Advanced Microeconomics Adverse selection

Harald Wiese

University of Leipzig

Part G. Contracts and principal-agent theories

- 1. Adverse selection
- 2. Hidden action

Adverse selection

- 1. Introduction
- 2. A polypsonistic labor market
- 3. A polypsonistic labor market with education
- 4. A polypsonistic labor market with education and screening
- 5. Revisiting the revelation principle

Introduction

- 2001 Nobel prize: George A. Akerlof, A. Michael Spence, and Joseph E. Stiglitz
- Informational asymmetries that are already present before the players decide whether or not to accept the contract or which contract to accept
- For example,
 - the ability of a worker is known to the worker (agent) but not to the firm (principal) who considers to hire the worker,
 - the car driver (agent) is better informed than the insurance company (principal) about the driver's accident-proneness,
 - the owner of a used car for sale (agent) may have a very good idea about the quality of that car while the potential buyer (principal) does not.
- The problem is: for a given wage, a given insurance premium, or a given price for a used car, the badly qualified workers, the high-risk insurees and the owners of bad cars are more eager to enter into a contract than the opposite types of agents.

Introduction

- At first sight, the informational asymmetry is a problem for the principal. But: It is the agent who needs to convince the principal that he is of a "good type"
- Two different classes of models

Principal	Nature	Agent chooses	Agent decides
chooses	chooses	signal.	which contract
menu of	the agent's	C	(if any)
contracts.	type.		to accept.
Signaling			
0 0	Agent	Principal observes	Agent decides
Signaling Nature chooses	Agent	Principal observes the signal, but not	Agent decides whether
Nature		1	

The market model

- The model is originally due to Akerlof (1970) who considers the market for used cars
- Many identical firms with a binary (0 or 1 worker) unit demand for labor
- The workers differ in their productivities:
 - The marginal productivity t of any worker is constant. We address the worker with productivity t as worker t.
 - There is a continuum of workers on the type interval $T := [\underline{t}, \overline{t}], \ 0 \le \underline{t} < \overline{t} < \infty.$
 - Worker t's marginal productivity is the same in every firm
 - r(t) is the opportunity cost of employment for worker t

The market model

Definition

A polypsonistic labor market is a tuple $\Gamma = (P, T, \tau, r, A, (u_t)_{t \in T}, u_P)$

- P is the principal,
- $T = [\underline{t}, \overline{t}]$ is the set of agents respectively types,
- W the set of working agents,
- au is a probability (or density) distribution on T,
- $r: \mathcal{T} \to \mathbb{R}$ is the reservation-wage function
- ► A = {y, n} is the action set for each agent, where y means ("yes" or "accept") and n ("no" or "decline")
- $u_t : \mathbb{R} \times A \to \mathbb{R}$ is agent t's payoff function defined by

$$u_t(w, a) = \begin{cases} w, & a = \mathbf{y} \\ r(t), & a = \mathbf{n} \end{cases}$$

The market model

Definition $u_P : \mathbb{R} \times 2^T \to \mathbb{R}$ is the principal's payoff function defined by $u_P (w, W) = \underbrace{E[t: t \in W]}_{\text{average productivity}} - w = \int_{t \in W} t \frac{\tau(t)}{\int_{\overline{t} \in W} \tau(\overline{t}) d\overline{t}} dt - w.$ of working agents

Definition

Let Γ be a polypsonistic labor market. An agent strategy is a function $s : T \to A$. The function $s^w : T \to A$, given by

$$s^{w}\left(t
ight) = \left\{ egin{array}{ll} \mathbf{y}, & w \geq r\left(t
ight) \ \mathbf{n}, & w < r\left(t
ight) \end{array}
ight.$$

is called the optimal agent strategy at wage rate w.

Observable productivity

The profit function is

$$u_{P}(w,W) = \int_{t \in W} (t - w(t)) \frac{\tau(t)}{\int_{\overline{t} \in W} \tau(\overline{t}) d\overline{t}} dt$$

In equilibrium, every worker is paid his marginal product:

$$w^{*}\left(t
ight)=t$$
, $t\in T$

Therefore,

$$s^{w^{*}(t)=t}(t) = \begin{cases} \mathbf{y}, & t \ge r(t) \\ \mathbf{n}, & t < r(t) \end{cases}$$

so that those workers get employed who produce less on their own than in the firm.

- Pareto efficient outcome
- Firms do not make any profit

Unobservable productivity

All the workers obtain the same wage

Definition

Let Γ be a polypsonistic labor market and s^w the optimal agent strategy. Then,

$$T\left(w
ight):=\left\{t\in T:s^{w}\left(t
ight)=\mathbf{y}
ight\}=\left\{t\in T:w\geq r\left(t
ight)
ight\}$$

is called the labor supply.

Definition

Let Γ be a polypsonistic labor market under nonobservability. A wage \widehat{w} and the worker set \hat{W} form an equilibrium if

▶
$$t \in \hat{W} \Leftrightarrow s^{\widehat{w}}(t) = \mathbf{y}$$
 and
▶ $\widehat{w} = E[t: t \in \hat{W}].$

Unobservable productivity

- Thus, our definition of equilibrium has two requirements
 - At wage rate \hat{w} , the agents who want to be employed are employed and the other agents are not, $\hat{W} = T(\hat{w})$
 - The polypsonist's expected payoff is zero

Consider

$$\widehat{w} = E[t:t \in \widehat{W}]$$

$$= E[t:t \in T(\widehat{w})]$$

$$= E[t:\widehat{w} \ge r(t)]$$

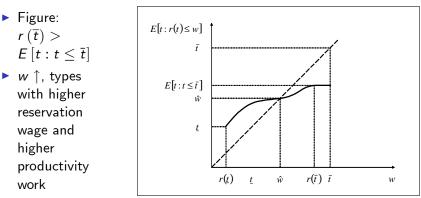
Fixed-point equation:

- wage rate \widehat{w}
- workers $T\left(\widehat{w}
 ight)=\widehat{W}$ want to be employed
- average productivity of \widehat{w}

Inefficient equilibrium?

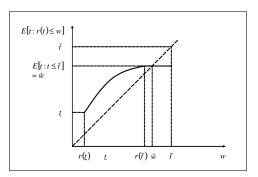
Example:

- $r(t) \leq t$ for all $t \in T$; all agents should be employed
- r is a monotonicly increasing function; productive workers have better outside options



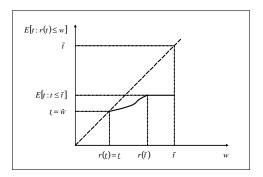
employing t?

Inefficient equilibrium?



- Figure: $r(\overline{t}) < E[t:t \leq \overline{t}]$
- There are not many badly qualified workers so that the curve of average productivity is rather steep
- Despite asymmetric information, we might obtain an efficient outcome
- Although the wage r (t̄) is sufficient to employ all the workers, the average productivity is above this wage rate

Inefficient equilibrium?



The market collapses wholesale; a numerical example:

•
$$r(t) = \alpha t$$
 with $\frac{1}{2} < \alpha < 1$

t distributed equally on [0, 2]

Inefficient equilibrium?

In this case:

$$\blacktriangleright r(\underline{t}) = r(0) = 0 = \underline{t}$$

- r (t) = αt < t for all t > 0 (i.e., all the agents should go to work)
- $E[t:r(t) \le w] = E[t:\alpha t \le w] = E[t:t \le \frac{w}{\alpha}] = \frac{1}{2}\frac{w}{\alpha} < w$

(the most productive worker has reservation price $w = r(t) = \alpha t$ and thus the productivity $\frac{w}{\alpha}$)

A polypsonistic labor market with education Introduction

- Signaling is an action undertaken by the informed party
- Just saying "I am a good type" does not help
- Useful signals need to sort good and bad types
- We use a simple two-type model to shed light on screening and signaling

A polypsonistic labor market with education

The market model

- Labor is the only input and the many identical firms have a binary unit demand for labor
- Assumption: workers need to work, but are free to choose the best wage offered to them
- Two types of workers:
 - high productivity $t_h > 0$
 - low productivity $t_l > 0$
- Disutility from schooling c (t) a (a = workers' time in schools and universities) differs:
 - high productivity workers have $c_h := c(t_h)$
 - low-productivity workers have $c_l := c(t_l)$

Assumption: $c_l > c_h > 0$

A polypsonistic labor market with education

Definition

A polypsonistic labor market with education is a tuple

$$\Gamma = ig(extsf{P}, extsf{T}, au, extsf{A}, ig(u_t ig)_{t \in extsf{T}}$$
 , $u_P ig)$ where

- P is the principal,
- $T = \{t_h, t_l\}$ is the set of types (agents),
- ► τ is a probability distribution on T with $\tau_h := \tau(t_h)$ and $\tau_l := \tau(t_l)$ denoting the respective portions of workers,
- A = ℝ₊ is the action set for each agent with actions a ∈ A denoting the number of school years,
- ► $u_t : \mathbb{R} \times A \rightarrow \mathbb{R}, t \in \{t_h, t_l\}$, defined by $u_t(w, a) = w c(t) a$
- ▶ $u_P: \{t_h, t_l\} \times \mathbb{R} \to \mathbb{R}$ defined by $u_P(t, w) = t w$

A polypsonistic labor market with education Observable productivity

The equilibirum wages are

$$w^*(t_h) = t_h > \tau_h t_h + \tau_l t_l$$
 and
 $w^*(t_l) = t_l < \tau_h t_h + \tau_l t_l$

Every worker gets his marginal productivity

 There is no need to suffer the burden of education and we have a Pareto-efficient outcome

A polypsonistic labor market with education

Unobservable productivity

- Two types of equilibria:
 - separating different types are treated differently
 - pooling all the types are treated the same
- Pooling equilibrium = equal pay:
 - Zero-profit condition implies

$$w^* = \tau_h t_h + \tau_I t_I$$

- all workers choose $a^* = 0$
- Good workers might have an incentive to be screened or to signal their good quality (e.g., by applying to universities with tough micro courses)

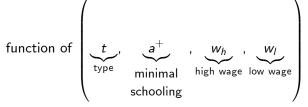
A polypsonistic labor market with education and screening Sequence and strategies

1. The principals choose wage contracts, i.e. functions $w: A \to \mathbb{R}$

We restrict attention to binary wage contracts (strategies) $s_P = (a^+, w_h, w_l)$ defined by

$$w\left(a
ight) = \left\{ egin{array}{cc} w_{h}, & a\geq a^{+} \ w_{l}, & a< a^{+} \end{array}
ight.$$

- 2. Nature chooses each worker's type, t_h or t_l
- 3. The workers decide about their education efforts $a \in A$ as a



4. The workers decide which firm to choose

Definition (Screening equilibria)

Let Γ be a polypsonistic labor market with education and screening. The strategy combination $(\hat{s}_P, \hat{s}) = ((\hat{a}^+, \hat{w}_h, \hat{w}_l), \hat{s})$ (with the principal strategy \hat{s}_P and the agent strategy \hat{s}) is a separating equilibrium

- if the principal differentiates wages and maximizes his profits which are zero, i.e., if $\hat{s}_P = (\hat{a}^+, \hat{w}_h, \hat{w}_l)$ obeys $\hat{w}_h = t_h$ and $\hat{w}_l = t_l$,
- ► if the different types act differently: $\hat{s}(t, \hat{a}^+, \hat{w}_h, \hat{w}_l) \begin{cases} \geq \hat{a}^+, & t = t_h \\ < \hat{a}^+, & t = t_l \end{cases}$, and
- ▶ if the agents maximize their payoff, i.e., if $\hat{s}(t, \hat{a}^+, w_h, w_l) = \arg \max_{a \in A} \begin{cases} w_h - c(t) a, & a \ge a^+ \\ w_l - c(t) a, & a < a^+ \end{cases}$ holds for all $(t, a^+, w_h, w_l) \in T \times A \times \mathbb{R} \times \mathbb{R}$.

 (\hat{s}_{P},\hat{s}) is a separating equilibrium —>

$$\hat{s}\left(t,\hat{a}^{+},\hat{w}_{h},\hat{w}_{l}
ight)=\left\{egin{array}{cc} \hat{a}^{+}, & t=t_{h}\ 0, & t=t_{l} \end{array}
ight.$$

- Do the agents indeed seperate themselves?
- Agent t_h prefers a^+ years of schooling over 0 years if

$$w_h - c_h a^+$$

$$\geq \underbrace{w_l - c_h \cdot 0}$$

The productive agent's payoff in case of extensive schooling

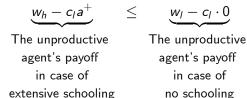
or

$$a^+ \leq rac{w_h - w_l}{c_h}$$

holds

The salary difference w_h - w_l outweights the productive type's cost of education c_ha⁺.

The unproductive agent t_l is happy not to choose any education in case of



or, solving again for a^+ ,

$$a^+ \geq rac{w_h - w_l}{c_l}.$$

The interval

$$\frac{w_h - w_l}{c_l} \le a^+ \le \frac{w_h - w_l}{c_h}$$

is non-empty.

Lemma (Screening equilibria)

Let Γ be a polypsonistic labor market with education and screening. The separating equilibria $(\hat{s}_P, \hat{s}) = ((\hat{a}^+, \hat{w}_h, \hat{w}_l), \hat{s})$ are given by

 $\hat{a}^+ > \frac{w_h - w_l}{c_l}$ cannot hold in equilibrium because then an $\varepsilon > 0$ exists such that $\hat{a}^+ - \varepsilon > \frac{w_h - w_l}{c_l}$. An ε -firm can offer the threshold $\hat{a}^+ - \varepsilon$ and the wage $t_h - \frac{1}{2}c_h\varepsilon$. Productive workers seek employment with this ε -firm by

$$\left(w_h-rac{1}{2}c_harepsilon
ight)-c_h\left(\hat{a}^+-arepsilon
ight)=w_h-c_h\hat{a}^++rac{1}{2}c_harepsilon>w_h-c_h\hat{a}^+,$$

and the ε -firm makes a positive profit of $\frac{1}{2}c_h\varepsilon$.

- ▶ Given the principals' education threashold â⁺, the agents cannot do any better than following their strategy ŝ. The productive workers choose a = a⁺ and the unproductive ones choose a = 0
- The equilibria specified in the lemma are subgame perfect. The agents choices are optimal given any principal strategy, not just an equilibrium principal strategy

A polypsonistic labor market with education and signalling

- In a somewhat similar fashion, a polypsonistic labor market with education and signaling can also be constructed. In a suchlike model, the workers, not the principals, are the first movers
- The productive workers can choose the minimum level of education â⁺ necessary to have unproductive agents shy away from education
- Screening and signalling may be beneficial for productive workers, but need not. (You can find out that productive workers benefit from education and the wage w_h if τ_l > c_h/c_l.)