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Examples: Non-simultaneous moves in simple bimatrix
games

stag hare

stag 5, 5 1 2 0, 4

hare 4, 0 4, 4 1 2

hare

1

2

2

hare

hare

stag

stag

stag

( )5,5

( )0,4

( )4,0

( )4,4

Player 1�s strategies: bstagc , bharec
Player 2�s strategies:
bstag, harec , bstag, stagc , bhare, harec , bhare, stagc
I backward-induction trails versus
I backward-induction strategy combinations!



Examples: Non-simultaneous moves in simple bimatrix
games

Problem
Find the backward-induction solution for the game of chicken!

Solution
Driver 1 has a �rst-mover advantage
in the game of chicken. He chooses
�continue� so that driver 2 is forced
to swerve.
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Indian Fables: The tiger and the traveller
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Indian Fables: The lion, the mouse, and the cat
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Indian Fables: The cat and the mouse
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Stackelberg model
recipe: how to solve the Stackelberg model

Pro�t functions:

Π1 (x1, x2) = (a� b (x1 + x2)) x1 � c1x1
Π2 (x1, x2) = (a� b (x1 + x2)) x2 � c2x2

I Leader moves �rst, x1
I Follower observes x1, chooses x2

xR2 (x1) = argmax
x2

Π2 (x1, x2) =
a� c2
2b

� 1
2
x1

I Player 1 anticipates reaction, reduced pro�t function

Π1 (x1) := Π1

�
x1, xR2 (x1)

�
= p

�
x1 + xR2 (x1)

�
x1 � c1x1



Stackelberg model
recipe: how to solve the Stackelberg model

I Backward-induction quantities: xS1 := argmaxx1 Π1 (x1) ,
xS2 := xR2

�
xS1
�

I Player 1 chooses pro�t-maximizing point on the follower�s
reaction curve

Stackelberg outputs

2x

1xCx1
MS xx 11 =

Mx2

( )21 xxR

( )12 xxR

Cx2
Sx2

C

S



Stackelberg model
recipe: how to solve the Stackelberg model

Leader�s reduced pro�t function:

Π1 (x1) : = Π1

�
x1, xR2 (x1)

�
= p

�
x1 + xR2 (x1)

�
x1 � c1x1

=

�
a� b

�
x1 +

�
a� c2
2b

� 1
2
x1

���
x1 � c1x1

= ax1 � bx21 � b
a� c2
2b

x1 +
1
2
bx21 � c1x1

FOC:

MR1(x1) = a� bx1 �
b(a� c2)
2b

!
= c1 = MC1(x1)

Resulting outputs:

xS1 =
a� 2c1 + c2

2b
, xS2 := xR2

�
xS1
�
=
a+ 2c1 � 3c2

4b
X S : = xS1 + x

S
2



Stackelberg model
recipe: how to solve the Stackelberg model

Resulting price:

p
�
X S
�
= a� bX S = 1

4
(a+ 2c1 + c2)

Resulting pro�ts:

ΠS
1 =

1
8
(a+ c2 � 2c1)2

b
,ΠS

2 =
1
16
(a� 3c2 + 2c1)2

b



Stackelberg model
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Stackelberg model
strategies and equilibria

I action sets: [0,∞)
I player 2�s move depends on player 1�s
I x2 = s2 (x1)

s2 : [0,∞)! [0,∞) ,
x1 7! s2 (x1)

I e.g.

sM2 : x1 7!
�
xM2 , x1 = 0
xL2 , x1 > 0.

I Nash equilibrium �
0, sM2

�



Stackelberg model
strategies and equilibria
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Stackelberg model
strategies and equilibria

xS2 2 R+ can be understood as a constant function
xS2 : [0,∞)! [0,∞) with xS2 (x1) = x

R
2

�
xS1
�
for all x1 2 [0,∞)

Problem
Which of the following strategy combinations are Nash equilibria of
the Stackelberg model?

1.
�
xS1 , x

R
2

�
xS1
��

2.
�
xS1 , x

R
2

�
3.
�
xC1 , x

C
2

�



Stackelberg model
strategies and equilibria

Solution

1.
�
xS1 , x

R
2

�
xS1
��
is not an equilibrium. Facing xS2 = x

R
2

�
xS1
�
,

�rm 1�s optimal choice is xR1
�
xS2
�
6= xS1 .

2.
�
xS1 , x

R
2

�
is the subgame-perfect equilibrium (obtained by

backward induction).

3.
�
xC1 , x

C
2

�
is a Nash equilibrium, but not subgame perfect.



Stackelberg model
Cournot versus Stackelberg

I Consider R1 (x1) = p (X ) � x1.

MR1(x1) = p (X ) +
dp
dX

dX
dx1

x1 (chain rule)

I With X = x1 + xR2 (x1)

MR1(x1) = p (X ) +
dp
dX

d
�
x1 + xR2 (x1)

�
dx1

x1

I Thus MR1(x1) = p(X ) +
dp
dX

∂x1
∂x1
x1 +

dp
dX

∂xR2 (x1)
∂x1

x1

= p(X ) + x1
dp (X )
dX| {z }

direct e¤ect

+ x1
dp (X )
dX| {z }
<0

dxR2 (x1)
dx1| {z }
<0| {z }

follower e¤ect, > 0

(
dx1
dx1

= 1).

I No (positive) follower e¤ect in Cournot�s model; xS1 > x
C
1



Stackelberg model
a problem with three �rms I

Problem
Three �rms, inverse demand p (X ) = 100� X . Average cost are
zero. Firm 1 moves �rst; �rms 2 and 3 move second and
simultaneously.

Solution

I Firm 2�s pro�t

Π2 (x1, x2, x3) = p (X ) x2 � C (x2)
= (100� x1 � x2 � x3) x2 � C (x2)

I Firm 2�s and �rm 3�s reaction functions

xR2 (x1, x3) =
100� x1 � x3

2

xR3 (x1, x2) =
100� x1 � x2

2



Stackelberg model
a problem with three �rms II

Solution

I Cournot equilibrium between �rms 2 and 3:
xC2 (x1) =

100�x1
3 , xC3 (x1) =

100�x1
3

I Firm 1�s reduced pro�t

Π1

�
x1, xC2 (x1) , x

C
3 (x1)

�
=
�
100� x1 � xC2 (x1)� xC3 (x1)

�
x1� 0

I xS1 = 50 and x
C
2 (50) = x

C
3 (50) =

50
3
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Perfect-information extensive-form game

Game Γ =

I Initial node and exactly one trail
initial node � > end node

I Player set N = f1, ..., ng
I Decision nodes Di , i 2 N (Di 6= ∅) with union D
Nodes at which actions can be taken
Di \Dj = ∅ for i 6= j

I Actions Ad at d 2 D and union A
I Terminal nodes = end nodes E :
with payo¤ information for all the players

I set of all nodes

D[E = (D1[...[Dn)[E



Strategies
de�nition

As in extensive-form decision situations, strategies are not given,
but need to be de�ned.

De�nition
A strategy for player i is a function si : Di ! A where si (d) 2 Ad
for all d 2 Di .
Assuming information partition Ii for player i (imperfect
information!):

De�nition
A strategy for player i is a function si : Di ! A where, for all
d 2 Di ,
I si (d) 2 Ad and
I si (d) = si (d 0) for all d 0 2 Ii (d).



Transforming extensive- into strategic-form games
example: take it or leave it

0

accept

reject

(1, 2)

(0, 0)

accept

reject

(0, 3)

(0, 0)

1

2

3

accept

reject

(3, 0)

(0, 0)

accept

reject

(2, 1)

(0, 0)

1

2

2

2

2

Strategy sets for
players 1 and 2?



Transforming extensive- into strategic-form games
example: take it or leave it

Solution
Player 2 has 16 strategies,
e.g. breject, accept, accept, acceptc ,
breject, accept, reject, acceptc 0
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reject

(1, 2)

(0, 0)

accept

reject

(0, 3)
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Transforming extensive- into strategic-form games
example: take it or leave it

Player 2�s strategies comprise:
I player 2 does not accept:

breject, reject, reject, rejectc

I player 2 accepts i¤ o¤ered � 2 coins:

breject, reject, accept, acceptc

I player 2 accepts if no coin or two coins are
o¤ered to him, otherwise he rejects:

baccept, reject, accept, rejectc

0

accept

reject

(1, 2)

(0, 0)

accept

reject

(0, 3)

(0, 0)

1

2

3

accept

reject

(3, 0)

(0, 0)

accept

reject

(2, 1)

(0, 0)

1

2

2

2

2



Transforming extensive- into strategic-form games

Once the strategies are de�ned,
every combination of strategies leads to speci�c payo¤s and
a strategic game Γ is de�ned.

Best responses & Nash equilibria as usual



Nash equilibria in extensive-form games

Problem
Are

(b2c , breject, reject, accept, acceptc)

and

(b2c , baccept, reject, accept, rejectc)

Nash equilibria?
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Subgame perfection and backward induction
subgames

Consider a decision node w 2 D.
w and the nodes following w make up the set W .

I Game Γw generated from game Γ
= subgame

I if W \Di 6= ∅,
strategy swi (in Γw ) generated from strategy si (in Γ)
= the restriction of si to W
= player i�s substrategy of si 2 Si



Subgames and subgame perfection
subgames

Five subgames,
four proper subgames

Strategy
s2 = baccept, reject, accept, rejectc
generates substrategies
I s2 for the improper subgame and
I bacceptc or brejectc at the
proper subgames
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Subgame perfection and backward induction
subgame perfection

De�nition
A strategy combination s is subgame perfect if sw is a Nash
equilibrium in every subgame Γw .

Problem
Subgame perfect?

I (b2c , breject, reject, accept, acceptc)
I (b0c , baccept, accept, accept, acceptc)
I (b1c , breject, accept, accept, acceptc)
I (b1c , baccept, accept, accept, acceptc)
I (b0c , breject, accept, accept, acceptc)

0
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(0, 0)
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Backward induction for perfect information

Trivial example: decision situation

9

5

5

3

6

10

10
4

8

Backward induction means
I starting with the smallest
subtrees,

I noting the best actions,
I and working towards the
initial node,

I while carrying the payo¤
information of all players

I Backward-induction trails versus
I backward-induction strategy combinations!



Subgame perfection and backward induction
backward induction

Problem
How many backward-induction trails and how
many backward-induction strategy combinations
can you �nd? 0
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Subgame perfection and backward induction
backward induction

Solution
Player 2 indi¤erent when
o¤ered 0. Hence
I two backward-induction
trees,

I two backward-induction
trails and

I two backward-induction
strategy combinations.
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Subgame perfection and backward induction

Theorem
Let Γ be of �nite length. Then,

I the set of subgame-perfect strategy combinations and
I the set of backward-induction strategy combinations

coincide.

Thus, you can �nd all subgame-perfect strategy combinations by
applying backward induction.
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Multi-stage games

Description

I Every player chooses at most one action at every stage
I Each player knows all the actions undertaken in previous
stages but

I no action other than one�s own in the present stage

I node d 2 D addresses a stage, not a decision node
I strategies assign actions to the stages



Multi-stage games
Cournot dyopoly

Two equivalent Cournot trees,
but how many stages?

lx1

2

1
lx1

lx2

hx2

hx1

hx1

1
lx2

1

2
lx2

lx1

hx1

hx2

hx2

2



Multi-stage games
Cournot dyopoly

lx1

2

1
lx1

lx2

hx2

hx1

hx1

1
lx2

1

2
lx2

lx1

hx1

hx2

hx2

2

2

1

x
x

2

1

Π

Π

�Very compact
form�

of the games
indicated by the

trees

One stage, only!



Multi-stage games
Stackelberg dyopoly

Stackelberg very compact

1x 2x
2

1

Π
Π

Problem
Draw the very compact form of the take-it-or-leave-it game!



Multi-stage games
Take-it-or-leave-it game

Problem
Draw the very compact form of the take-it-or-leave-it game!

Solution
Player 1 makes an o¤er x1 (x1 2 f0, 1, 2, 3g) and player 2 gives an
answer a2 (a2 2 faccept, rejectg) to that o¤er.

1x 2a
2

1

Π

Π



Multi-stage games
backward induction - Stackelberg game

1x 2x
2

1

Π
Π

I First focus on last stage

) xR2

I Substitute into 1�s pro�t function

) reduced pro�t Π1

�
x1, xR2 (x1)

�
) Equilibrium quantities:

�
xS1 , x

R
2

�
xS1
��

) Subgame-perfect equilibrium
�
xS1 , x

R
2

�



Multi-stage games
backward induction

Other examples: a1 and a2 stand for product varieties, advertising
...

2

1

p
p

2

1

Π
Π

2

1

Π
Π

2

1

a
a

1p 2p
2

1

a
a



Multi-stage games
backward induction

2

1

p
p

2

1

Π

Π

2

1

Π

Π

2

1

a
a

1p 2p
2

1

a
a

I Last stage:
�
pB1 (a1, a2) , p

B
2 (a1, a2)

�
I Substitute p1 and p2 into pro�t functions ) reduced pro�t
functions

I Calculate equilibrium varieties
�
aN1 , a

N
2

�
I SPE: ��

aN1 , p
B
1

�
,
�
aN2 , p

B
2

��
I pB1 is a function (a1, a2) 7! pB1 (a1, a2)
I prices in equilibrium: pB1

�
aN1 , a

N
2

�
and pB2

�
aN1 , a

N
2

�
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Product di¤erentiation
Hotelling�s one-street village

I Vertical (quality) product di¤erentiation
I Horizontal product di¤erentiation
I Hotelling linear space

transportation cost / disutility

1a 2ah0 1

( )2
1aht − ( )2

2 hat −



Product di¤erentiation
demand functions

transportation cost / disutility

1a 2ah0 1

( )2
1aht − ( )2

2 hat −

De�nition
Two products 1 and 2 are homogeneous if p1 < p2 implies
x2 (p1, p2) = 0 and if p1 > p2 implies x1 (p1, p2) = 0.

Products 1 and 2 are homogeneous if a1 = a2 or t = 0 hold as we
will see below.



Product di¤erentiation
demand functions

Assumptions:
I Every consumers buys one unit

x1 + x2 = 1

I Consumer at h buys from 1 if

p1 + t (h� a1)2 � p2 + t (a2 � h)2

i¤
h � a2 + a1

2
+

p2 � p1
2t (a2 � a1)

=: h�

Induced demand (a := a2+a1
2 and ∆a := a2 � a1):

x1(p1, p2, a1, a2) = h� = a|{z}
demand

for p1 = p2

+
1

2t∆a| {z }
competition
intensity

(p2 � p1)| {z }
�rm 1�s

price advantage



Product di¤erentiation
demand functions

x1(p1, p2, a1, a2) = h� = a+
1

2t∆a
(p2 � p1)

I Product di¤erentiation makes demand inelastic (assume
p1 = p2 and maximal di¤erentiation (a1 = 0, a2 = 1)):

εx1,p1 jp1=p2=p =
∂x1
∂p1

p1
x1

����
p1=p2=p

=
�1
2t∆a

p1
x1

����
p1=p2=p

= �p
t
.

I Demand for p1 = p2 or high di¤erentiation
) consumers in [0, a) buy good 1

I Product di¤erentiation lessens competition intensity:

1
2t∆a

=

���� ∂x1∂p1

����
De�nition: competition intensity high if small changes in
variables lead to huge changes of sales or pro�ts



Product di¤erentiation
the positioning game

Problem
Assume that the government regulates prices at p1 = p2 > c1 = c2
where c1 and c2 are the average costs of the two �rms. The �rms
1 and 2 simultaneously determine their positions a1 and a2,
respectively. Can you �nd an equilibrium?

Four steps:

I In equilibrium, we have a1 = a2. Otherwise ...
I In equilibrium, we have a1 = a2 = 1

2 . Otherwise ...
I (a1, a2) =

� 1
2 ,
1
2

�
is an equilibrium. If a �rm deviates, ...

I (a1, a2) =
� 1
2 ,
1
2

�
is the unique equilibrium.

Remember the political parties in the game-theory chapter!



Product di¤erentiation
the game

2

1

p
p

2

1

Π
Π

2

1

a
a

pro�t functions

Π1 = (p1 � c) x1 = (p1 � c)
�
a+

p2 � p1
2t∆a

�
Π2 = (p2 � c) x2 = (p2 � c)

�
1� a+ p1 � p2

2t∆a

�



Solving the two-stage game
the second stage

I Backward induction
I Π1 = (p1 � c)

�
a+ p2�p1

2t∆a

�
,Π2 = (p2 � c)

�
1� a+ p1�p2

2t∆a

�
,

disregarding corner solutions:

pR1 (p2) = argmax
p1

Π1 =
p2 + c + 2ta∆a

2

pR2 (p1) = argmax
p2

Π2 =
p1 + c + 2t (1� a)∆a

2

I Prices are strategic complements. Household theory:
I demand increase for one good (due to a price decrease)
I leads to a demand increase of the complement.

I Prices are relatively low if the �rms are positioned near each
other:

∂pR1 (p2)
∂a1

= �ta1 and
∂pR1 (p2)

∂a2
= ta2



Solving the two-stage game
the second stage

pR1 (p2) =
p2+c+2ta∆a

2 , pR2 (p1) =
p1+c+2t(1�a)∆a

2

( )21 pp R

( )12 ppR

1p

2p

Bp1
BSp1

Bp2

BSp2

pB1 = c +
2
3
t (1+ a)∆a

pB2 = c +
2
3
t (2� a)∆a

Equilibrium quantities: xB1 =
1
3 (1+ a) , x

B
2 =

1
3 (2� a)

(Reduced) pro�ts: ΠB
1 =

2
9
t (1+ a)2 ∆a, ΠB

2 =
2
9
t (2� a)2 ∆a



Solving the two-stage game
problem

Π1 = (p1 � c)
�
a+

p2 � p1
2t∆a

�
,Π2 = (p2 � c)

�
1� a+ p1 � p2

2t∆a

�

Problem
Assume maximal di¤erentiation, i.e., a1 = 0 and a2 = 1. Solve the
sequential pricing game: �rm 1 moves �rst and �rm 2 moves
second, just as in the Stackelberg model. Show that we have a
second-mover advantage. Show also that the leader�s pro�t is
higher in the sequential case than in the simultaneous one. Do you
see why this is necessarily true?



Solving the two-stage game
solution I

Solution

I Firm 2�s reaction function

pR2 (p1) = argmax
p2

Π2 =
p1 + c + 2t (1� a)∆a

2
=
p1 + c + t

2

I Firm 1�s reduced pro�t function

Π1 (p1) = (p1 � c)
�
1
2
+
pR2 (p1)� p1

2t

�
I Equilibrium prices

pBS1 = argmax
p1

�
Π1(p1, pR2 (p1))

�
= c+

3t
2
> c+

5
4
t = pR2

�
pBS1

�



Solving the two-stage game
solution II

Solution

I Second-mover advantage

ΠBS
1 =

�
pBS1 � c

��1
2
+
pR2 (p

BS
1 )� pBS1
2t

�
=
18
32
t

<
25
32
t =

�
pR2 (p

BS
1 )� c

��1
2
+
pBS1 � pR2 (pBS1 )

2t

�
= ΠBS

2

I but, of course,

ΠBS
1 =

9
16
t >

8
16
t = ΠB

1



Solving the two-stage game
the �rst stage

I Reduced pro�t function

ΠB
1 (a1, a2) =

2
9
t (1+ a)2 ∆a =

1
18
t (2+ a1 + a2)

2 (a2 � a1)

I Given 0 � a1 � a2
∂ΠB

1

∂a1
= � t

18
(2+ a1 + a2) (2+ 3a1 � a2) < 0

and hence
aR1 (a2) = 0 for all a2 � a1

I Analogously
aR2 (a1) = 1

I First-stage equilibrium�
aN1 , a

N
2

�
= (0, 1)



Solving the two-stage game
maximal di¤erentiation

I Finally

pB1 = c + t, pB2 = c + t,

xB1 =
1
2 , xB2 =

1
2 ,

ΠB
1 =

1
2 t, ΠB

2 =
1
2 t.



Direct and strategic e¤ects
accomodation

We evaluate the e¤ect o �rm 1 �moving closer� to �rm 2 on �rm
1�s pro�t.
Firm 1�s reduced pro�t:

ΠB
1 (a1, a2) = Π1

�
a1, a2, pB1 (a1, a2) , p

B
2 (a1, a2)

�
and its derivative with respect to a1:

∂ΠB
1

∂a1
=

∂Π1

∂a1
+

∂Π1

∂p1

∂pB1
∂a1

+
∂Π1

∂p2

∂pB2
∂a1



Direct and strategic e¤ects
accomodation

ΠB
1 (a1, a2) = Π1

�
a1, a2, pB1 (a1, a2) , p

B
2 (a1, a2)

�
∂ΠB

1

∂a1
=

∂Π1

∂a1|{z}
> 0

direct or
demand e¤ect

+
∂Π1

∂p1|{z}
=0

∂pB1
∂a1| {z }

= 0
�rst-order condition

at stage 2
(envelope theorem)

+
∂Π1

∂p2|{z}
>0

∂pB2
∂a1|{z}
<0| {z }

< 0
strategic e¤ect
of positioning



Direct and strategic e¤ects
accomodation

I Using Π1 = (p1 � c) x1

ΠB
1 (a1, a2) =

�
pB1 (a1, a2)� c

�
x1
�
a1, a2, pB1 (a1, a2) , p

B
2 (a1, a2)

�
I

∂ΠB
1

∂a1
=
�
pB1 (a1, a2)� c

� ∂x1
∂a1| {z }

> 0
direct or

demand e¤ect

+
�
pB1 (a1, a2)� c

�
| {z }

>0

∂x1
∂p2|{z}
>0

∂pB2
∂a1|{z}
<0| {z }

< 0
strategic e¤ect
of positioning

I Quadratic transportation costs imply

∂ΠB
1

∂a1
� 0.



Direct and strategic e¤ects
entry deterrence

ΠB
2 (a1, a2) = Π2

�
a2, a1, pB2 (a1, a2) , p

B
1 (a1, a2)

�

∂ΠB
2

∂a1
=

∂Π2

∂a1|{z}
< 0

direct or
demand e¤ect

+
∂Π2

∂p2|{z}
=0

∂pB2
∂a1| {z }

= 0
�rst-order condition

at stage 2
(envelope theorem)

+
∂Π2

∂p1|{z}
>0

∂pB1
∂a1|{z}
<0| {z }

.

< 0
strategic e¤ect
of positioning



Games in extensive form
overview

1. Examples: Non-simultaneous moves in simple bimatrix games

2. Example: the Stackelberg model

3. Transforming an extensive-form game into a strategic-form
game

4. Subgame perfection and backward induction

5. Multi-stage games

6. Product di¤erentiation

7. Strategic trade policy



Trade theory and policy
Introducing models of imperfect competition

I Thirty years ago, trade theory and policy were analyzed with
models of perfect competition.

I Free trade was a usual implication of these models.
I Since the beginning of the 1980s, models and
recommendations have changed. At �rst, the researchers used
Cournot models.

I Brander (1981) and Brander/Krugman (1983) show that free
trade can lead to the exchange of identical products.

I In another strand of the literature, Brander/Spencer (1981,
1983) reason that export subsidies can bene�t exporting �rms
over and above the subsidies.
� > strategic trade policy



Strategic trade policy
Quantity competition in a third country

I Two �rms d and f in two countries d (Germany) and f
(France) produce for a market in a third country (Italy).

I Inverse demand function p (X ) = a� bX
I Identical marginal and average cost c := cd = cf with c < a.
I The German government tries to maximize welfare by
choosing an appropriate unit subsidy s bene�tting its �rm d .
Welfare is given by

W (s) = ΠC
d (c � s, c)� sxCd (c � s, c) .

I Optimal subsidy

s� := argmax
s2R

W (s) =
a� c
4

> 0.



Strategic trade policy
Understanding the logic of strategic trade policy I

I The subsidy has a direct e¤ect on welfare and a strategic
e¤ect.

I The direct e¤ect (holding the outputs constant): From our
welfare point of view, it does not matter whether a sum of
money ends up in the pockets of the domestic �rm or in those
of the government.

I The indirect e¤ect (working through the �rms�quantities):
The subsidy amounts to a cost decrease for the domestic �rm
d :

∂Πd

∂xf|{z}
<0

∂xCf
∂s|{z}
<0| {z }

>0

> 0,



Strategic trade policy
Understanding the logic of strategic trade policy II

Cournot­Nash
equilibria

dx

fx

grantedis0>s

R
dx

R
fx

sR
dx ,

xCd (c � s�, c)

=
a� c + 2s�

3b

=
a� c
2b

= xSd (c , c) .



Strategic trade policy
Judging strategic trade policy

I Eaton/Grossman (1986): Using price competition rather than
quantity competition, the government should tax exports
rather than handing out subsidies (see further exercises).

I Helpman/Krugman (1989): �One can always do better than
free trade, but the optimal tari¤s or subsidies seem to be
small, the potential gains tiny, and there is plenty of room for
policy errors that may lead to eventual losses rather than
gains. [...] The case for free trade has always rested on an
argument that it represents a good rule of thumb given
uncertainty about the alternatives, realistic appreciation of the
di¢ culties of managing political intervention, and the need to
avoid trade wars.�



Further exercises I

Problem 1
Analyze the sequential �head or tail� game where player 1 moves
�rst.

Problem 2
Work through the innovation chapter in Pfähler/Wiese:
Unternehmensstrategien im Wettbewerb.

Problem 3
Reconsider the police game where 0 < C < 4 and F > 1 holds.
Let the police be the �rst mover and assume that the indi¤erent
agent abstains from committing a crime. Find the optimal control
probability!

agent

police

fraud
no
fraud

control 4� C , 1� F 4� C , 0
no

control
0, 1 4, 0



Further exercises II

Problem 4
Consider the centipede game! For every player, a strategy is a
99-tuple. For example, bg, g, g, g, f, ..., fc is the strategy
according to which a player chooses "go on" at his �rst four
decision nodes and chooses "�nish" at all the others.
I Which strategy would you choose if you were player 1?
I Can player 1�s strategy bg, g, g, g, f, ..., fc be part of a
subgame-perfect strategy combination?

I Solve the centipede game by backward induction!
I Do you want to reconsider your answer to the �rst question?

1

(1,
1)

2

(0,
3)

1

(98,
98)

2

(97,
100)

1

(99,
99)

2

(98,
101)

(100,
100)

f

g

f

g

f

g

f

g

f

g

f

g



Further exercises III

Problem 5
Two �rms A and B
p(Q) = 48�Q
c = 12

a) Reaction functions?
Cournot outputs?

b) A Stackelberg leader
Stackelberg outputs?
Stackelberg equilibrium?

c) Cartel solution?

d) Perfect-competition quantity (p = MC )? Why are

I Cournot results also called two-thirds solution
and

I Stackelberg results also called three-fourths
solution?



Further exercises IV

Problem 6
Analyze the optimal subsidy for price competition on the Hotelling
linear space
The model:

I Two �rms d and f o¤er maximally di¤erentiated products,
∆a = 1. Therefore demand curves

xd =
1
2
+
pf � pd
2t

and

xf =
1
2
+
pd � pf
2t

.

I Units pro�ts are pd � (c � s) for �rm d and pf � c for �rm f .
I Show: Equilibrium prices are

pBd = t + c � 2
3
s and

pBf = t + c � 1
3
s.



Further exercises V

Problem 6 (sequel)

I Show: The resulting quantity supplied by �rm d is

xBd =
1
2
+
pBf � pBd
2t

=
1
2
+
1
6
s
t
.

I Trust
W (s) = ΠB

d (c � s, c)� sxBd (c � s, c) =
�
t � 2

3 s
� � 1

2 +
1
6
s
t

�
I Show: The welfare maximizing �subsidy� is

s� = �3
4
t.
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