# Advanced Microeconomics Resit Winterterm 2010/2011

4th April 2011

You have to accomplish this test within 120 minutes.

# PRÜFUNGS-NR.:

STUDIENGANG:

NAME, VORNAME:

UNTERSCHRIFT DES STUDENTEN:

# ANFORDERUNGEN/REQUIREMENTS:

Lösen Sie die folgenden Aufgaben!/Solve all the exercises! Schreiben Sie, bitte, leserlich!/Write legibly, please! Sie können auf Deutsch schreiben!/You can write in English! Begründen Sie Ihre Antworten!/Give reasons for your answers!

|   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | $\sum$ |  |
|---|---|---|---|---|---|---|---|---|---|----|----|--------|--|
| - |   |   |   |   |   |   |   |   |   |    |    |        |  |
|   |   |   |   |   |   |   |   |   |   |    |    |        |  |

#### Problem 1 (15 points)

Consider the following decision problem without moves by nature:



- (a) Is this a situation with perfect recall?
- (b) Consider the mixed strategy  $\sigma$  given by

$$\begin{aligned} \sigma([a,c]) &= \frac{1}{4}, \ \sigma([a,d]) = \frac{1}{2}, \\ \sigma([b,c]) &= \frac{1}{8}, \ \sigma([b,d]) = \frac{1}{8} \end{aligned}$$

Is this strategy optimal?

- (c) Find two behavioural strategies, which lead to the node  $v_4$  with probability  $\frac{1}{2}$ !
- (d) Can you find a behavioural strategy leading to the same probability distribution on the terminal nodes as the mixed strategy given in b)!

#### Solution

(a) No this isn't a situation with perfect recall.  $v_1$  and  $v_2$  belong to the same information set, but the experiences are different:

 $X(v_1) = \{v_0, a, \{v_0, v_1\}\} \neq X(v_2) = \{v_0, b, \{v_0, v_1\}\}$ 

- (b) The strategy isn't optimal. It obtains expected payoff of  $\frac{3}{4} + \frac{3}{8} = \frac{9}{8}$ . For example the mixed strategy  $\sigma([a, c]) = 1$ ,  $\sigma([a, d]) = \sigma([b, c]) = \sigma([b, d]) = 0$  generates expected payoff of 3.
- (c) The following behavioural strategies reach  $v_0$  with probability  $\frac{1}{2}$ :

1. 
$$\beta_{v_0}(a) = 1, \beta_{v_0}(b) = 0, \beta_{\{v_1, v_2\}}(c) = \beta_{\{v_1, v_2\}}(d) = \frac{1}{2}$$
  
2.  $\beta_{v_0}(a) = \beta_{v_0}(b) = \frac{1}{2}, \beta_{\{v_1, v_2\}}(c) = 0, \beta_{\{v_1, v_2\}}(d) = 1$ 

 $\begin{aligned} \text{(d)} \ \ \beta_{v_0}(a) &= \frac{\sigma([a,c]) + \sigma([a,d])}{1} = \frac{3}{4}, \\ \beta_{v_0}(b) &= \frac{\sigma([b,c]) + \sigma([b,d])}{1} = \frac{1}{4}, \\ \beta_{v_1}(c) &= \frac{\sigma([a,c])}{\beta_{v_0}(a)} = \frac{\frac{1}{4}}{\frac{3}{4}} = \frac{1}{3}, \end{aligned}$ 

$$\begin{split} \beta_{v_1}(d) &= \frac{\sigma([a,d])}{\beta_{v_0}(a)} = \frac{\frac{1}{2}}{\frac{3}{4}} = \frac{2}{3},\\ \beta_{v_2}(c) &= \frac{\sigma([b,c])}{\beta_{v_0}(b)} = \frac{\frac{1}{8}}{\frac{1}{4}} = \frac{1}{2},\\ \beta_{v_2}(d) &= \frac{\sigma([b,d])}{\beta_{v_0}(b)} = \frac{\frac{1}{8}}{\frac{1}{4}} = \frac{1}{2} \end{split}$$

But this isn't a feasible behavioural strategy, because  $\beta_{v_1}(c) \neq \beta_{v_2}(c)$  and  $I(v_1) = I(v_2)$ .

# Problem 2 (10 points)

Determine the indirect utility function for the quasi-linear utility function

$$u(x_1, x_2) = \frac{1}{2}x_1 + \sqrt{x_2}.$$

Assume  $p_1, p_2 > 0$  and  $m \ge \frac{p_1^2}{p_2}$  such that there is no corner solution. Under which conditions is good 1 a luxury good?

# Solution

$$MRS = \frac{\frac{1}{2}}{\frac{1}{2\sqrt{x_2}}} = \sqrt{x_2} = \frac{p_1}{p_2} = OC$$

such that

$$x_2 = \frac{p_1^2}{p_2^2}.$$

From

$$p_1 x_1 + p_2 x_2 = m$$

we obtain

$$x_1 = \frac{m - p_2 x_2}{p_1}$$
$$= \frac{m - p_2 \frac{p_1^2}{p_2^2}}{p_1}$$
$$= \frac{m}{p_1} - \frac{p_1}{p_2}$$

The indirect utility function:

$$U(m, p_1, p_2) = \frac{1}{2} \left( \frac{m}{p_1} - \frac{p_1}{p_2} \right) + \sqrt{\frac{p_1^2}{p_2^2}}$$
$$= \frac{1}{2} \frac{m}{p_1} + \frac{1}{2} \frac{p_1}{p_2}$$

Good 1 is a luxury good, iff

$$\varepsilon_{x_1,m} \geq 1$$

$$\varepsilon_{x_1,m} = \frac{\frac{1}{p_1}}{x_1} \cdot m$$

$$= \frac{\frac{m}{p_1}}{\frac{m}{p_1} - \frac{p_1}{p_2}}$$

$$= \frac{1}{1 - \frac{p_1^2}{mp_2}} > 1$$

# Problem 3 (15 points)

Consider the production set

$$Y = \left\{ (x_1, x_2) \in \mathbb{R} \mid x_2 \le -(x_1)^2 \quad \text{if } x_1 \ge 0 \text{ and } x_2 \le -\frac{1}{2} x_1 \text{ if } x_1 < 0 \right\}.$$

- (a) Illustrate the production set in a  $x_1$ - $x_2$ -diagram!
- (b) Does the production set obey nondecreasing returns to scale?
- (c) Determine the production functions for the production set Y!

# Solution:

(a)



- (b) No. Y obeys nondecreasing returns to scale if  $y \in Y$  implies  $ky \in Y$  for all  $k \ge 1$ . If we choose the point  $y = (y_1, y_2)$  we can immediately see that, for instance  $1, 5y \notin Y$ .
- (c) Differentiate between  $x_1 \ge 0$  and  $x_1 < 0$ . Care about output efficiency. For  $x_1 \ge 0$ we get  $x_2 = x_1^2$  for  $\implies x_1 = f(x_2) = \sqrt{x_2}$ . For  $x_1 < 0$  we get  $x_2 = f(x_1) = -\frac{1}{2}x_1$ .

#### Problem 4 (10 points)

Nature chooses the quality of an agent (high or low). This agent wants to work for a principal, who does not know this quality. The principal offers two contracts  $(w_1, e_1)$  and  $(w_2, e_2)$ , where w describes the wage and e the required effort. The first contract is given by  $e_1 = 1$  and  $w_1 = 1$ . The utility function for low-quality agents and high-quality agents is given by

$$u_{low}(w,e) = 3w - 2e$$

 $\operatorname{resp.}$ 

$$u_{high}(w,e) = 3w - e.$$

If the agent does not work, she gets a utility of 0.

Define a second contract  $(w_2, e_2)$ , such that the agent accepts the contract (participation constraint) but does not reveal her quality!

#### Solution

Not revealing the quality requires

$$\begin{array}{ll} u_{low}(w_2,e_2) &> & u_{low}(w_1,e_1) = 1 \\ u_{high}(w_2,e_2) &> & u_{high}(w_1,e_1) = 2. \end{array}$$

This means

 $\begin{array}{rcl} 3w_2 - 2e_2 &> & 1 \\ 3w_2 - e_2 &> & 2, \end{array}$ 

such that for example the contract  $e_2 = 1$  and  $w_2 = 2$  generates not revealing the quality. Because of  $u_{low}(w_2, e_2) = 4$  and  $u_{high}(w_2, e_2) = 3$  the contract fulfils the participation constraint  $u_{low} \ge 0$  and  $u_{high} \ge 0$ . Problem 5 (10 points) Consider the two-player game



Are the following recommendations correlated equilibria? Why or why not?

- (a)  $\tau(A, C) = 1$ ,  $\tau(A, D) = \tau(B, C) = \tau(B, D) = 0$
- (b)  $\tau(A,D) = \frac{1}{3}, \ \tau(B,C) = \frac{2}{3}, \ \tau(A,C) = \tau(B,D) = 0$
- (c)  $\tau(A, D) = \tau(B, D) = \frac{1}{2}, \ \tau(B, C) = \tau(A, C) = 0$

# Solution

- (a) This is not a correlated equilibrium. Player 1 could deviate, if he would chose action2. This would let him get payoff if 6 instead of 5.
- (b) This is a correlated equilibrium. If player 1 would deviate and player 2 would follow the recommendation, player 1 would get payoff of 0, instead of 2. If player 2 would deviate and player 1 would follow the recommendation, player 2 would get payoff of 5, so he is worse off.
- (c) This is not a correlated equilibrium. If the regulator tells player 1 to play action A, he would be better of, if he choses action A.

#### Problem 6 (20 Points)

Consider a world with risk and two possible states, G and R, where G happens with probability  $\frac{5}{8}$ , and R with  $\frac{3}{8}$  (lotteries are of type  $[x_G, x_R; \frac{5}{8}, \frac{3}{8}]$ ). The agent's income is 16 in state G, but nothing in state R,  $L_A = [16, 0; \frac{5}{8}, \frac{3}{8}]$ . He is risk averse and has the vNM utility function  $u_A(x) = \sqrt{x}$  where x denotes his income. A figure relating to this situation is drawn below.



- (a) Get used to the figure by writing  $L_A$  to the point that represents the lottery  $\left[16, 0; \frac{5}{8}, \frac{3}{8}\right]!$
- (b) From the point of view of the lottery  $L_A$ :
  - [I] Fill in the blank: equal expected \_\_\_\_\_\_ . Determine the coordinates of this point!

[II] Fill in the blank: equal expected \_\_\_\_\_\_. Determine the coordinates of this point!

[III] Determine the slope of this line!

## Problem 6 (continuative)

(c) Determine the formula for the slope [IV], i.e., at some arbitrary point  $(x_G, x_R) > (0, 0)!$ 

- (d) Now, a second agent named agent B enters the arena. Agent B's income is 1 in state G and 17 in state R, and she is risk neutral, say  $u_B(x) = x$ . Extend the diagram to an Edgeworth box. *Hint: The axes' lengths are already correct.* 
  - (d1) Indicate the initial endowment!
  - (d2) Draw player B's indifference curve through the initial endowment!
  - (d3) Determine all Pareto-optimal allocations!

## Solution

- (a) drawing <sup>1Punkt</sup>
- (b) (I) utility <sup>1Punkt</sup>

$$U_1(x_G, x_R) = Eu_1(x_G, x_R) = p_G u_1(x_G) + p_R u_1(x_R)$$
$$= \frac{5}{8}\sqrt{16} + \frac{3}{8}0 = \frac{5}{2}$$

utility 
$$U_1(x_G, x_R) = \frac{5}{8}\sqrt{z} + \frac{3}{8}\sqrt{z} \stackrel{!}{=} \frac{5}{2} \implies z = \frac{25}{4} = 6.25 \implies (6.25, 6.25)$$
  
(II) value<sup>1Punkt</sup>

$$\begin{array}{rcl} (L) & = & 10 \\ \implies & (10, 10) \end{array}$$

(IV) 
$$p_G x_G + p_R x_R = c \implies x_R = \frac{c}{p_R} - \frac{p_R}{p_G} x_G \implies \text{slope} -5/3$$

E

(c)

$$U_{1}(x_{G}, x_{R}) = Eu(x_{G}, x_{R}) = p_{G}u_{1}(x_{G}) + p_{R}u_{1}(x_{R})$$
$$-"MRS" = -\frac{\frac{\partial U_{1}(x_{G}, x_{R})}{\partial x_{G}}}{\frac{\partial U_{1}(x_{G}, x_{R})}{\partial x_{R}}} = -\frac{\frac{\partial Eu(x_{G}, x_{R})}{\partial x_{G}}}{\frac{\partial Eu(x_{G}, x_{R})}{\partial x_{R}}} = -\frac{p_{G}u'(x_{G})}{p_{R}u'(x_{R})} = -\frac{5}{3}\frac{\sqrt{x_{R}}}{\sqrt{x_{G}}}$$

(d) extending

- (d1)  $\omega = (16, 0) + (8, 8) = (24, 8)$
- (d2) It's the constant expected value line (slope-5/3)
- (d3) player 2's "MRS" equals slope (IV) = -5/3. Thus

$$\frac{5}{3} \frac{\sqrt{x_R}}{\sqrt{x_G}} = \frac{5}{3}$$
$$\implies x_R = x_G$$

Therefore, it is pareto-optimal, if player 2 fully insures player 1 and bears all the risk. This is intuitive because player 2 does not suffer from risk while player 1 does; otherwise, there is room for some rent by letting player 2 insure player 1.

## Problem 7 (10 points)

Players 1 and 2 each choose a number from the set  $\{1, ..., K\}$ . If the players choose the same number then player 2 has to pay 1 Euro to player 1; otherwise no payment is made. Each player maximizes his expected monetary payoff. Show: The strategy combination

$$(\sigma_1^*, \sigma_2^*) = \left( \left(\frac{1}{K}, ..., \frac{1}{K}\right), \left(\frac{1}{K}, ..., \frac{1}{K}\right) \right)$$

is the one and only one mixed Nash equilibrium!

#### Solution:

Assume that there is a strategy that player 2 plays with a probability larger than  $\frac{1}{K}$ . Without loss of generality say that choosing number 1 is played with the highest probability. In this case a best response of player 1 is to choose 1 with probability 1. However, player 2 then has an incentive to deviate and choose number 1 with probability zero to avoid picking the same numbers. Accordingly, the situation where player 2 plays different strategies with a different probability cannot be an equilibrium.

Now consider player 1 and assume that there is a strategy that player 1 plays with a probability smaller than  $\frac{1}{K}$ . Without loss of generality say that choosing number 1 is played with the smallest probability. In this case a best response of player 2 is to choose number 1 with probability 1. However, player 1 has then an incentive to deviate and choose number 1 with probability 1 to assure that the same numbers are chosen. Accordingly, the situation where player 1 plays different strategies with different probabilities cannot be an equilibrium.

This leaves us with the strategy combination  $(\sigma_1^*, \sigma_2^*) = ((\frac{1}{K}, ..., \frac{1}{K}), (\frac{1}{K}, ..., \frac{1}{K}))$  and it remains to be shown that this is an equilibrium. This is easy to see as the expected profit of player 1 from playing any strategy  $(\sigma_1, \sigma_2, ..., \sigma_K)$  is equal to  $\frac{1}{K}\sigma_1 + \frac{1}{K}\sigma_2 + ... \frac{1}{K}\sigma_K = \frac{1}{K}$ if player 2 plays  $(\frac{1}{K}, ..., \frac{1}{K})$ . Hence, there is no incentive to deviate. Analogously, if player 1 plays  $(\frac{1}{K}, ..., \frac{1}{K})$ , the expected payoff of player 2 is equal to  $-\frac{1}{K}$  independently from his strategy – there is no incentive to deviate.

We obtain the desired result.

## Problem 8 (10 points)

Mummy gives Peter a knife to part the cake into two pieces. Then Sandra chooses one of them. The cake's size is 1. The share that goes to Sandra is denoted by s and Peter's share is denoted by p. Peter's utility function is

$$u_P\left(p,s\right) = p,$$

Sandra's is

$$u_S(p,s) = 2 \cdot s.$$

Determine the players' strategies! *Hint: Try to be precise concerning Sandra's set of strate-gies!* 

Find all subgame perfect equilibria!

#### Solution:

Peter's strategy set is [0, 1] as he can choose to part the cake anywhere. The strategy set of Sandra is {choose the bigger (or equal) share, choose the smaller (or equal) share}. Subgame perfect equilibria can be found by backwards induction: Since Sandra's preferences are monotone  $(u_S(p, s) = 2s$  is strictly increasing in s), she will choose the bigger (or equal) share. The share of Peter is then between 0 and  $\frac{1}{2}$ . Since Peter's preferences are also monotone, he parts the cake such that he receives exactly one half of the cake. Thus, the only subgame perfect equilibrium is  $(\frac{1}{2}, \text{choose the bigger (or equal) share})$ .

# Problem 9 (10 points)

Consider a quantity competition model with two firms, 1 and 2, having constant cost functions  $C_1(q_1) = c_1 \cdot q_1$  and  $C_2(q_2) = c_2 \cdot q_2$  with

$$c_2 = 2 \cdot c_1.$$

Inverse demand is given by p(Q) = a - bQ with  $Q = q_1 + q_2$ . Assume  $a > 7 \cdot c_1$  and all parameters being positive.

Determine the Cournot-dypoly equilibrium!

# Solution

$$\pi_i (q_i, q_j) = (p (q_i + q_j) - c_i) \cdot q_i$$
  
$$= (a - b (q_i + q_j) - c_i) \cdot q_i$$
  
$$\frac{\partial \pi_i (q_1, q_2)}{\partial q_i} = a - bq_j - 2bq_i - c_i \stackrel{!}{=} 0$$
  
$$q_i^R (q_j) = \frac{a - bq_j - c_i}{2b}$$
  
$$q_j^R (q_i) = \frac{a - bq_i - c_j}{2b}$$

$$q_{i}^{C} = \frac{a - b\left(\frac{a - bq_{i}^{C} - c_{j}}{2b}\right) - c_{i}}{2b}$$
$$q_{i}^{C} = \frac{a - 2c_{i} + c_{j}}{4b} + \frac{q_{i}^{C}}{4}$$
$$q_{i}^{C} = \frac{1}{3b}\left(a - 2c_{i} + c_{j}\right)$$

$$q_1^C = \frac{1}{3b} (a - 2c_1 + c_2)$$
$$q_2^C = \frac{1}{3b} (a - 2c_2 + c_1)$$

Setting  $c := c_1, 2c = c_2$ , we get

$$q_1^C = \frac{1}{3b} (a - 2c + 2c) = \frac{a}{3b}$$
$$q_2^C = \frac{1}{3b} (a - 4c + c) = \frac{a - 3c}{3b}$$

# Problem 10 (5 points)

Notice the following equality which holds in a Cournot equilibrium,

$$\sum_{i=1}^n s_i \frac{p - MC_i}{p} = \frac{\sum_{i=1}^n s_i^2}{|\varepsilon_{X,p}|}.$$

Give an economic interpretation of the equation! *Hint: You do not need to prove the equation.* 

# Solution:

Its about L&H, putting market power (L) and market concetration (H) in a Cournotdyopoly together, according to

$$L = \frac{H}{|\varepsilon_{X,p}|}$$

The higher the concentration, and the lower the consumers' relative reaction to a change in price (quantity), the 'stronger' are the participants.

# Problem 11 (5 points)

Define a continuous function on [0, 1) that has no maximum. What property of the domain is missing in order to be able to assure the existence of a maximum? **Solution**:

 $x \mapsto x$ . The domain should be compact, i.e. bounded and closed. (0,1) is bounded but not closed. Thus, the latter is missing.