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Conditional probability

De�nition
Given:

I nonempty set M,
I probability distribution prob on M;
I events A and B .

If prob (B) 6= 0, the conditional probability of A given B is de�ned
by

prob (A jB ) = prob (A\ B)
prob (B)

.

If prob (A jB ) = prob (A), A and B are independent.



Conditional probability
Exercises

Problem
Throw a dice. What is the conditional probability of 1, 2 or 3 pips
(spots) if the number of pips is odd.

Problem
If events A and B are independent what about the probability of
A\ B?



Static Bayesian games
First-price auction

I Simultaneous bids where
I the highest bidder obtains the object and
I pays his bid.

I Two bidders 1 and 2 who know their own willingness to pay
(their �type�).

I Sequence:
I Nature decides the players�types.
I Every player learns his own type and
can condition his bid on his own type.

I Static Bayesian games
= all players act simultaneously after learning their own types.



De�nitions
Static Bayesian game � example for extensive form

I N = f1, 2g ,
I T1 =

�
t11 , t

2
1

	
and

T2 =
�
t12 , t

2
2

	
,

I A1 = fa, bg and A2 = fc , dg .
I At the initial node, nature
chooses a type combination
t = (t1, t2) 2 T1 � T2.

I jT1j informations sets for player
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De�nitions
Static Bayesian game

De�nition (Static Bayesian game)
A static Bayesian game is a quintuple

Γ =
�
N, (Ai )i2N , (Ti )i2N , τ, (ui )i2N

�
= (N,A,T , τ, u) ,

where

I N = f1, ..., ng is the player set,
I Ai is the action set for player i 2 N with Cartesian product
A =�i2NAi and elements ai and a, respectively,

I T = (Ti )i2N is the tuple of type sets Ti for players i 2 N,
I τ is the probability distribution on T , and
I ui : A� T ! R is player i�s payo¤ function (often
A� Ti ! R)



De�nitions
Beliefs

Ex ante, before the players learn their own types, their beliefs are
summarized by τ. The (a priori) probability for type ti is given by

τ (ti ) := ∑
t�i2T�i

τ (t�i , ti ) .

De�nition (Belief)
Let Γ be a static Bayesian game with probability distribution τ on
T . Player i�s ex-post (posterior) belief τi is the probability
distribution on T�i given by the conditional probability

τi (t�i ) := τ (t�i jti ) =
τ (t�i , ti )

τ (ti )
=

τ (t�i , ti )

∑t�i2T�i
τ (t�i , ti )

. (1)



De�nitions
Beliefs

Problem
Two bidders 1 and 2 with T1 = T2 = fhigh, lowg (willingness to
pay) and

τ (high, high) =
1
3
, τ (high, low) =

1
3
,

τ (low, high) =
1
9
, τ (low, low) =

2
9
.

Find

I τ (t2 = high) (ex ante) and
I τ1 (t2 = high) if player 1 has learned that his own willingness
to pay is high (ex post).



De�nitions
Actions, strategies, and equilibria

De�nition
Let Γ be a static Bayesian game.

I A strategy for player i 2 N is a function si : Ti ! Ai . We
sometimes write s (t) instead of (s1 (t1) , ..., sn (tn)) 2 A.

I A strategy combination s� = (s�1 , s
�
2 , ..., s

�
n ) is a Bayesian

equilibrium (ex post) if

s�i (ti ) 2 arg max
ai2Ai

∑
t�i2T�i

τi (t�i ) ui (ai , s��i (t�i ) , ti , t�i )

holds for all i 2 N and all ti 2 Ti obeying τ (ti ) > 0.

The quali�cation τ (ti ) > 0 is necessary because τi (t�i ) is
ill-de�ned otherwise. τ (ti ) = 0 implies �anything goes�.



The Cournot model with one�sided cost uncertainty
The model

Static Bayesian game Γ = (N, (A1,A2) , (T1,T2) , τ, (u1, u2)) with

I the set of two �rms N = f1, 2g,
I the action sets A1 = A2 = [0,∞) ,
I the type sets T1 =

�
c I1, c

h
1

	
= f15, 25g , T2 = f20g,

(c2 = 20 known to both, c1 known to 1, only)
I probability distribution τ on T given by

τ (15, 20) = τ (25, 20) = 1
2

I inverse demand function given by p (X ) = 80� X and hence
I the payo¤ functions
u2 (x1, x2, t2) = (p (X )� c2) x2 = (80� (x1 + x2)� 20) x2
and

u1 (x1, x2, t1) =
�
(80� (x1 + x2)� 15) x1, t1 = c l1
(80� (x1 + x2)� 25) x1, t1 = ch1



The Cournot model with one�sided cost uncertainty
The model

The types are independent (trivial).
I Ex-ante probabilities:

τ (20) : = τ (15, 20) + τ (25, 20) =
1
2
+
1
2
= 1,

τ (15) : = τ (15, 20) =
1
2
, and

τ (25) : = τ (25, 20) =
1
2
.

I Ex-post probability for c2 = 20 (player 1�s belief):

τ1 (20) =
τ (t1, 20)

τ (t1)
=

1
2
1
2

= 1 = τ (20) .

I Ex-post probability for c1 = 15 (player 2�s belief):

τ2 (15) =
τ (15, 20)

τ (20)
=

1
2

1
=
1
2
= τ (15) .



The Cournot model with one�sided cost uncertainty
The static Bayesian equilibrium

I Strategy sets:
I player 2: S2 = fs2 : fc2g ! [0,∞)g to be identi�ed with A2
I player 1 : S1 =

n
s1 :

n
c I1, c

h
1

o
! [0,∞)

o
.

I Firm 1�s choice depends on its type:

sR1 (t1) =

�
argmaxx12[0,∞)

�
80� (x1 + x2)� c l1

�
x1, t1 = c l1

argmaxx12[0,∞)
�
80� (x1 + x2)� ch1

�
x1, t1 = ch1

=

� 65
2 �

1
2x2, t1 = c l1

55
2 �

1
2x2, t1 = ch1



The Cournot model with one�sided cost uncertainty
The static Bayesian equilibrium

I Firm 2�s pro�t is the expected value

τ (15)
�
80�

h
x l1 + x2

i
� 20

�
x2

+τ (25)
�
80�

h
xh1 + x2

i
� 20

�
x2

=

�
60� 1

2

h
x l1 + x

h
1

i�
x2 � x22

which leads to the reaction function

xR2 = s
R
2 (20) = 30�

1
4

h
x l1 + x

h
1

i
.

I Three equations in the three unknowns x2, x l1, and x
h
1 .

I They lead to the Nash equilibrium

x�2 = 20, s
�
1

�
c l1
�
=
45
2
, and s�1

�
ch1
�
=
35
2
.



Revisiting mixed-strategy equilibria
Continuous types

I We assume two players i = 1, 2 with types ti from
Ti = [0, x ] , x > 0.

I Types are independent.

I Density function:

τx (a) =
� 1

x , a 2 [0, x ]
0, a /2 [0, x ]

I Hence, for 0 � a � b � x ,

τx ([a, b]) =

bZ
a

τx (t) dt =
b� a
x

.

0 a b x

1/x

it

I The probability for a speci�c type a is zero:
τx ([a, a]) = a�a

x = 0.
I Careful: Distinguish τx ([a, a]) from τx (a).



Revisiting mixed-strategy equilibria
Introducing uncertainty

I Static Bayesian games allow a fresh look on mixed equilibria.
I For a given matrix game with a mixed-strategy equilibrium,
we construct a sequence of static Bayesian games that
converges towards that game.

I In every Bayesian game, no player i 2 N randomizes.
However, from the point of view of the other players from
Nn fig who do not know the type ti , it may well seem as if
player i is a randomizer.



Revisiting mixed-strategy equilibria
Introducing uncertainty

Peter

Cathy

theatre football

theatre 2+ tC , 1 0, 0

football 0, 0 1, 2+ tP

Three equilibria.
�� 2
3 ,
1
3

�
,
� 1
3 ,
2
3

��
is the properly mixed one for

tC = tP = 0.

Result (as shown in the manuscript): Cathy�s probabilities in the
static Bayesian games (which depend on x) converge towards her
equilibrium mixed strategy as x goes towards 0.



The �rst-price auction
The model

I Two bidders 1 and 2 with types t1, t2 2 [0, 1] .
I Player 1�s distribution is given by

0 a b 1

1

1t



The �rst-price auction
The model

Formally, the �rst-price auction is the static Bayesian game

Γ = (N, (A1,A2) , (T1,T2) , τ, (u1, u2))

where

I N = f1, 2g is the set of the two bidders,
I A1 = A2 = [0,∞) are the sets of bids chosen by the bidders,
I T1 = T2 = [0, 1] are the type sets,
I τ is the a probability distribution on T given by

τ ([a, b] , [c , d ]) = (b� a) (d � c) where 0 � a � b � 1 and
0 � c � d � 1 hold, and



The �rst-price auction
The model

I the payo¤ functions are de�ned by

u1 (a, t1) =

8<:
t1 � a1, a1 > a2,
t1�a1
2 , a1 = a2,

0, a1 < a2,
and

u2 (a, t2) =

8<:
0 a1 > a2,
t2�a2
2 a1 = a2,

t2 � a2 a1 < a2.



The �rst-price auction
Solution

In order to solve the �rst-price auction, we use the ex-post
equilibrium de�nition. For example, if player 1 is of type t1 2 [0, 1],
his condition for the equilibrium strategy combination (s�1 , s

�
2 ) is

s�1 (t1) 2 arg max
a12A1

0BBBB@(t1 � a1) τ (ft2 2 [0, 1] : a1 > s�2 (t2)g)| {z }
probability that player 1�s bid
is higher than player 2�s bid

+
1
2
(t1 � a1) τ (ft2 2 [0, 1] : a1 = s�2 (t2)g)| {z }

probability for equal bids =0

1CA .



The �rst-price auction
Solution

I Following Gibbons (1992, pp. 152), we restrict our search for
equilibrium strategies to linear strategies of the forms

s�1 (t1) = c1 + d1t1 (d1 > 0),

s�2 (t2) = c2 + d2t2 (d2 > 0).

I By

τ (ft2 2 [0, 1] : a1 > c2 + d2t2g)

= τ

��
t2 2 [0, 1] : t2 <

a1 � c2
d2

��
= τ

��
0,
a1 � c2
d2

��
=
a1 � c2
d2

,

... (next slide)



The �rst-price auction
Solution

I player 1�s maximization problem is solved by

sR1 (t1) = arg max
a12A1

(t1 � a1)
a1 � c2
d2

=
c2 + t1
2

.

I Player 1�s best response to c2 (and hence to player 2�s
strategy) is a linear strategy with c1 = c2

2 and d1 =
1
2 .

I Analogously, bidder 2�s best response is

sR2 (t2) =
c1 + t2
2

with c2 = c1
2 and d2 =

1
2 .

I Now, c1 = c2
2 =

c1
2
2 =

c1
4 implies c1 = 0. Equilibrium

candidate:

s�1 : [0, 1]! R+, t1 7! s�1 (t1) =
t1
2
and

s�2 : [0, 1]! R+, t2 7! s�2 (t2) =
t2
2



The �rst-price auction
Solution

I These strategies form an equilibrium because the strategies
are best reponses to each other. If player 2 uses the (linear)
strategy s�2 , s

�
1 (t1) =

t1
2 is a best response as shown above.

Thus, s�1 turns out to be a linear strategy.
I Therefore, we have found an equilibrium in linear strategies
but cannot exclude the possibility of an equilibrium in
non-linear strategies.



The �rst-price auction
First-price or second-price auction?

I We now take the auctioneer�s perspective and ask the
question whether the �rst-price auction is preferable to the
second-price auction. The auctioneer compares the prices

I min (t1, t2) for the second-price auction and
I max

�
1
2 t1,

1
2 t2
�
for the �rst-price auction.

I We assume a risk-neutral auctioneer who maximizes the
expected payo¤.

I It can be shown (see manuscript) that the auctioneer is
indi¤erent between the �rst-price and the second-price
auction!



Further exercise

Game GA with probability p > 1
2 , game GB with probability 1� p.

Assume L > M > 1.

GA left right

up M , M 1 , �L

down �L , 1 0 , 0

GB left right

up 0 , 0 1 , �L

down �L , 1 M , M

(a) Assume that both players are informed which game they play
before they choose their actions. Formulate this game as a
static Bayesian game!

(b*) Assume that player 1 learns whether they play GA or GB while
player 2 does not. Formulate this game as a static Bayesian
game and determine all of its equilibria!
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