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Communication and bilateral contracts

m coalition structures (partitions of the player set) are a rather coarse way
to model restricted cooperation

CO-value A .

Commus m possibility of cooperation may depend on

f;f:s m communication between players

CO-games m bilateral contracts

VL .

o i; m example: gloves game; one right-glove holder, r, and one left-glove
:Ay#3 holder, ¢, actually sell their pair of gloves which is worth 1 via some
D agent, Al, who is necessary do facilitate the deal

CE .

F 41 m therefore, the agent a should obtain some share of the proceeds of 1
e m how to model this? TU game (N,v), N ={r,{,a}, v(K)=1if
::i; {r,f} CK,else v(K)=0

vc:ari; m coalition structure: P = {N}? inadequate, because this does not reflect
b char 43 the fact that r and ¢ need a as a sales agent

m indeed: AD, (N,v,P)=x,(N,v,P)=0
m instead of P consider the (undirected) graph
Lo a L

m Myerson value: i, (N, v, L) = %; all players are necessary to generate the
worth of 1
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Undirected graphs and cooperation structures

m an undirected graph is a pair (N, L)
m non-empty and finite set N
mset of links L: L C LN := {{i,j}|i,j €N, i#j}
m typical element of LN: A or jj := {i,j}
mi,j €N, i#jare directly connected in (N, L) iff jj € L
mi,jEN,i#jare connected in (N, L) iff there is a finite sequence of
players (i1,...,ip) such that {ix,iky1} €L, k=1,...,n—1
m the binary relation “connected with” is reflexive, symmetric, and
transitive, i.e., an equivalence relation which induces equivalence classes
C C N:i,je Ciff i and j are connected in (N, L)

m these equivalence classes are called the (connected) components of
(N,L); Ci (N, L) stands for the connected component containing player i

m so, any graph (N, L) induces a partition of N, the set of the connected
components: C (N, L) :={C; (N,L)|i € N}
m for any graph (N, L) and K C N, L|k denotes the restriction of L to K:

Lk:=LNnLK ={reLr C K}

m (N, L) is called a cooperation structure (on N)
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Some facts on connected components

if ' CLC LK, KCN,then C(K,L') is finer than C (K, L)

if K/ C K C N, then for any C' € C (K’, L|g) there is some
C € C(K,L|k) such that ' C C

ifig KCN,LCLN, then C(K,L|lk)=C(K,L—ijk)

SSTCN,SNT=@,L'CL® LCLT:
C(SUT,L'uL)=C(S,L"YuC(T,L)
SSTCN,LCIN:L|sulL|r CLlsuT
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TU games with a cooperation structure (CO-games)

a TU game (N, v) together with an undirected graph (N, L) is called a
TU game with a cooperation structure or a CO-game, for short

a solution for CO-games (CO-solution, CO-value) is an operator ¢
that assigns payoffs ¢ (N, v, L) € R to any CO-game (N, v, L)

of course, any CS-solution ¢ gives rise to a CO-solution (Pco via

@O (N, v,L):= ¢ (N,v,C(N,L))
the other way round, any CO-solution ¢ gives rise to a CS-solution q)cs
" ¢S (N, v,P) = ¢ (N, v, LP)

where
P ._ C
L= UCeC(N,L) L

in L” the components of P are internally completely connected by links,
but there are no links between components; obviously, C (N, LP) =P

a CO-solution 1 generalizes CS-solution ¢ if ¢ (N, v, LP) =¢(N,v,P)



Graph restricted coalition functions #1

m for a coalition function v € V (N) and a graph (N, L), we define the
graph restricted coalition function vt € V (N) as follows:

CO-values

e vh(K) = Y. v(S), KCN

B e SeC(K,Llx)

:t ﬁ; m looks more difficult than it is

{,'Ly#3 m what is C (K, L|k)? well, the set of components of K which are

EE connected within K

Ei; m interpretation: players in K are only able to cooperate to create worth
LM when they are connected in K

542 "

b 42 = obviously, K € N: C (K, LV[ic) = C (K, L") = {K}, hence, vi" = v
 char #3 m moreover, P € P, K C P: LP|K = LK,

¢ (K.LPlk) =C (K.LK) = {K}
mveV(N): v p=vlpeV(P); vl lP = vtf c v (P)

m question: which properties of v € V (N) are inherited by vL?
m look at: monotonicity, superadditivity, and convexity
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Graph restricted coalition functions #2

Lemma. If v € N is superadditive, then v’ is superadditive for any L C LV,

m Proof. let v € V (N) be superadditive, and L C LN
mlet S, TCN, SNT =;toshow: vi (SUT) > vE(S)+vE(T)
vES)+vh(T) = YovK)+ Y v(K)
KeC(S.L|s) KeC(T.L|7)
= ) v (K)
KeC(SUT,L|sUL|T)
< ) v(K)=vi(suT)
KeC(SUT,L|sur)
m the second equality drops from SN T = @ and the construction of L|k

m the inequality drops from v being superadditive and the fact that
C(SUT,L|sUL|y) is finer than C(SU T, L|syT):

m L|sUL|T C L|suT, hence, all players who are connect with each other
for L|s U L|T are connected in L|syT

g
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Graph restricted coalition functions #3

m monotonicity and convexity are not inherited, in general
m example: N ={1,2,3}, v(K) =1if |K| > 1, else v (K) =0,
L={{1,2},{2,3}}; obviously, (N, v) is monotonic
m however, € ({1,3}, Ll1)) = C ({L,3},@) = {{1}, {3}};
vEL3Y) =v({1) +v({3}) =1+1=2
m but, € ({1,2,3}, L2 ) = C({1,2,3}, 1) = {{1.2.3}};
vE({1,2,3}) = v({1,2,3}) = 1 < 2; hence, (N, VL) is not monotonic
m example: N = {1,2,3,4}, v (K) = |[K|? if |[K| > 1, else v (K) =0,
L={{1.2}.{1.3}.{4.2}.{4.3}}

m easy to check that (N, v) is convex = non-decreasing marginal
contributions

m C ({23} Llpgy) =C({2:3}.@) = ({2}, {3}};

vE({2,3) =v({2)+v({3})=0+0=0
m C ({123} Llpasy) = C({1.2,3}, {{L1.2} {1.3}}) = {{1.2,3}};
vb({1,2,3}) = v ({1,2,3}) = 32 = 9; analogously, v* ({2,3,4}) =9
C(N,L)={N}; vt({1,2,3,4}) = v ({1,2,3,4}) =42 =16
mso, MCY ({2,31) =9-0>16 —9 = MCY" ({2,3,4})
m hence, (N, VL) is not convex



CO-values
Commu
graphs
facts
CO-games
vl #1
vh 2
vl #3
My

CcD

CE

F #1

F #2

LM

Sl #1

Sl #2

u char #1
u char #2
p char #3

The Myerson value

m Myerson R. B. (1977) Graphs and cooperation in games. Mathematics of
Operations Research 2:225-229

Definition. The Myerson value assigns to any CO-game (N, v,L) and i € N
the payoff
u; (N, v, L) :=Sh;(N, vL).

simply the Shapley value applied to the graph restricted coalition function

mfor L=1LN, vt = v, hence, u (N, v, LN) =Sh(N,v), i.e., u generalizes
Sh

.
m veV (N): for L=1P, PeP vt |p=v5 " = v|p € V(P), hence,

P
(N ) = (Povlp LPlp) =Shi(Povlp )
= Shj(P,v|p) = AD; (N,v,P),

m i.e., u generalizes AD; of course, the first equation has to be shown



Component decomposability, CD For all i € C € C(N, L),

@; (N, v,L) =@, (C,v|c,L|c)-

Proposition y satisfies CD.
Proof. see literatur
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Component efficiency

Component efficiency, CE Forall C € C(N, L), ¢ (N,v,L)

Proposition y satisfies CE.
Proof.

=v(C).

m since y meets CD, it suffices to show - (C,v|c,L|c) = v (C) for all

CeC(N,L)

ZV,'(C:V|CvL|C)
ieC

1
el
1
=0

1

¥ MG (p.vILe)

pEL(C)

T ¥ (o)

pex(C)ieC

Y (vl -

peX(C)

Y. vic(O)

peX(C)

vIde (@)
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Fairness #1

Fairness, F For all jj € L, we have
@ (N,v,L)—¢;(N,v.L—ij) =@; (N, v,L) —¢; (N, v,L—ij).

Proposition y satisfies F.
Proof.

mleto,peZ(N),oc(i)=p()>c(j)=p(i),and o (£) =p () for £ €
N\ {i.j}
m by definition of y it suffices to show

MC; (a, vL> — MG; <(f, vL_ij> + MC; <p, VL) - MG; <p, vL_’j)

= MG (ovt) = MG (ot ) MG (p.vt) = MG (p )



Fairness #2

m since K (0) = Kj(0), j & Ki (p), and i & K; (0), we have

o MG (7. v) = MG (0. vE) + MG (p, vt) = MC; (p, 7
graphs

= [vh (K (@) = vh (K (
vt #1

Wi = v (Ki(9) (

& = vi(Ki(0)) (
GE o L L—ij

e = vi(Ki(p) vV (
. = VLE J( ) (
Sl #1

ilcﬁazr#l - MC ag L

u char #2
p char #3
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Link monotonicity

Link monotonicity, LM. For all i,j € N, ¢, (N, v, L+ ij) > ¢; (N, v, L).
Proposition. i satisfies LM for superadditive games.

drops from the next proposition

suppose ¢; (N, v, L+ ij) — ¢, (N, v, L) <0 for some i,j € N; of course,
jé&L

since y meets S, for all k € C; (N, L+ i),

M (Nov, L+ i) < py (N, v, L)
summing up over k € C; (N, L+ ij) gives
e, eri) (Nov LA0) < pieyn iy (Na v L)
obviously, C (N, L + ij) coarser than C (N, L), hence

G (N, L+ij) = UCeC(N,L):CgC;(N,L-&-ij) ¢
since y satisfies CE, we have

v (G (N, L+if)) < ) v (C),
CeC(N,L):CCCi(N,L+if)

contradicting, superadditivity of v

14 /19



Strong improvement #1

Strong improvement, Sl. For all /,j, k € N,
o o;(N,v,L+ i) —¢;(N,v,L) > ¢, (N,v,L+ij) — @, (N,v,L).

Commu Proposition. y satisfies Sl for superadditive games.
raphs
e m let (N, v) be superadditive; let i,j, k € N

e mletc,0€X(N), o(i)=p(k)>ca(k)=0c(i),and o (£) =p (L) for L €
n ¥ NAA{i, K}

My m by definition of vt and the superadditivity of (N, v), we have

o MC; (p, VHU) — MC; (p, VL) >0 = MG, ((7, v“"f) — MG, (o, VL)
i *)
:: ﬁ; m further,

u char #1

st MC; (v ) = MG (0,0t ) = v (K () = v (K (0)),
because i ¢ S implies v (S) = vt (S)
m hence by K; (0) = K (p), we have
MCy (p, vL+U) — MC, (p, vL) - MG (a, vL+"f) — MC; (a, vL)
+vE(Ki (0) \k) = vH I (K; (0) \K)

15 /19



CO-values
Commu
graphs
facts
CO-games
vl #1
vh 2
vl #3
My

CcD

CE

F #1

F #2

LM

S| #1

SI #2

u char #1
u char #2
p char #3

Strong improvement #2

u since C (K,— (o) \k, L|Klv(g)\k) is finer than C (K,— () \k, L+ U\Ki(g)\k) ,
the superadditivity of (N, v) and definition of vt imply

vE(K; (o) \k) < vEHI(K; (0) \K),
hence,

MC; (0’, VLHJ) - MC; (0’, VL) > MCy (p, vLHj) — MCy (p, VL) (**)

m by definition of y, (*) and (**) together prove the claim O

16 /19
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Myerson value: Characterization #1

Theorem (Myerson 1977). The Myerson value is the unique value that
satisfies CE and F.

Proof. already shown: y obeys CE and F
m let ¢ and ¢ satisfy CE and F, but ¢ # ¢
m let L C LN be some smallest link set such that ¢ (N, v, L) # ¢ (N, v, L)
m by CE, L # @; because ¢; (N, v,L) =v ({i}) =9, (N,v, L) if
G (N, L) = {i}
m for jjeL, byF;
@i (Nv,L)—¢; (N,v,L) = @;(N,v,L—ij)=¢;(N,v,L—1i)
= i (NoviL—=ij) = (N, v, L= j)
— g (N L) - g (N, L)

9; (Nov, L) = ; (Nov, L) = g (N, v, L) — ; (N, v, L)



Myerson value: Characterization #2

m hence, for all j € C; (N, L),

o 0 (N, v, L) = 9, (N, v, L) = @, (N, v, L) — ; (N,v. L)
raphs
Eaéfs m summing up over j € C; (N, L), we have
-games
vl #1
o %2 |G (N, L)| (@; (N, v, L) —9p; (N, v, L))

uy = ey (Novi D) =9c ) (N v, L)
(Gi (N, L)) = v (G (N, L))

GE

F #1
F #2
LM
Sl #1
Sl #2 _ ..
e 1 m hence, ¢; (N, v,L) =4, (N, v, L), contradiction
u char #2

p char #3

o <
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Myerson value: Characterization #3

Alternative proof.

let ¢ obey CE and F; we show ¢ = yu by induction on |L|

Induction basis: by CE, the claim holds for |[L| =0

Induction hypothesis (H): the claim holds for |L| = k

Induction step: let |L| = k+1

for |C; (N, L)| = 1, the claim follows from CE

fix C€C(N,L), |C|>1

note: |L|¢c| > |C| — 1 because (C, L|¢) is connected

by F, (@; (N,v,L));c satisfies the following system of linear equations:
forij € L|¢

¢; (N, v,L) —¢; (N, v,L)

@; (N, v, L=1ij) —@; (N, v, L—ij)

pi(Nov, L=ij) = pj (N, v, L= j)
Z @; (N, v, L)
ieC

from the coefficient structure it is clear, that this system has at most one

solution
since the y-payoffs satisfy these equations, we have ¢ = u
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