which induces equivalence classes $C \subseteq N: i, j \in C$ iff i and j are connected in (N, L)
- these equivalence classes are called the (connected) components of $(N, L) ; C_{i}(N, L)$ stands for the connected component containing player i
- so, any graph (N, L) induces a partition of N, the set of the connected components: $\mathcal{C}(N, L):=\left\{C_{i}(N, L) \mid i \in N\right\}$
- for any graph (N, L) and $K \subseteq N,\left.L\right|_{K}$ denotes the restriction of L to K :

$$
\left.L\right|_{K}:=L \cap L^{K}=\{\lambda \in L \mid \lambda \subseteq K\}
$$

- (N, L) is called a cooperation structure (on N)

Some facts on connected components

- if $L^{\prime} \subseteq L \subseteq L^{K}, K \subseteq N$, then $\mathcal{C}\left(K, L^{\prime}\right)$ is finer than $\mathcal{C}(K, L)$
- if $K^{\prime} \subseteq K \subseteq N$, then for any $C^{\prime} \in \mathcal{C}\left(K^{\prime},\left.L\right|_{K^{\prime}}\right)$ there is some $C \in \mathcal{C}\left(K,\left.L\right|_{K}\right)$ such that $C^{\prime} \subseteq C$
- if $i \notin K \subseteq N, L \subseteq L^{N}$, then $\mathcal{C}\left(K,\left.L\right|_{K}\right)=\mathcal{C}\left(K, L-\left.i j\right|_{K}\right)$
- $S, T \subseteq N, S \cap T=\varnothing, L^{\prime} \subseteq L^{S}, L \subseteq L^{T}$:
$\mathcal{C}\left(S \cup T, L^{\prime} \cup L\right)=\mathcal{C}\left(S, L^{\prime}\right) \cup \mathcal{C}(T, L)$
- $S, T \subseteq N, L \subseteq L^{N}:\left.L\right|_{S} \cup L_{T} \subseteq L_{S \cup T}$

TU games with a cooperation structure (CO-games)

- a TU game (N, v) together with an undirected graph (N, L) is called a TU game with a cooperation structure or a CO-game, for short
- a solution for CO-games (CO-solution, CO-value) is an operator φ that assigns payoffs $\varphi(N, v, L) \in \mathbb{R}^{N}$ to any CO-game (N, v, L)
- of course, any CS-solution φ gives rise to a CO-solution φ^{CO} via

$$
\varphi^{\mathrm{CO}}(N, v, L):=\varphi(N, v, \mathcal{C}(N, L))
$$

- the other way round, any CO-solution φ gives rise to a CS-solution φ^{CS} via

$$
\varphi^{\mathrm{CS}}(N, v, \mathcal{P}):=\varphi\left(N, v, L^{\mathcal{P}}\right)
$$

where

$$
L^{\mathcal{P}}:=\bigcup_{C \in \mathcal{C}(N, L)} L^{C}
$$

■ in $L^{\mathcal{P}}$ the components of \mathcal{P} are internally completely connected by links, but there are no links between components; obviously, $\mathcal{C}\left(N, L^{\mathcal{P}}\right)=\mathcal{P}$

- a CO-solution ψ generalizes CS-solution φ if $\psi\left(N, v, L^{\mathcal{P}}\right)=\varphi(N, v, \mathcal{P})$

Graph restricted coalition functions \#1

- for a coalition function $v \in \mathbb{V}(N)$ and a graph (N, L), we define the graph restricted coalition function $v^{L} \in \mathbb{V}(N)$ as follows:

$$
v^{L}(K):=\sum_{S \in \mathcal{C}\left(K,\left.L\right|_{K}\right)} v(S), \quad K \subseteq N
$$

■ looks more difficult than it is

- what is $\mathcal{C}\left(K,\left.L\right|_{K}\right)$? well, the set of components of K which are connected within K
■ interpretation: players in K are only able to cooperate to create worth when they are connected in K

■ obviously, $K \subseteq N: \mathcal{C}\left(K,\left.L^{N}\right|_{K}\right)=\mathcal{C}\left(K, L^{K}\right)=\{K\}$, hence, $v^{L^{N}}=v$

- moreover, $P \in \mathcal{P}, K \subseteq P:\left.L^{\mathcal{P}}\right|_{K}=L^{K}$;
$\mathcal{C}\left(K,\left.L^{\mathcal{P}}\right|_{K}\right)=\mathcal{C}\left(K, L^{K}\right)=\{K\}$
■ $v \in \mathbb{V}(N):\left.v^{L^{\mathcal{P}}}\right|_{P}=\left.v\right|_{P} \in \mathbb{V}(P) ; v^{\left.L^{\mathcal{P}}\right|_{P}}=v^{L^{P}} \in \mathbb{V}(P)$
- question: which properties of $v \in \mathbb{V}(N)$ are inherited by v^{L} ?
- look at: monotonicity, superadditivity, and convexity

Graph restricted coalition functions \#2

Lemma. If $v \in N$ is superadditive, then v^{L} is superadditive for any $L \subseteq L^{N}$.

- Proof. let $v \in \mathbb{V}(N)$ be superadditive, and $L \subseteq L^{N}$
- let $S, T \subseteq N, S \cap T=\varnothing$; to show: $v^{L}(S \cup T) \geq v^{L}(S)+v^{L}(T)$

$$
\begin{aligned}
v^{L}(S)+v^{L}(T) & =\sum_{K \in \mathcal{C}\left(S,\left.L\right|_{S}\right)} v(K)+\sum_{K \in \mathcal{C}\left(T,\left.L\right|_{T}\right)} v(K) \\
& =\sum_{K \in \mathcal{C}\left(S \cup T,\left.\left.L\right|_{S} \cup L\right|_{T}\right)} v(K) \\
& \leq \sum_{K \in \mathcal{C}\left(S \cup T,\left.L\right|_{S \cup T}\right)} v(K)=v^{L}(S \cup T)
\end{aligned}
$$

- the second equality drops from $S \cap T=\varnothing$ and the construction of $\left.L\right|_{K}$
- the inequality drops from v being superadditive and the fact that $\mathcal{C}\left(S \cup T,\left.\left.L\right|_{S} \cup L\right|_{T}\right)$ is finer than $\mathcal{C}\left(S \cup T,\left.L\right|_{S \cup T}\right)$:
■ $\left.\left.\left.L\right|_{S} \cup L\right|_{T} \subseteq L\right|_{S \cup T}$, hence, all players who are connect with each other for $\left.\left.L\right|_{S} \cup L\right|_{T}$ are connected in $\left.L\right|_{S \cup T}$

Graph restricted coalition functions \#3

- monotonicity and convexity are not inherited, in general

■ example: $N=\{1,2,3\}, v(K)=1$ if $|K| \geq 1$, else $v(K)=0$, $L=\{\{1,2\},\{2,3\}\}$; obviously, (N, v) is monotonic

- however, $\mathcal{C}\left(\{1,3\},\left.L\right|_{\{1,3\}}\right)=\mathcal{C}(\{1,3\}, \varnothing)=\{\{1\},\{3\}\}$;
$v^{L}(\{1,3\})=v(\{1\})+v(\{3\})=1+1=2$
- but, $\mathcal{C}\left(\{1,2,3\},\left.L\right|_{\{1,2,3\}}\right)=\mathcal{C}(\{1,2,3\}, L)=\{\{1,2,3\}\}$; $v^{L}(\{1,2,3\})=v(\{1,2,3\})=1<2$; hence, $\left(N, v^{L}\right)$ is not monotonic
■ example: $N=\{1,2,3,4\}, v(K)=|K|^{2}$ if $|K|>1$, else $v(K)=0$, $L=\{\{1,2\},\{1,3\},\{4,2\},\{4,3\}\}$
- easy to check that (N, v) is convex \equiv non-decreasing marginal contributions
- $\mathcal{C}\left(\{2,3\},\left.L\right|_{\{2,3\}}\right)=\mathcal{C}(\{2,3\}, \varnothing)=\{\{2\},\{3\}\} ;$
$v^{L}(\{2,3\})=v(\{2\})+v(\{3\})=0+0=0$
- $\mathcal{C}\left(\{1,2,3\},\left.L\right|_{\{1,2,3\}}\right)=\mathcal{C}(\{1,2,3\},\{\{1,2\},\{1,3\}\})=\{\{1,2,3\}\}$;
$v^{L}(\{1,2,3\})=v(\{1,2,3\})=3^{2}=9$; analogously, $v^{L}(\{2,3,4\})=9$
- $\mathcal{C}(N, L)=\{N\} ; v^{L}(\{1,2,3,4\})=v(\{1,2,3,4\})=4^{2}=16$
- so, $M C_{1}^{\nu^{L}}(\{2,3\})=9-0>16-9=M C_{1}^{\nu^{L}}(\{2,3,4\})$
- hence, $\left(N, v^{L}\right)$ is not convex

The Myerson value

- Myerson R. B. (1977) Graphs and cooperation in games. Mathematics of Operations Research 2:225-229

Definition. The Myerson value assigns to any CO-game (N, v, L) and $i \in N$ the payoff

$$
\mu_{i}(N, v, L):=\operatorname{Sh}_{i}\left(N, v^{L}\right) .
$$

- simply the Shapley value applied to the graph restricted coalition function
- for $L=L^{N}, v^{L^{N}}=v$, hence, $\mu\left(N, v, L^{N}\right)=\operatorname{Sh}(N, v)$, i.e., μ generalizes Sh
- $v \in \mathbb{V}(N)$: for $L=L^{\mathcal{P}}, P \in \mathcal{P},\left.v^{L^{\mathcal{P}}}\right|_{P}=\left.v\right|_{P} ^{\left.L^{\mathcal{P}}\right|_{P}}=\left.v\right|_{P} \in \mathbb{V}(P)$, hence,

$$
\begin{aligned}
\mu_{i}\left(N, v, L^{\mathcal{P}}\right) & =\mu_{i}\left(P,\left.v\right|_{P},\left.L^{\mathcal{P}}\right|_{P}\right)=\mathrm{Sh}_{i}\left(P,\left.v\right|_{P} ^{L^{\mathcal{P}} \mid P}\right) \\
& =\operatorname{Sh}_{i}\left(P,\left.v\right|_{P}\right)=\mathrm{AD}_{i}(N, v, \mathcal{P}),
\end{aligned}
$$

■ i.e., μ generalizes AD ; of course, the first equation has to be shown

Component decomposability \#1

Component decomposability, CD For all $i \in C \in \mathcal{C}(N, L)$,

$$
\varphi_{i}(N, v, L)=\varphi_{i}\left(C,\left.v\right|_{C},\left.L\right|_{C}\right) .
$$

Proposition μ satisfies CD.
Proof. see literatur

Component efficiency

Component efficiency, CE For all $C \in \mathcal{C}(N, L), \varphi_{C}(N, v, L)=v(C)$. Proposition μ satisfies CE. Proof.

- since μ meets $C D$, it suffices to show $\mu_{C}\left(C,\left.v\right|_{C},\left.L\right|_{C}\right)=v(C)$ for all $C \in \mathcal{C}(N, L)$

$$
\begin{aligned}
\sum_{i \in C} \mu_{i}\left(C,\left.v\right|_{C}, L \mid C\right) & =\sum_{i \in C} \frac{1}{|\Sigma(C)|} \sum_{\rho \in \Sigma(C)} M C_{i}\left(\rho,\left.v\right|_{C} ^{\left.L\right|_{C}}\right) \\
& =\frac{1}{|\Sigma(C)|} \sum_{\rho \in \Sigma(C)} \sum_{i \in C} M C_{i}\left(\rho,\left.v\right|_{C} ^{\left.L\right|_{C}}\right) \\
& =\frac{1}{\left|\sum(C)\right|} \sum_{\rho \in \Sigma(C)}\left(\left.v\right|_{C} ^{\left.L\right|_{C}}(C)-\left.v\right|_{C} ^{\left.L\right|_{C}}(\varnothing)\right) \\
& =\left.\frac{1}{|\Sigma(C)|} \sum_{\rho \in \Sigma(C)} v\right|_{C}(C) \\
& =\frac{1}{|\Sigma(C)|} \sum_{\rho \in \Sigma(C)} v(C)=v(C)
\end{aligned}
$$

Fairness \#1

Fairness, F For all ij $\in L$, we have

$$
\varphi_{i}(N, v, L)-\varphi_{i}(N, v, L-i j)=\varphi_{j}(N, v, L)-\varphi_{j}(N, v, L-i j) .
$$

Proposition μ satisfies \mathbf{F}.
Proof.
■ let $\sigma, \rho \in \Sigma(N), \sigma(i)=\rho(j)>\sigma(j)=\rho(i)$, and $\sigma(\ell)=\rho(\ell)$ for $\ell \in$ $N \backslash\{i, j\}$
■ by definition of μ it suffices to show

$$
\begin{aligned}
& M C_{i}\left(\sigma, v^{L}\right)-M C_{i}\left(\sigma, v^{L-i j}\right)+M C_{i}\left(\rho, v^{L}\right)-M C_{i}\left(\rho, v^{L-i j}\right) \\
= & M C_{j}\left(\sigma, v^{L}\right)-M C_{j}\left(\sigma, v^{L-i j}\right)+M C_{j}\left(\rho, v^{L}\right)-M C_{j}\left(\rho, v^{L-i j}\right)
\end{aligned}
$$

Fairness \#2

- since $K_{i}(\sigma)=K_{j}(\rho), j \notin K_{i}(\rho)$, and $i \notin K_{j}(\sigma)$, we have

$$
\begin{aligned}
& M C_{i}\left(\sigma, v^{L}\right)-M C_{i}\left(\sigma, v^{L-i j}\right)+M C_{i}\left(\rho, v^{L}\right)-M C_{i}\left(\rho, v^{L-i j}\right) \\
= & {\left[v^{L}\left(K_{i}(\sigma)\right)-v^{L}\left(K_{i}(\sigma) \backslash i\right)\right]-\left[v^{L-i j}\left(K_{i}(\sigma)\right)-v^{L-i j}\left(K_{i}(\sigma) \backslash i\right)\right]+} \\
= & v^{L}\left(K_{i}(\sigma)\right)-v^{L-i j}\left(K_{i}(\sigma)\right)+v^{L}\left(K_{i}(\rho)\right)-v^{L-i j}\left(K_{i}(\rho)\right) \\
= & v^{L}\left(K_{i}(\sigma)\right)-v^{L-i j}\left(K_{i}(\sigma)\right)+0 \\
= & v^{L}\left(K_{j}(\rho)\right)-v^{L-i j}\left(K_{j}(\rho)\right)+0 \\
= & v^{L}\left(K_{j}(\rho)\right)-v^{L-i j}\left(K_{j}(\rho)\right)+v^{L}\left(K_{j}(\sigma)\right)-v^{L-i j}\left(K_{j}(\sigma)\right) \\
= & M C_{j}\left(\sigma, v^{L}\right)-M C_{j}\left(\sigma, v^{L-i j}\right)+M C_{j}\left(\rho, v^{L}\right)-M C_{j}\left(\rho, v^{L-i j}\right)
\end{aligned}
$$

Link monotonicity

Link monotonicity, LM. For all $i, j \in N, \varphi_{i}(N, v, L+i j) \geq \varphi_{i}(N, v, L)$.
Proposition. μ satisfies LM for superadditive games.

- drops from the next proposition
- suppose $\varphi_{i}(N, v, L+i j)-\varphi_{i}(N, v, L)<0$ for some $i, j \in N$; of course, $i j \notin L$
■ since μ meets $\mathbf{S I}$, for all $k \in \mathcal{C}_{i}(N, L+i j)$,

$$
\mu_{k}(N, v, L+i j)<\mu_{k}(N, v, L)
$$

■ summing up over $k \in C_{i}(N, L+i j)$ gives

$$
\mu_{C_{i}(N, L+i j)}(N, v, L+i j)<\mu_{C_{i}(N, L+i j)}(N, v, L)
$$

■ obviously, $\mathcal{C}(N, L+i j)$ coarser than $\mathcal{C}(N, L)$, hence

$$
C_{i}(N, L+i j)=\bigcup_{C \in \mathcal{C}(N, L): C \subseteq C_{i}(N, L+i j)} C
$$

- since μ satisfies CE, we have

$$
v\left(C_{i}(N, L+i j)\right)<\sum_{C \in \mathcal{C}(N, L): C \subseteq C_{i}(N, L+i j)} v(C),
$$

contradicting, superadditivity of v

Strong improvement \#1

Strong improvement, SI. For all $i, j, k \in N$,
$\varphi_{i}(N, v, L+i j)-\varphi_{i}(N, v, L) \geq \varphi_{k}(N, v, L+i j)-\varphi_{k}(N, v, L)$.

Proposition. μ satisfies $\mathbf{S I}$ for superadditive games.

- let (N, v) be superadditive; let $i, j, k \in N$

■ let $\sigma, \rho \in \Sigma(N), \sigma(i)=\rho(k)>\sigma(k)=\sigma(i)$, and $\sigma(\ell)=\rho(\ell)$ for $\ell \in$ $N \backslash\{i, k\}$

- by definition of v^{L} and the superadditivity of (N, v), we have

$$
\begin{equation*}
M C_{i}\left(\rho, v^{L+i j}\right)-M C_{i}\left(\rho, v^{L}\right) \geq 0=M C_{k}\left(\sigma, v^{L+i j}\right)-M C_{k}\left(\sigma, v^{L}\right) \tag{*}
\end{equation*}
$$

- further,

$$
M C_{i}\left(\sigma, v^{L+i j}\right)-M C_{i}\left(\sigma, v^{L}\right)=v^{L+i j}\left(K_{i}(\sigma)\right)-v^{L}\left(K_{i}(\sigma)\right)
$$

because $i \notin S$ implies $v^{L+i j}(S)=v^{L}(S)$

- hence by $K_{i}(\sigma)=K_{k}(\rho)$, we have

$$
\begin{array}{rl}
M C_{k}\left(\rho, v^{L+i j}\right)-M C_{k}\left(\rho, v^{L}\right)=M & M C_{i}\left(\sigma, v^{L+i j}\right)-M C_{i}\left(\sigma, v^{L}\right) \\
& +v^{L}\left(K_{i}(\sigma) \backslash k\right)-v^{L+i j}\left(K_{i}(\sigma) \backslash k\right)
\end{array}
$$

Strong improvement \#2

- since $\mathcal{C}\left(K_{i}(\sigma) \backslash k,\left.L\right|_{K_{i}(\sigma) \backslash k}\right)$ is finer than $\mathcal{C}\left(K_{i}(\sigma) \backslash k, L+\left.i j\right|_{K_{i}(\sigma) \backslash k}\right)$, the superadditivity of (N, v) and definition of v^{L} imply

$$
v^{L}\left(K_{i}(\sigma) \backslash k\right) \leq v^{L+i j}\left(K_{i}(\sigma) \backslash k\right),
$$

hence,

$$
\begin{equation*}
M C_{i}\left(\sigma, v^{L+i j}\right)-M C_{i}\left(\sigma, v^{L}\right) \geq M C_{k}\left(\rho, v^{L+i j}\right)-M C_{k}\left(\rho, v^{L}\right) \tag{**}
\end{equation*}
$$

- by definition of $\mu,\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ together prove the claim

Myerson value: Characterization \#1

Theorem (Myerson 1977). The Myerson value is the unique value that satisfies $\mathbf{C E}$ and \mathbf{F}.

Proof. already shown: μ obeys $\mathbf{C E}$ and \mathbf{F}

- let φ and ψ satisfy $\mathbf{C E}$ and \mathbf{F}, but $\varphi \neq \psi$
- let $L \subseteq L^{N}$ be some smallest link set such that $\varphi(N, v, L) \neq \psi(N, v, L)$

■ by CE, $L \neq \varnothing$; because $\varphi_{i}(N, v, L)=v(\{i\})=\psi_{i}(N, v, L)$ if

$$
C_{i}(N, L)=\{i\}
$$

- for $i j \in L$, by \mathbf{F};

$$
\begin{aligned}
\varphi_{i}(N, v, L)-\varphi_{j}(N, v, L) & =\varphi_{i}(N, v, L-i j)-\varphi_{j}(N, v, L-i j) \\
& =\psi_{i}(N, v, L-i j)-\psi_{j}(N, v, L-i j) \\
& =\psi_{i}(N, v, L)-\psi_{j}(N, v, L)
\end{aligned}
$$

i.e.,

$$
\varphi_{i}(N, v, L)-\psi_{i}(N, v, L)=\varphi_{j}(N, v, L)-\psi_{j}(N, v, L)
$$

Myerson value: Characterization \#2

- hence, for all $j \in C_{i}(N, L)$,

$$
\varphi_{i}(N, v, L)-\psi_{i}(N, v, L)=\varphi_{j}(N, v, L)-\psi_{j}(N, v, L)
$$

■ summing up over $j \in C_{i}(N, L)$, we have

$$
\begin{aligned}
\left|C_{i}(N, L)\right| & \left(\varphi_{i}(N, v, L)-\psi_{i}(N, v, L)\right) \\
= & \varphi_{C_{i}(N, L)}(N, v, L)-\psi_{C_{i}(N, L)}(N, v, L) \\
= & v\left(C_{i}(N, L)\right)-v\left(C_{i}(N, L)\right) \\
= & 0
\end{aligned}
$$

■ hence, $\varphi_{i}(N, v, L)=\psi_{i}(N, v, L)$, contradiction

Myerson value: Characterization \#3

Alternative proof.

- let φ obey CE and \mathbf{F}; we show $\varphi=\mu$ by induction on $|L|$

■ Induction basis: by CE, the claim holds for $|L|=0$
■ Induction hypothesis (H): the claim holds for $|L|=k$

- Induction step: let $|L|=k+1$
- for $\left|C_{i}(N, L)\right|=1$, the claim follows from CE
- $\operatorname{fix} C \in \mathcal{C}(N, L),|C|>1$
- note: $|L|_{C}\left|\geq|C|-1\right.$ because $\left(C,\left.L\right|_{C}\right)$ is connected
- by $\mathbf{F},\left(\varphi_{i}(N, v, L)\right)_{i \in C}$ satisfies the following system of linear equations: for $i j \in L \mid C$

$$
\begin{aligned}
\varphi_{i}(N, v, L)-\varphi_{j}(N, v, L) & =\varphi_{i}(N, v, L-i j)-\varphi_{j}(N, v, L-i j) \\
& \stackrel{\text { H }}{=} \mu_{i}(N, v, L-i j)-\mu_{j}(N, v, L-i j) \\
\sum_{i \in C} \varphi_{i}(N, v, L) & \stackrel{\text { CE }}{=} v(C)
\end{aligned}
$$

- from the coefficient structure it is clear, that this system has at most one solution
- since the μ-payoffs satisfy these equations, we have $\varphi=\mu$

