Advanced Microeconomics Games in strategic form

Harald Wiese

University of Leipzig

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Part C. Games and industrial organization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 1. Games in strategic form
- 2. Price and quantity competition
- 3. Games in extensive form
- 4. Repeated games

Games in strategic form

overview

1. Introduction, examples and definition

- 2. Best responses (marking technique)
- 3. Dominance
- 4. Rationalizability
- 5. Nash equilibrium
- 6. Mixed-strategy Nash equilibria
- 7. Existence and number of mixed-strategy equilibria

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 8. Procedural rationality
- 9. Depictions
- 10. Critical reflections on game theory

Nobel prices in Game theory 1994

In 1994

'for their pioneering analysis of equilibria in the theory of non-cooperative games'

- 1/3 John C. Harsanyi (University of California, Berkeley),
- 1/3 John F. Nash (Princeton University), and
- 1/3 Reinhard Selten (Rheinische Friedrich-Wilhelms-Universität, Bonn).

In 2005

'for having enhanced our understanding of conflict and cooperation through game-theory analysis'

- 1/2 Robert J. Aumann (Hebrew University of Jerusalem), and
- 1/2 Thomas C. Schelling (University of Maryland, USA).

Some simple bimatrix games stag hunt

hunter 2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Cooperation may pay, but may also fail.

matching pennies/head or tail

Police versus thief

- head = break-in or control at location "head"
- tail = break-in or control at location "tail"

battle of the sexes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Different standards
- Harmonizing laws in Europe

game of chicken

driver 2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

		continue	swerve	
driver 1	continue	0, 0	4, 2	
	swerve	2,4	3, 3	

- 1 and 2 approach a crossing (a parking spot). One speeds on and "wins".
- 1 and 2 contemplate to open a pharmacy in a small town. The market is too small for both.

prisoners'dilemma

Other examples:

1. Picking up one's waste (Pigovian tax, environmental laws)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 2. Stealing cars (criminal law)
- 3. Paying taxes (tax law)

Definition of a game in strategic form

definition

Definition

A game in strategic form is a triple

$$\Gamma = \left(\mathsf{N}, (\mathsf{S}_i)_{i\in\mathsf{N}}, (u_i)_{i\in\mathsf{N}}\right) = (\mathsf{N}, \mathsf{S}, u)$$

- N = {1, ..., n} − player set (nonempty and finite; n := |N|)
 S_i − i's strategy set
- $u_i: S \to \mathbb{R} i$'s payoff function
- S = X _{i∈N}S_i Cartesian product of all players' strategy sets with elements s = (s₁, s₂, ..., s_n) ∈ S
- Elements of S_i are called 'strategies'
- Elements of S are called 'strategy combinations'

Definition of a game in strategic form

example: battle of sexes

he

		theatre	football	
sho	theatre	4, 3	2, 2	
Sne	football	1,1	3, 4	

 $N = \{ \textit{she}, \textit{he} \}$, $S_{\textit{she}} = S_{\textit{he}} = \{ \textit{theatre,football} \}$, and u defined by

 u_{she} (theatre, theatre) = 4, u_{he} (theatre, theatre) = 3, u_{she} (theatre, football) = 2, u_{he} (theatre, football) = 2, u_{she} (football, theatre) = 1, u_{he} (football, theatre) = 1, u_{she} (football, football) = 3, u_{he} (football, football) = 4.

Definition of a game in strategic form

notation

Removing player *i*'s strategy from $s \in S$

► strategy combination s_{-i} of the remaining players from N\ {i}:

$$s_{-i} \in S_{-i} := igwedge_{\substack{j \in N, \ j \neq i}} S_j$$

• player *i*'s payoff: $u_i(s) = u_i(s_i, s_{-i})$

Games in strategic form

overview

- 1. Introduction, examples and definition
- 2. Best responses (marking technique)
- 3. Dominance
- 4. Rationalizability
- 5. Nash equilibrium
- 6. Mixed-strategy Nash equilibria
- 7. Existence and number of mixed-strategy equilibria

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 8. Procedural rationality
- 9. Depictions
- 10. Critical reflections on game theory

marking technique I

marking technique II

Problem

・ロト ・ 一下・ ・ モト ・ モト・

æ

marking technique III

Solution

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

left: no dominant strategies, no Nash equilibrium

• right: s_2^2 dominant and (s_1^2, s_2^2) Nash equilibrium

marking technique IV

Definition The function $s_i^R : S_{-i} \to 2^{S_i}$ given by $s_i^R (s_{-i}) := \arg \max_{s_i \in S_i} u_i (s_i, s_{-i})$

- best-response function (a best response, a best answer) for player $i \in N$.

= marking technique

Games in strategic form

overview

- 1. Introduction, examples and definition
- 2. Best responses (marking technique)
- 3. Dominance
- 4. Rationalizability
- 5. Nash equilibrium
- 6. Mixed-strategy Nash equilibria
- 7. Existence and number of mixed-strategy equilibria

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 8. Procedural rationality
- 9. Depictions
- 10. Critical reflections on game theory

Dominance

definition

Let (N, S, u) be a game, $i \in N$. Definition Strategy $s_i \in S_i$ (weakly) dominates $s'_i \in S_i$ if (i) $u_i (s_i, s_{-i}) \ge u_i (s'_i, s_{-i})$ for all $s_{-i} \in S_{-i}$ and (ii) $u_i (s_i, s_{-i}) > u_i (s'_i, s_{-i})$ for at least one $s_{-i} \in S_{-i}$.

Definition

Strategy $s_i \in S_i$ strictly dominates $s'_i \in S_i$ if $u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i})$ for all $s_{-i} \in S_{-i}$.

- s'_i is (weakly/strictly) dominated (by s_i)
- If s_i (weakly/strictly) dominates all s'_i ∈ S_i, s_i is (weakly/strictly) dominant.

Dominance

the prisoners' dilemma

firm 2

- Individual rationality vs. collective rationality
- How to achieve payoff tuple (4, 4)?
 - ▶ twin argument: both apply same reasoning ⇒ non-diagonal outcomes can be disregarded
 - promise to cooperate
 - reputation
 - repeated games
 - altruism

Dominance

exercise

Problem

Is the stag hunt solvable by dominance arguments? How about head or tail, game of chicken, or the battle of the sexes?

	stag	hare			h	ead	ta	il	
sta	g 5,5	0, 4		head	1,	-1	$^{-1}$, 1	
har	e 4,0	4, 4		tail	_	1,1	1, -	-1	
	continue	e swer	ve			thea	atre	fo	otball
continue	0, 0	4, 2	2	theati	re	4,	3		2, 2
swerve	2,4	3, 3	3	footba	all	1,	1		3, 4

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The second-price auction

the game and a claim

- bidders *i* = 1, 2
- ▶ $r_i i$'s reservation price (= willingness to pay)
- $S_i = [0, +\infty) i$ hands in a (sealed) bid
- $s_i < s_j$ makes j get the object at price s_i

$$u_{1}(s_{1}, s_{2}) = \begin{cases} 0, & s_{1} < s_{2}, \\ \frac{1}{2}(r_{1} - s_{2}), & s_{1} = s_{2}, \\ r_{1} - s_{2}, & s_{1} > s_{2} \end{cases}$$

Claim: $s_1 := r_1$ is a dominant strategy.

The second-price auction

proof of the claim

1.
$$r_1 < s_2$$

 $s_1 = r_1 \longrightarrow \text{payoff } 0$
 $s_1 > r_1 \text{ and } s_1 < s_2 \longrightarrow \text{payoff } 0$
 $s_1 > r_1 \text{ and } s_1 \ge s_2 \longrightarrow \text{payoff } 0$
 $s_1 < r_1 \longrightarrow \text{payoff } 0$

2. $r_1 = s_2$

Expected payoff is 0, no matter how s_1 is choosen. Do you see, why?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Problem

Show that $s_1 = r_1$ is a dominant strategy in case of $r_1 > s_2$.

 \Rightarrow The auction game due to Vickrey is dominance solvable.

Take it or leave it

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

Take it or leave it

iterated dominance I

Deleting the last three columns yields

Take it or leave it

iterated dominance II

Deleting the last two rows

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Procedure stops.

the story

- i ∈ {1, 2}
- ▶ $S_i = \{2, 3, ..., 100\}$
- both get the lowest figure adjusted by an honesty premium/dishonesty punishment of 2

$$u_1(s_1, s_2) = \begin{cases} s_1 + 2, & \text{if } s_1 < s_2, \\ s_1, & \text{if } s_1 = s_2, \\ s_2 - 2, & \text{if } s_1 > s_2; \end{cases}$$

the matrix

Trav.1	Traveler 2 requests so many coins							
claims	2	3	4		98	99	100	
2	(2, 2)	(4, 0)	(4,0)	(4,0)	(4, 0)	(4, 0)	(4, 0	
3	(0, 4)	(3, 3)	(5, 1)	(5, 1)	(5, 1)	(5, 1)	(5, 1	
4	(0, 4)	(1,5)	(4, 4)	(6, 2)	(6, 2)	(6, 2)	(6, 2	
÷	(0, 4)	(1,5)	(2,6)					
98	(0, 4)	(1,5)	(2,6)		(98, 98)	(100,96)	(100, 9	
99	(0, 4)	(1,5)	(2,6)		(96, 100)	(99, 99)	(101, 9	
100	(0, 4)	(1,5)	(2,6)		(96, 100)	(97, 101)	(100, 1	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Problem

Any dominated strategies?

somewhat reduced

Trav.1	Traveler 2 requests so many coins							
claims	2	3	4	• • •	97	98	99	
2	(2, 2)	(4, 0)	(4,0)	(4,0)	(4, 0)	(4, 0)	(4, 0)	
3	(0, 4)	(3, 3)	(5, 1)	(5,1)	(5, 1)	(5, 1)	(5, 1)	
4	(0, 4)	(1,5)	(4, 4)	(6, 2)	(6, 2)	(6, 2)	(6, 2)	
÷	(0, 4)	(1,5)	(2,6)					
97	(0, 4)	(1,5)	(2,6)		(97, 97)	(99, 95)	(99, 95)	
98	(0, 4)	(1,5)	(2,6)		(95, 99)	(98, 98)	(100,96	
99	(0, 4)	(1,5)	(2,6)		(95, 99)	(96, 100)	(99, 99)	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

more reduced

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem

Do you know this game?

Other examples

- Clarke-Groves mechanism
- Cournot-Dyopol

Rationalizability

Two pub owners need to choose a location.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Apply iterated rationalizability!

Games in strategic form

overview

- 1. Introduction, examples and definition
- 2. Best responses (marking technique)
- 3. Dominance
- 4. Rationalizability

5. Nash equilibrium

- 6. Mixed-strategy Nash equilibria
- 7. Existence and number of mixed-strategy equilibria

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 8. Procedural rationality
- 9. Depictions
- 10. Critical reflections on game theory

 continue
 swerve

 continue
 0,0
 4,2
 1
 2

 swerve
 2,4
 1
 2
 3,3

Reaction function for driver 1

"swerve if driver 2 continues; continue if driver 2 swerves"

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Similarly for driver 2

Nash equilibrium:

"Intersection" of the two reaction functions, i.e., strategy combinations

- (swerve, continue) and
- (continue, swerve)

Definition

 $s^* = (s_1^*, s_2^*, ..., s_n^*) \in S$ is a Nash equilibrium if for all i from N

$$u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*)$$

holds for all s_i from S_i .

Nash equilibrium =

- mutually best responses
- nobody has an incentive to deviate

Problem

Use best-response functions to characterize $(s_1^*, s_2^*, ..., s_n^*)$ as a Nash equilibrium!

exercise

Problem

Find all the Nash equilibria!

	stag	hare		head	tail	
stag	5,5	0, 4	head	1, -1	-1,1	
hare	4,0	4, 4] tail	-1, 1	1, -1	

	continue	swerve		theatre	football
continue	0, 0	4, 2	theatre	4, 3	2, 2
swerve	2, 4	3, 3	football	1,1	3, 4

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

equilibrium in dominant strategies

How about

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ
Nash equilibrium

equilibrium in the basu game

Problem Find the equilibrium!

	2	3	4	•••	98	99	100
2	(2, 2)	(4,0)	(4, 0)	(4, 0)	(4, 0)	(4, 0)	(4, 0)
3	(0, 4)	(3, 3)	(5, 1)	(5,1)	(5, 1)	(5, 1)	(5, 1)
4	(0, 4)	(1,5)	(4, 4)	(6, 2)	(6, 2)	(6, 2)	(6, 2)
÷	(0, 4)	(1,5)	(2,6)				
98	(0, 4)	(1,5)	(2,6)		(98, 98)	(100,96)	(100, 96)
99	(0, 4)	(1,5)	(2,6)		(96, 100)	(99, 99)	(101, 97)
100	(0, 4)	(1,5)	(2,6)		(96, 100)	(97, 101)	(100, 100)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Political parties

two parties

- One-dimensional political space (left right)
- Voters prefer the program closest to their political preferences.
- Even distribution between 0 (extreme left) and 1 (extreme right).
- Parties choose programs P_1 and P_2 , respectively.

Two political parties

median voter

Theorem

In the above model, there exists exactly one equilibrium: both parties choose the middle position $\frac{1}{2}$.

Proof.

- In equilibrium, we have $P_1 = P_2$. Otherwise ...
- In equilibrium, we have $P_1 = P_2 = \frac{1}{2}$. Otherwise ...

- There is at most one equilibrium.
- $(P_1, P_2) = \left(\frac{1}{2}, \frac{1}{2}\right)$ is an equilibrium.
 - If party 1 deviates, …
 - If party 2 deviates, ...

Three political parties

Theorem

There is no equilibrium with three political parties.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof.

There is no equilibrium at

$$P_1 \neq P_2 \neq P_3$$

$$P_1 = P_2 \neq P_3$$

$$P_1 = P_2 = P_3$$

$$P_1 = \frac{1}{2}$$

$$\neq \frac{1}{2}$$

Instability of political programs

- is a theoretical phenomenon with practical relevance:
 - internal party strife
 - median-voter orientation
 - new parties at the left or right edge

But: Political parties cannot change their programs arbitrarily.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Games in strategic form

overview

- 1. Introduction, examples and definition
- 2. Best responses (marking technique)
- 3. Dominance
- 4. Rationalizability
- 5. Nash equilibrium

6. Mixed-strategy Nash equilibria

7. Existence and number of mixed-strategy equilibria

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 8. Procedural rationality
- 9. Depictions
- 10. Critical reflections on game theory

introductory remarks

- Randomization as an observable phenomenon
- Interpretations
 - Choosing probability distributions
 - Player i's choice depends on information unknown to player j

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

definitions

Definition

Let σ_i be a probability distribution on S_i :

$$\sigma_i\left(s_i^j\right) \ge 0$$
 for all $j = 1, ..., |S_i|$ and $\sum_{j=1}^{|S_i|} \sigma_i\left(s_i^j\right) = 1$

– σ_i is a mixed strategy.

Notation:

 Σ_i – set of *i*'s mixed strategies $\Sigma := \bigvee_{i \in N} \Sigma_i$ – set of combinations of mixed strategies $\Sigma_i := \bigvee_{i \in N} \sum_{i \in N} \Sigma_i$ – set of combinations of mixed strategies of

 $\Sigma_{-i} := X_{j \in N, j \neq i} \Sigma_j$ – set of combinations of mixed strategies of players other than i

remarks

we may write

$$\sigma_{i}=\left(\sigma_{i}\left(\mathbf{s}_{i}^{1}
ight)$$
 , $\sigma_{i}\left(\mathbf{s}_{i}^{2}
ight)$, ..., $\sigma_{i}\left(\mathbf{s}_{i}^{\left|\mathcal{S}_{i}
ight|}
ight)
ight)$

- call σ_i properly mixed if $\sigma_i(s_i) \neq 1$ for all s_i
- identify s_i^1 with (1, 0, 0, ..., 0)
- Σ contains *n*-tuples $\sigma = (\sigma_1, \sigma_2, ..., \sigma_n)$
- Σ_{-i} is set of n-1-tuples $\sigma_{-i} = (\sigma_1, \sigma_2, ..., \sigma_{i-1}, \sigma_{i+1}, ..., \sigma_n)$

expected payoffs: example

Problem

Calculate the expected payoff for player 1 if player 1 chooses theatre with probability $\frac{1}{2}$ and player 2 chooses theatre with probability $\frac{1}{3}$!

	theatre	football
theatre	4, 3	2, 2
football	1,1	3, 4

expected payoffs

Lemma

The payoff for a mixed strategy is the mean of the payoffs for the pure strategies:

$$u_{i}\left(\sigma_{i},\sigma_{-i}\right)=\sum_{j=1}^{|S_{i}|}\sigma_{i}\left(s_{i}^{j}\right)u_{i}\left(s_{i}^{j},\sigma_{-i}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

nash equilibrium

Definition The strategy combination

$$\sigma^* = (\sigma_1^*, \sigma_2^*, ..., \sigma_n^*) \in \Sigma$$

is a Nash equilibrium in mixed strategies if for all i from N

$$u_i(\sigma_i^*,\sigma_{-i}^*) \geq u_i(\sigma_i,\sigma_{-i}^*)$$

holds for all σ_i from Σ_i . Or: $\sigma_i^* \in \sigma_i^R (\sigma_{-i}^*)$ for all $i \in N$.

finding equilibria in mixed strategies

Idea

Fix $\bar{\sigma}_{-i}$.

Then:

$$u_{i}\left(\sigma_{i},\bar{\sigma}_{-i}\right)=\sum_{j=1}^{|S_{i}|}\sigma_{i}\left(s_{i}^{j}\right)u_{i}\left(s_{i}^{j},\bar{\sigma}_{-i}\right)$$

- If $u_i(s_i^k, \bar{\sigma}_{-i}) > u_i(s_i^l, \bar{\sigma}_{-i})$ and $\sigma_i(s_i^l) \neq 0$, σ_i is not a best answer to $\bar{\sigma}_{-i}$.
- > 2×2 -games: properly mixed Nash equilibria obey

$$u_i\left(s_i^1,\sigma_{-i}^*\right)=u_i\left(s_i^2,\sigma_{-i}^*\right).$$

finding equilibria in mixed strategies: 'head or tail' I

$$\begin{split} u_1 \left(\text{head}, \sigma_2 \right) &\geq u_1 \left(\text{tail}, \sigma_2 \right) \\ \Leftrightarrow \quad \sigma_2 \cdot 1 + (1 - \sigma_2) \cdot (-1) \geq \sigma_2 \cdot (-1) + (1 - \sigma_2) \cdot 1 \\ \Leftrightarrow \quad 2\sigma_2 - 1 \geq -2\sigma_2 + 1 \\ \Leftrightarrow \quad \sigma_2 \geq \frac{1}{2} \\ \sigma_1^R \left(\sigma_2 \right) &= \begin{cases} 1, & \sigma_2 > \frac{1}{2} \\ [0, 1], & \sigma_2 = \frac{1}{2} \\ 0, & \sigma_2 < \frac{1}{2} \end{cases} \end{split}$$

finding equilibria in mixed strategies: 'head or tail' II

Similarly,

$$\sigma_{2}^{R}(\sigma_{1}) = \begin{cases} 0, & \sigma_{1} > \frac{1}{2} \\ [0,1], & \sigma_{1} = \frac{1}{2} \\ 1, & \sigma_{1} < \frac{1}{0} \end{cases}$$

- Equilibrium $\left(\left(\frac{1}{2}, \frac{1}{2}\right), \left(\frac{1}{2}, \frac{1}{2}\right)\right)$ or $\left(\frac{1}{2}, \frac{1}{2}\right)$ (different notations)
- No other equilibrium:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

finding equilibria in mixed strategies: 'battle of the sexes'

$$\begin{array}{c|cccc} \text{theatre football} & & u_1\left(\sigma_1,\sigma_2\right) = \\ \text{theatre} & \hline 4,3 & 2,2 \\ \text{football} & \hline 1,1 & 3,4 \\ & & \hline \partial\sigma_1 = 4\sigma_2 + 2\left(1-\sigma_2\right) - \sigma_2 - 3\left(1-\sigma_1\right)\left(1-\sigma_2\right) \\ & & \frac{\partial u_1}{\partial \sigma_1} = 4\sigma_2 + 2\left(1-\sigma_2\right) - \sigma_2 - 3\left(1-\sigma_2\right) = \\ & & 4\sigma_2 - 1 \begin{cases} < 0, & \sigma_2 < \frac{1}{4} \\ = 0, & \sigma_2 = \frac{1}{4} \\ > 0, & \sigma_2 > \frac{1}{4} \\ \end{cases} \\ & & \sigma_1^R\left(\sigma_2\right) = \begin{cases} 0, & \sigma_2 < \frac{1}{4} \\ [0,1], & \sigma_2 = \frac{1}{4} \\ 1, & \sigma_2 > \frac{1}{4} \end{cases} \end{array}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

finding equilibria in mixed strategies: exercise

Problem Find all (mixed) equilibria! Draw the best responses!

	left	right		left	right
ир	5, 5	0, 4	ир	1, 1	1, 1
down	4, 0	4, 4	down	1, 1	0, 0
	left	right		left	right
ир	4, 3	2, 2	ир	4, 4	0, 5
down	1, 1	3, 4	down	5,0	1, 1

finding equilibria in mixed strategies: exercise

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

The police game

the model

		agent		
		fraud no		
			fraud	
nolico	control	4 – C, 1 – F	4 – <i>C</i> , 0	
police	no control	0, 1	4, 0	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

•
$$F$$
 – punishment ($F > 1$)

Problem

Find all the pure-strategy equilibria!

The police game

equilibria in mixed strategies

	fraud	no fraud
control	4 - C, 1 - F	4 – <i>C</i> , 0
no control	0, 1	4, 0

►
$$u_p$$
 (control, σ_a) $\stackrel{!}{=} u_p$ (no control, σ_a)
► $\sigma_a (4 - C) + (1 - \sigma_a) (4 - C) \stackrel{!}{=} \sigma_a \cdot 0 + (1 - \sigma_a) 4 \iff \sigma_a \stackrel{!}{=} \frac{C}{4}$

Problem

Which controlling probability σ_p chosen by the police makes the agent indifferent between committing and not committing the crime?

The police game

equilibria in mixed strategies: payoffs

Solution We calculate:

$$\sigma_p \left(1 - F \right) + \left(1 - \sigma_p \right) \mathbf{1} \stackrel{!}{=} \sigma_p \cdot \mathbf{0} + \left(1 - \sigma_p \right) \cdot \mathbf{0} \quad \Leftrightarrow \quad \sigma_p \stackrel{!}{=} \frac{1}{F}.$$

In equilibrium, the payoffs are

$$u_{p} = \frac{1}{F} (4 - C) + \left(1 - \frac{1}{F}\right) \frac{C}{4} \cdot 0 + \left(1 - \frac{1}{F}\right) \left(1 - \frac{C}{4}\right) 4 = 4 - C$$

for the police and

$$u_{a} = \frac{C}{4} \frac{1}{F} (1 - F) + \frac{C}{4} \left(1 - \frac{1}{F}\right) 1 + \left(1 - \frac{C}{4}\right) \cdot 0 = 0$$

for the prospective criminal. (Short-cut?)

The volunteer's dilemma

	volunteer	defect
volunteer	2, 2	2,5
defect	5,2	0, 0

Mixed-strategy equilibrium: Let σ be the probability of volunterring. Player 1 weakly prefers volunteering if

$$\sigma \cdot 2 + (1 - \sigma) \cdot 2 \ge \sigma \cdot 5 + (1 - \sigma) \cdot 0$$
,

i.e., if

$$\sigma \leq \frac{2}{5}$$

By symmetry, the only mixed-strategy equilibrium is

$$\left(\frac{2}{5},\frac{2}{5}\right)$$

The volunteer's dilemma

	volunteer	defect
volunteer	$2 - C_1, 2 - C_2$	$2 - C_1, 5$
defect	5, 2 – C_2	0, 0

Mixed-strategy equilibrium: Let σ be the probability of volunterring. Player 1 weakly prefers volunteering if

$$2-C_1 \geq \sigma \cdot 5 + (1-\sigma) \cdot 0$$
,

i.e., if

$$\sigma \leq \frac{2-C_1}{5}.$$

The only mixed-strategy equilibrium is

$$\left(\frac{2}{5} - \frac{1}{5}C_2, \frac{2}{5} - \frac{1}{5}C_1\right)$$

Thus: $C_1 < C_2$ implies that player 1 (with low cost of volunteering) volunteers with a smaller probability than player 2!

Games in strategic form

overview

- 1. Introduction, examples and definition
- 2. Best responses (marking technique)
- 3. Dominance
- 4. Rationalizability
- 5. Nash equilibrium
- 6. Mixed-strategy Nash equilibria
- 7. Existence and number of mixed-strategy equilibria

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 8. Procedural rationality
- 9. Depictions
- 10. Critical reflections on game theory

Existence and number of mixed-strategy equilibria number I

Definition

- $\Gamma = (\textit{N},\textit{S},\textit{u}) ~ {\sf and} ~ |\textit{S}| < \infty ~ ({\sf or} ~ |\textit{S}_i| < \infty ~ {\sf for ~ all} ~ i \in \textit{N})$
- finite game in strategic form.
 - n payoffs for each strategy combination define a game

$$|S| = |S_1| \cdot |S_2| \cdot \ldots \cdot |S_n|$$

• Hence: a point in $\mathbb{R}^{n \cdot |S|}$ represents a game

Existence and number of mixed-strategy equilibria

Theorem

Nearly all finite strategic games have a finite and odd number of equilibria in mixed strategies.

- Γ^{*} ∈ ℝ^{n·|S|} with odd number of equilibria
 ⇒ all Γ in some ε-ball around Γ^{*} have the same number of equilibria
- Γ^{*} ∈ ℝ^{n·|S|} with infinite or even number of equilibria
 ⇒ there is Γ with odd number of equilibria in every ε-ball around Γ^{*}

Existence and number of mixed-strategy equilibria number: example I

- How many equilibria in the left-hand game?
- $0 < \alpha < 1$ and $\beta \leq 0$: how many?
- $\alpha = 0$ and $\beta < 0$: how many?
- $\alpha = 0$ and $\beta > 0$: how many?

Existence and number of mixed-strategy equilibria number: example II

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

- How many equilibria in the left-hand game?
- ε > 0 : how many?
- $\varepsilon < 0$: how many?

Existence and number of mixed-strategy equilibria existence

Theorem (John Nash, 1950)

Any finite strategic game $\Gamma = (N, S, u)$ has a mixed-strategy Nash equilibrium.

Proof: see General equilibrium theory.

Economic genius: John Forbes Nash, Jr. I

- John Forbes Nash, Jr. (geb. 1928) is a US-american mathematician.
- After a very promising start of his career, he falls ill with schizophrenia and recovers in the 1990s.

Economic genius: John Forbes Nash, Jr. II

- Nash's personal history is the topic of the Hollywood film "A beautiful mind".
- Nash's dissertation at Princeton deals with game theory. Without knowing Cournot's work, he defines the equilibrium (later called: Nash equilibrium). He proves the above-mentioned theorem.

Games in strategic form

overview

- 1. Introduction, examples and definition
- 2. Best responses (marking technique)
- 3. Dominance
- 4. Rationalizability
- 5. Nash equilibrium
- 6. Mixed-strategy Nash equilibria
- 7. Existence and number of mixed-strategy equilibria

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 8. Procedural rationality
- 9. Depictions
- 10. Critical reflections on game theory

Procedural rationality

introduction

Ariel Rubinstein an others have developed models of bounded rationality. In the context of mixed-strategies, Osborne and Rubinstein (AER) have developed the concept of procedural rationality. We present an example below that has been proposed by Tutic (Journal of Mathematical Sociology). Osborne/Rubinstein:

... conditions of poor information ...

There is a large population of indivuals, pairs of whom are occasionally matched and interact. When entering the population, a player chooses her action after sampling each alternative once, picking the action that yields the highest payoff. An equilibrium corresponds to a steady state in which the probability that a new player chooses any given action is equal to the fraction of the population that currently chooses that action. ...

Procedural rationality

example: volunteer's dilemma

	volunteer	defect
volunteer	2, 2	2,5
defect	5,2	0, 0

Procedurally rational equilibrium: A new player tries volunteering and defecting once.

- Portion σ of the population volunteers ⇒ the new player prefers volunteering with probability 1 − σ.
- Assume σ = ¹/₃. Volunteering probability > volunteering portion ⇒ volunteering portion ↑.

Equilibrium defined by

volunteering portion $\stackrel{!}{=}$ probability of volunteering $\Leftrightarrow \sigma \stackrel{!}{=} 1 - \sigma$

whence $\sigma = \frac{1}{2}$ in the procedurally rational equilibrium.

Procedural rationality

example: volunteer's dilemma with costs

	volunteer	defect
volunteer	$2 - C_1, 2 - C_2$	$2 - C_1, 5$
defect	5, 2 – C_2	0, 0

Assume $C_1 < 2$ and $C_2 < 2$. The players are still symmetric because we "interpret the payoff function as a representation of each player's ordial preferences. Then, the procedurally rational equilibrium is the same from above.

Thus: $C_1 < C_2$ implies that player 1 (with low cost of volunteering) volunteers with a the same probability as player 2!

Games in strategic form

overview

- 1. Introduction, examples and definition
- 2. Best responses (marking technique)
- 3. Dominance
- 4. Rationalizability
- 5. Nash equilibrium
- 6. Mixed-strategy Nash equilibria
- 7. Existence and number of mixed-strategy equilibria

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- 8. Procedural rationality
- 9. Depictions
- 10. Critical reflections on game theory
Depiction

decision theory

Trivial game with one player, only

Example monopoly: x : quantity produced and sold $\Pi(x)$: profit at x

Very simple depiction:

Depiction

game in strategic form

Simultaneous-move game with several players

Example duopoly: x_1, x_2 : quantities produced and sold $\Pi_1(x_1, x_2)$: firm 1's profit at (x_1, x_2)

Very simple depiction:

Depiction

sequential-move game

Two-stage game with two firms that

- choose expenditures for R&D and then
- choose prices,

simultaneous at each stage

Very simple depiction:

—> chapter after next

Critical reflections on game theory

predictive power

Equilibria are meant to predict how players will act in specific situations. However, sometimes

- equilibria are counterintuitive (Basu game)
- we encounter multiple equilibria, as in these games:

	stag	hare	
stag	5,5	0,4]
hare	4,0	4,4]
			-

	continue	swerve		theatre	football
continue	0, 0	4, 2	theatre	4, 3	2, 2
swerve	2,4	3, 3	football	1,1	3, 4

Further exercises I

Problem 1

Strategy combination (down, right) is a Nash equilibrium. What can you say about the constants a, b, c and d?

Further exercises II

Problem 2

Consider a first price auction. There are n = 2 players i = 1, 2 who submit bids $b_i \ge 0$ simultaneously. Player *i*'s willingness to pay for the object is given by w_i . Assume $w_1 > w_2 > 0$. The player with the highest bid obtains the object and has to pay his bid. If both players submit the highest bid, the object is given to player 1. The winning player $i \in \{1, 2\}$ obtains the payoff $w_i - b_i$ and the other the payoff zero. Determine the Nash equilibria in this game!

Problem 3

- (a) Find a game in which player 1 has a weakly dominant strategy \hat{s}_1 (i.e., \hat{s}_1 weakly dominates all other strategies from S_1) and which exhibits two equilibria, one of which does not make use of \hat{s}_1 .
- (b) Is it possible that a player has a strictly dominant strategy that is not played in equilibrium?

Further exercises III

Problem 4

Read the opening scene of Mozart's and Schikaneder's "Magic Flute". Two players i = 1, 2 are involved in a dispute over an object. The willingness to pay for the object is w_i , i = 1, 2. Assume $w_1 \ge w_2 > 0$. Time is modeled as a continuous variable that starts at 0 and runs indefinitely. Each player *i* chooses the time $s_i \ge 0$ when to concede the object to the other player. Until the first concession each player loses one unit of payoff per unit of time. Player *i*'s payoff function is given by

$$u_{i}(s_{i}, s_{j}) = \begin{cases} -s_{i}, & s_{i} < s_{j} \\ \frac{w_{i}}{2} - s_{i}, & s_{i} = s_{j} \\ w_{i} - s_{j}, & s_{i} > s_{j}. \end{cases}$$

Determine the Nash equilibria in this game!

Further exercises IV

Problem 5

Find all (mixed) Nash Equilibria of the following game:

		player 2		
		left	centre	right
	up	(4,5)	(2,1)	(4, 4)
player 1	middle	(0,1)	(1,5)	(3, 2)
	down	(1,1)	(0,0)	(6,0)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・