CO-values

Applied Cooperative Game Theory

André Casajus and Martin Kohl

University of Leipzig

January 4 2013

Communication and bilateral contracts

CO-values graphs facts CO-games v^L #1 v^L #2 vL #3 My CD CE F #1 F #2 LM SI #1 SI #2 μ char #1 μ char #2 $u \operatorname{char} \#3$

 coalition structures (partitions of the player set) are a rather coarse way to model restricted cooperation possibility of cooperation may depend on communication between players bilateral contracts
■ example: gloves game; one right-glove holder, r, and one left-glove holder, l, actually sell their pair of gloves which is worth 1 via some agent, A1, who is necessary do facilitate the deal
lacksquare therefore, the agent <i>a</i> should obtain some share of the proceeds of 1
• how to model this? TU game (N, v) , $N = \{r, \ell, a\}$, $v(K) = 1$ if $\{r, \ell\} \subseteq K$, else $v(K) = 0$
$lacksquare$ coalition structure: $\mathcal{P}=\{N\}$? inadequate, because this does not reflect
the fact that r and ℓ need a as a sales agent
■ indeed: $\mathrm{AD}_{a}\left(\mathit{N}, \mathit{v}, \mathcal{P}\right) = \chi_{a}\left(\mathit{N}, \mathit{v}, \mathcal{P}\right) = 0$
$lacksquare$ instead of ${\mathcal P}$ consider the (undirected) graph
$L: \stackrel{r}{\bullet} \stackrel{a}{-\!\!-\!\!-\!\!-} \stackrel{\ell}{\bullet} \stackrel{\ell}{-\!\!-\!\!-} \bullet$

■ Myerson value: $\mu_a(N, v, L) = \frac{1}{3}$; all players are necessary to generate the worth of 1

Undirected graphs and cooperation structures

CO-values
Commu
graphs
facts
CO-games
v ^L #1
v ^L #2
v ^L #3
My
CD
CE
F #1
F #2
LM
SI #1
SI #2
μ char #1
μ char #2
μ char #3

an undirected graph is a pair (N, L)

- non-empty and finite set N
- set of links $L: L \subseteq L^N := \{\{i, j\} | i, j \in N, i \neq j\}$
- typical element of L^N : λ or $ij := \{i, j\}$
- $i, j \in N$, $i \neq j$ are directly connected in (N, L) iff $ij \in L$
- $i, j \in N, i \neq j$ are **connected** in (N, L) iff there is a finite sequence of players (i_1, \ldots, i_n) such that $\{i_k, i_{k+1}\} \in L, k = 1, \ldots, n-1$
- the binary relation "connected with" is reflexive, symmetric, and transitive, i.e., an equivalence relation which induces equivalence classes C ⊆ N: i, j ∈ C iff i and j are connected in (N, L)
- these equivalence classes are called the (connected) components of (*N*, *L*); *C_i*(*N*, *L*) stands for the connected component containing player *i*
- so, any graph (N, L) induces a partition of N, the set of the connected components: $C(N, L) := \{C_i(N, L) | i \in N\}$
- for any graph (N, L) and $K \subseteq N, L|_K$ denotes the restriction of L to K:

$$L|_{\mathcal{K}} := L \cap L^{\mathcal{K}} = \{\lambda \in L | \lambda \subseteq \mathcal{K}\}$$

• (N, L) is called a **cooperation structure** (on N)

Some facts on connected components

CO-values
Commu
graphs
facts
CO-games
v [⊥] #1
v [⊥] #2
v ^L #3
My
CD
CE
F #1
F #2
LM
SI #1
SI #2
μ char #1
u char #2

 μ char #3

I

- if $L' \subseteq L \subseteq L^{K}$, $K \subseteq N$, then $\mathcal{C}(K, L')$ is finer than $\mathcal{C}(K, L)$
- if $K' \subseteq K \subseteq N$, then for any $C' \in C(K', L|_{K'})$ there is some $C \in C(K, L|_K)$ such that $C' \subseteq C$

• if
$$i \notin K \subseteq N$$
, $L \subseteq L^N$, then $\mathcal{C}(K, L|_K) = \mathcal{C}(K, L - ij|_K)$

■
$$S, T \subseteq N, S \cap T = \emptyset, L' \subseteq L^S, L \subseteq L^T$$

 $C(S \cup T, L' \cup L) = C(S, L') \cup C(T, L)$

$$\blacksquare S, T \subseteq N, L \subseteq L^N \colon L|_S \cup L|_T \subseteq L|_{S \cup T}$$

TU games with a cooperation structure (CO-games)

- a TU game (N, v) together with an undirected graph (N, L) is called a **TU game with a cooperation structure** or a **CO-game**, for short
- a solution for CO-games (CO-solution, CO-value) is an operator φ that assigns payoffs $\varphi(N, v, L) \in \mathbb{R}^N$ to any CO-game (N, v, L)
- of course, any CS-solution φ gives rise to a CO-solution φ^{CO} via

$$\varphi^{\mathsf{CO}}(N, \mathsf{v}, \mathsf{L}) := \varphi(N, \mathsf{v}, \mathcal{C}(N, \mathsf{L}))$$

• the other way round, any CO-solution φ gives rise to a CS-solution φ^{CS} via

$$\varphi^{\mathsf{CS}}(\mathsf{N},\mathsf{v},\mathcal{P}) := \varphi\left(\mathsf{N},\mathsf{v},\mathsf{L}^{\mathcal{P}}\right)$$

where

$$L^{\mathcal{P}} := \bigcup_{C \in \mathcal{C}(N,L)} L^{C}$$

- in $L^{\mathcal{P}}$ the components of \mathcal{P} are internally completely connected by links, but there are no links between components; obviously, $C(N, L^{\mathcal{P}}) = \mathcal{P}$
- a CO-solution ψ generalizes CS-solution φ if $\psi(N, v, L^{\mathcal{P}}) = \varphi(N, v, \mathcal{P})$

5/19

CO-values Commu graphs facts CO-games v^L #1 v^L #2 vL #3 My CD CF F #1 F #2 LM SI #1 SI #2 µ char #1 u char #2 u char #3

Graph restricted coalition functions #1

• for a coalition function $v \in \mathbb{V}(N)$ and a graph (N, L), we define the graph restricted coalition function $v^{L} \in \mathbb{V}(N)$ as follows:

$$v^{L}(K) := \sum_{S \in \mathcal{C}(K,L|_{K})} v(S), \qquad K \subseteq N$$

- looks more difficult than it is
- what is $C(K, L|_K)$? well, the set of components of K which are connected within K
- interpretation: players in K are only able to cooperate to create worth when they are connected in K
- obviously, $K \subseteq N$: $C(K, L^N|_K) = C(K, L^K) = \{K\}$, hence, $v^{L^N} = v$

moreover, $P \in \mathcal{P}$, $K \subseteq P$: $L^{\mathcal{P}}|_{K} = L^{K}$; $\mathcal{C}\left(K, L^{\mathcal{P}}|_{K}\right) = \mathcal{C}\left(K, L^{K}\right) = \{K\}$ $v \in \mathbb{V}(N)$: $v^{L^{\mathcal{P}}}|_{P} = v|_{P} \in \mathbb{V}(P)$; $v^{L^{\mathcal{P}}|_{P}} = v^{L^{P}} \in \mathbb{V}(P)$

- question: which properties of $v \in \mathbb{V}(N)$ are inherited by v^{L} ?
- look at: monotonicity, superadditivity, and convexity

Graph restricted coalition functions #2

CO-values Commu

graphs facts CO-games $v^{L} #1$ $v^{L} #2$ $v^{L} #3$ My CD CE F #1 F #2 LM SI #1 SI #2 u char #1

μ char #2 μ char #3 **Lemma.** If $v \in N$ is superadditive, then v^L is superadditive for any $L \subseteq L^N$.

■ **Proof.** let $v \in \mathbb{V}(N)$ be superadditive, and $L \subseteq L^N$ ■ let $S, T \subseteq N, S \cap T = \emptyset$; to show: $v^L(S \cup T) \ge v^L(S) + v^L(T)$

$$v^{L}(S) + v^{L}(T) = \sum_{K \in \mathcal{C}(S, L|_{S})} v(K) + \sum_{K \in \mathcal{C}(T, L|_{T})} v(K)$$
$$= \sum_{K \in \mathcal{C}(S \cup T, L|_{S} \cup L|_{T})} v(K)$$
$$\leq \sum_{K \in \mathcal{C}(S \cup T, L|_{S \cup T})} v(K) = v^{L}(S \cup T)$$

- \blacksquare the second equality drops from $S \cap T = \emptyset$ and the construction of $L|_K$
- the inequality drops from v being superadditive and the fact that $\mathcal{C}(S \cup T, L|_S \cup L|_T)$ is finer than $\mathcal{C}(S \cup T, L|_{S \cup T})$:
- $L|_S \cup L|_T \subseteq L|_{S \cup T}$, hence, all players who are connect with each other for $L|_S \cup L|_T$ are connected in $L|_{S \cup T}$

Graph restricted coalition functions #3

CO-values Commu graphs facts CO-games v^L #1 v^L #2 vL #3 Mу CD CE F #1 F #2 LM SI #1 SI #2 μ char #1 μ char #2 μ char #3

monotonicity and convexity are not inherited, in general
example:
$$N = \{1, 2, 3\}$$
, $v(K) = 1$ if $|K| \ge 1$, else $v(K) = 0$,
 $L = \{\{1, 2\}, \{2, 3\}\}$; obviously, (N, v) is monotonic
= however, $C(\{1, 3\}, L|_{\{1,3\}}) = C(\{1, 3\}, \emptyset) = \{\{1\}, \{3\}\};$
 $v^L(\{1, 3\}) = v(\{1\}) + v(\{3\}) = 1 + 1 = 2$
= but, $C(\{1, 2, 3\}, L|_{\{1,2,3\}}) = C(\{1, 2, 3\}, L) = \{\{1, 2, 3\}\};$
 $v^L(\{1, 2, 3\}) = v(\{1, 2, 3\}) = 1 < 2$; hence, (N, v^L) is not monotonic
example: $N = \{1, 2, 3, 4\}, v(K) = |K|^2$ if $|K| > 1$, else $v(K) = 0$,
 $L = \{\{1, 2\}, \{1, 3\}, \{4, 2\}, \{4, 3\}\}$
= easy to check that (N, v) is convex \equiv non-decreasing marginal
contributions
= $C(\{2, 3\}, L|_{\{2,3\}}) = C(\{2, 3\}, \emptyset) = \{\{2\}, \{3\}\};$
 $v^L(\{2, 3\}) = v(\{2\}) + v(\{3\}) = 0 + 0 = 0$
= $C(\{1, 2, 3\}, L|_{\{1, 2, 3\}}) = C(\{1, 2, 3\}, \{\{1, 2\}, \{1, 3\}\}) = \{\{1, 2, 3\}\};$
 $v^L(\{1, 2, 3\}) = v(\{1, 2, 3\}) = 3^2 = 9;$ analogously, $v^L(\{2, 3, 4\}) = 9$
= $C(N, L) = \{N\}; v^L(\{1, 2, 3, 4\}) = v(\{1, 2, 3, 4\}) = 4^2 = 16$
= so, $MC_1^{v^L}(\{2, 3\}) = 9 - 0 > 16 - 9 = MC_1^{v^L}(\{2, 3, 4\})$
= hence, (N, v^L) is not convex

The Myerson value

 Myerson R. B. (1977) Graphs and cooperation in games. Mathematics of Operations Research 2:225-229

Definition. The Myerson value assigns to any CO-game (N, v, L) and $i \in N$ the payoff

$$\mu_i(N, v, L) := \operatorname{Sh}_i(N, v^L).$$

simply the Shapley value applied to the graph restricted coalition function

• for $L = L^N$, $v^{L^N} = v$, hence, $\mu(N, v, L^N) = Sh(N, v)$, i.e., μ generalizes Sh

•
$$v \in \mathbb{V}(N)$$
: for $L = L^{\mathcal{P}}$, $P \in \mathcal{P}$, $v^{L^{\mathcal{P}}}|_{P} = v|_{P}^{L^{\mathcal{P}}|_{P}} = v|_{P} \in \mathbb{V}(P)$, hence,

$$\mu_i \left(N, v, L^{\mathcal{P}} \right) = \mu_i \left(P, v|_P, L^{\mathcal{P}}|_P \right) = \operatorname{Sh}_i(P, v|_P^{L^{\mathcal{P}}|_P})$$
$$= \operatorname{Sh}_i(P, v|_P) = \operatorname{AD}_i(N, v, \mathcal{P}),$$

 \blacksquare i.e., μ generalizes AD; of course, the first equation has to be shown

CO-values Commu graphs facts CO-games v^L #1 v^L #2 v^L #3 My CD CE F #1 F #2 LM SI #1 SI #2 μ char #1 μ char #2 $u \operatorname{char} \#3$ Component decomposability #1

Component decomposability, CD For all $i \in C \in C(N, L)$,

$$\varphi_i(N, v, L) = \varphi_i(C, v|_C, L|_C).$$

Proposition μ satisfies **CD**.

Proof. see literatur

CO-values Commu graphs facts CO-games v^L #1 v^L #2 vL #3 Mу CD CE F #1 F #2 LM SI #1 SI #2 μ char #1 μ char #2 $u \operatorname{char} \#3$

Component efficiency

Component efficiency, CE For all $C \in C(N, L)$, $\varphi_C(N, v, L) = v(C)$. Proposition μ satisfies CE. Proof.

■ since μ meets **CD**, it suffices to show $\mu_C(C, v|_C, L|_C) = v(C)$ for all $C \in C(N, L)$

$$\begin{split} \sum_{i \in C} \mu_i \left(C, v |_C, L|_C \right) &= \sum_{i \in C} \frac{1}{|\Sigma\left(C\right)|} \sum_{\rho \in \Sigma(C)} MC_i \left(\rho, v |_C^{L|_C} \right) \\ &= \frac{1}{|\Sigma\left(C\right)|} \sum_{\rho \in \Sigma(C)} \sum_{i \in C} MC_i \left(\rho, v |_C^{L|_C} \right) \\ &= \frac{1}{|\Sigma\left(C\right)|} \sum_{\rho \in \Sigma(C)} \left(v |_C^{L|_C} \left(C \right) - v |_C^{L|_C} \left(\emptyset \right) \right) \\ &= \frac{1}{|\Sigma\left(C\right)|} \sum_{\rho \in \Sigma(C)} v |_C \left(C \right) \\ &= \frac{1}{|\Sigma\left(C\right)|} \sum_{\rho \in \Sigma(C)} v \left(C \right) = v \left(C \right) \end{split}$$

CO-values Commu graphs facts CO-games v^L #1 v^L #2 vL #3 My CD CE F #1 F #2 LM SI #1 SI #2 μ char #1 μ char #2 $u \operatorname{char} \#3$

Fairness #1

Fairness, F For all $ij \in L$, we have

$$\varphi_{i}(N, v, L) - \varphi_{i}(N, v, L - ij) = \varphi_{j}(N, v, L) - \varphi_{j}(N, v, L - ij).$$

Proposition μ satisfies **F**. **Proof.**

- let $\sigma, \rho \in \Sigma(N)$, $\sigma(i) = \rho(j) > \sigma(j) = \rho(i)$, and $\sigma(\ell) = \rho(\ell)$ for $\ell \in N \setminus \{i, j\}$
- by definition of μ it suffices to show

$$MC_{i}\left(\sigma,\nu^{L}\right) - MC_{i}\left(\sigma,\nu^{L-ij}\right) + MC_{i}\left(\rho,\nu^{L}\right) - MC_{i}\left(\rho,\nu^{L-ij}\right)$$
$$= MC_{j}\left(\sigma,\nu^{L}\right) - MC_{j}\left(\sigma,\nu^{L-ij}\right) + MC_{j}\left(\rho,\nu^{L}\right) - MC_{j}\left(\rho,\nu^{L-ij}\right)$$

CO-values Commu graphs facts CO-games v^L #1 v^L #2 vL #3 My CD CE F #1 F #2 LM SI #1 SI #2 μ char #1 μ char #2 $u \operatorname{char} \#3$

Fairness #2

CO-values Commu graphs facts CO-games $v^L \# 1$ $v^L \# 2$ v^L #3 Mу ĊĎ CE F #1 F #2 LM SI #1 SI #2 μ char #1 μ char #2 μ char #3

• since
$$K_i(\sigma) = K_j(\rho)$$
, $j \notin K_i(\rho)$, and $i \notin K_j(\sigma)$, we have

$$MC_i(\sigma, v^L) - MC_i(\sigma, v^{L-ij}) + MC_i(\rho, v^L) - MC_i(\rho, v^{L-ij})$$

$$= \left[v^L(K_i(\sigma)) - v^L(K_i(\sigma) \setminus i)\right] - \left[v^{L-ij}(K_i(\sigma)) - v^{L-ij}(K_i(\sigma) \setminus i)\right] +$$

$$= v^L(K_i(\sigma)) - v^{L-ij}(K_i(\sigma)) + v^L(K_i(\rho)) - v^{L-ij}(K_i(\rho))$$

$$= v^L(K_i(\sigma)) - v^{L-ij}(K_i(\sigma)) + 0$$

$$= v^L(K_j(\rho)) - v^{L-ij}(K_j(\rho)) + 0$$

$$= v^L(K_j(\rho)) - v^{L-ij}(K_j(\rho)) + v^L(K_j(\sigma)) - v^{L-ij}(K_j(\sigma))$$

$$= MC_j(\sigma, v^L) - MC_j(\sigma, v^{L-ij}) + MC_j(\rho, v^L) - MC_j(\rho, v^{L-ij})$$

Link monotonicity

Link monotonicity, LM. For all $i, j \in N$, $\varphi_i(N, v, L + ij) \ge \varphi_i(N, v, L)$. Proposition. μ satisfies LM for superadditive games.

- drops from the next proposition
- suppose φ_i (N, v, L + ij) φ_i (N, v, L) < 0 for some $i, j \in N$; of course, $ij \notin L$
- since μ meets **SI**, for all $k \in C_i(N, L+ij)$,

$$\mu_{k}\left(\textit{N, v, L}+\textit{ij}\right) < \mu_{k}\left(\textit{N, v, L}\right)$$

■ summing up over $k \in C_i(N, L+ij)$ gives

$$\mu_{C_i(N,L+ij)}(N, v, L+ij) < \mu_{C_i(N,L+ij)}(N, v, L)$$

■ obviously, C(N, L + ij) coarser than C(N, L), hence

$$C_i(N, L+ij) = \bigcup_{C \in \mathcal{C}(N,L): C \subseteq C_i(N,L+ij)} C$$

\blacksquare since μ satisfies **CE**, we have

$$v\left(C_{i}\left(N,L+ij\right)\right) < \sum_{C \in \mathcal{C}(N,L): C \subseteq C_{i}(N,L+ij)} v\left(C\right),$$

contradicting, superadditivity of v

CO-values Commu graphs facts CO-games v^L #1 v^L #2 vL #3 My CD CE F #1 F #2 LM SI #1 SI #2 μ char #1 u char #2 u char #3

Strong improvement #1

CO-values Commu graphs facts CO-games v^L #1 v^L #2 vL #3 My CD CE F #1 F #2 LM SI #1 SI #2 μ char #1 μ char #2 $u \operatorname{char} \#3$

Strong improvement, SI. For all $i, j, k \in N$, $\varphi_i(N, v, L + ij) - \varphi_i(N, v, L) \ge \varphi_k(N, v, L + ij) - \varphi_k(N, v, L)$. **Proposition.** μ satisfies **SI** for superadditive games.

- let (N, v) be superadditive; let $i, j, k \in N$
- let $\sigma, \rho \in \Sigma(N)$, $\sigma(i) = \rho(k) > \sigma(k) = \sigma(i)$, and $\sigma(\ell) = \rho(\ell)$ for $\ell \in N \setminus \{i, k\}$
- by definition of v^{L} and the superadditivity of (N, v), we have

$$MC_{i}\left(\rho, v^{L+ij}\right) - MC_{i}\left(\rho, v^{L}\right) \geq 0 = MC_{k}\left(\sigma, v^{L+ij}\right) - MC_{k}\left(\sigma, v^{L}\right)$$
(*)

further,

$$MC_{i}\left(\sigma, v^{L+ij}\right) - MC_{i}\left(\sigma, v^{L}\right) = v^{L+ij}\left(K_{i}\left(\sigma\right)\right) - v^{L}\left(K_{i}\left(\sigma\right)\right),$$

because $i \notin S$ implies $v^{L+ij}(S) = v^{L}(S)$

• hence by $K_i(\sigma) = K_k(\rho)$, we have

$$\begin{split} MC_{k}\left(\rho,v^{L+ij}\right) - MC_{k}\left(\rho,v^{L}\right) &= MC_{i}\left(\sigma,v^{L+ij}\right) - MC_{i}\left(\sigma,v^{L}\right) \\ &+ v^{L}\left(K_{i}\left(\sigma\right)\setminus k\right) - v^{L+ij}\left(K_{i}\left(\sigma\right)\setminus k\right) \end{split}$$

Strong improvement #2

■ since $C\left(K_i(\sigma) \setminus k, L|_{K_i(\sigma) \setminus k}\right)$ is finer than $C\left(K_i(\sigma) \setminus k, L+ij|_{K_i(\sigma) \setminus k}\right)$, the superadditivity of (N, v) and definition of v^L imply

$$\mathbf{v}^{L}\left(\mathbf{K}_{i}\left(\sigma\right)\setminus k
ight)\leq\mathbf{v}^{L+ij}\left(\mathbf{K}_{i}\left(\sigma\right)\setminus k
ight)$$
 ,

hence,

$$MC_{i}\left(\sigma, v^{L+ij}\right) - MC_{i}\left(\sigma, v^{L}\right) \geq MC_{k}\left(\rho, v^{L+ij}\right) - MC_{k}\left(\rho, v^{L}\right) \quad (**)$$

• by definition of μ , (*) and (**) together prove the claim

CO-values Commu graphs facts CO-games v^L #1 v^L #2 vL #3 My CD CE F #1 F #2 LM SI #1 SI #2 μ char #1 μ char #2 $u \operatorname{char} \#3$

Myerson value: Characterization #1

Theorem (Myerson 1977). The Myerson value is the unique value that satisfies CE and F.

Proof. already shown: μ obeys **CE** and **F**

 \blacksquare let φ and ψ satisfy CE and F, but $\varphi\neq\psi$

• let $L \subseteq L^N$ be some smallest link set such that $\varphi(N, v, L) \neq \psi(N, v, L)$

- by CE, $L \neq \emptyset$; because $\varphi_i(N, v, L) = v(\{i\}) = \psi_i(N, v, L)$ if $C_i(N, L) = \{i\}$
- for $ij \in L$, by **F**;

$$\begin{split} \varphi_{i}\left(\boldsymbol{N},\boldsymbol{v},\boldsymbol{L}\right) - \varphi_{j}\left(\boldsymbol{N},\boldsymbol{v},\boldsymbol{L}\right) &= \varphi_{i}\left(\boldsymbol{N},\boldsymbol{v},\boldsymbol{L}-ij\right) - \varphi_{j}\left(\boldsymbol{N},\boldsymbol{v},\boldsymbol{L}-ij\right) \\ &= \psi_{i}\left(\boldsymbol{N},\boldsymbol{v},\boldsymbol{L}-ij\right) - \psi_{j}\left(\boldsymbol{N},\boldsymbol{v},\boldsymbol{L}-ij\right) \\ &= \psi_{i}\left(\boldsymbol{N},\boldsymbol{v},\boldsymbol{L}\right) - \psi_{j}\left(\boldsymbol{N},\boldsymbol{v},\boldsymbol{L}\right) \end{split}$$

i.e.,

$$\varphi_{i}(N, v, L) - \psi_{i}(N, v, L) = \varphi_{j}(N, v, L) - \psi_{j}(N, v, L)$$

CO-values Commu graphs facts CO-games v^L #1 v^L #2 vL #3 My CD CF F #1 F #2 LM SI #1 SI #2 μ char #1 μ char #2 $u \operatorname{char} \#3$

Myerson value: Characterization #2

• hence, for all $j \in C_i(N, L)$,

CO-values
Commu
graphs
facts
CO-games

$$v^L \# 1$$

 $v^L \# 2$
 $v^L \# 3$
My
CD
CE
F # 1
F # 2
LM
SI # 2
 μ char # 1
 μ char # 2
 μ char # 2

$$\varphi_{i}(N, \mathbf{v}, L) - \psi_{i}(N, \mathbf{v}, L) = \varphi_{j}(N, \mathbf{v}, L) - \psi_{j}(N, \mathbf{v}, L)$$

u summing up over $j \in C_i(N, L)$, we have

$$\begin{aligned} |C_{i}(N,L)| (\varphi_{i}(N,v,L) - \psi_{i}(N,v,L)) \\ &= \varphi_{C_{i}(N,L)}(N,v,L) - \psi_{C_{i}(N,L)}(N,v,L) \\ &= v (C_{i}(N,L)) - v (C_{i}(N,L)) \\ &= 0 \end{aligned}$$

• hence, $\varphi_i(N, v, L) = \psi_i(N, v, L)$, contradiction

Myerson value: Characterization #3

Alternative proof.

- let φ obey **CE** and **F**; we show $\varphi = \mu$ by induction on |L|
- Induction basis: by **CE**, the claim holds for |L| = 0
- Induction hypothesis (H): the claim holds for |L| = k
- Induction step: let |L| = k + 1
- for $|C_i(N, L)| = 1$, the claim follows from **CE**
- fix $C \in C(N, L)$, |C| > 1
- note: $|L|_{\mathcal{C}}| \ge |\mathcal{C}| 1$ because $(\mathcal{C}, L|_{\mathcal{C}})$ is connected
- by **F**, $(\varphi_i(N, v, L))_{i \in C}$ satisfies the following system of linear equations: for $ij \in L|_C$

$$\begin{split} \varphi_{i}\left(N,v,L\right) - \varphi_{j}\left(N,v,L\right) &= \varphi_{i}\left(N,v,L-ij\right) - \varphi_{j}\left(N,v,L-ij\right) \\ &\stackrel{\mathbf{H}}{=} \mu_{i}\left(N,v,L-ij\right) - \mu_{j}\left(N,v,L-ij\right) \\ \sum_{i \in C} \varphi_{i}\left(N,v,L\right) \stackrel{\mathbf{CE}}{=} v\left(C\right) \end{split}$$

- from the coefficient structure it is clear, that this system has at most one solution
- \blacksquare since the $\mu\text{-}\mathsf{payoffs}$ satisfy these equations, we have $\varphi=\mu$

CO-values Commu graphs facts CO-games v^L #1 v^L #2 vL #3 My CD CF F #1 F #2 LM SI #1 SI #2 μ char #1 μ char #2 u char #3