Advanced Microeconomics Cost minimization and profit maximization

Harald Wiese

University of Leipzig

∃ >

Part B. Household theory and theory of the firm

- The household optimum
- Omparative statics and duality theory
- Production theory
- **9** Cost minimization and profit maximization

Cost minimization and profit maximization Overview

Revisiting the production set

- Ost minimization
- Score Long-run and short-run cost minimization
- Profit maximization

Definition of profit

Definition

Let $Z\subseteq \mathbb{R}^\ell$ be a production set and $p\in \mathbb{R}^\ell_+$ a price vector \Rightarrow

$$\Pi(z) := \underbrace{p \cdot z}_{\text{profit}} = \underbrace{\sum_{\substack{i=1, \\ z_i \ge 0 \\ \text{revenue}}}^{\ell} p_i z_i - \underbrace{\sum_{\substack{i=1, \\ z_i < 0 \\ \text{cost}}}^{\ell} p_i (-z_i).$$

For a specific profit level $\overline{\Pi}$,

$$\left\{ z \in \mathbb{R}^{\ell} : p \cdot z = ar{\Pi}
ight\}$$

- the isoprofit line.

Which good is an input and which an output?

Lemma

Assume the existence of best elements in the production set Y for price changes of output and input goods that do not change the role of input and output goods \Rightarrow

- a price increase for a factor of production cannot increase demand for that factor and
- a price increase for an output good cannot decrease the supply of that output good.

Revealed profit maximization

Proof.

Assume:

•
$$(p^A, w_1^A, w_2^A)$$
 and $(p^B, w_1^B, w_2^B) \rightarrow$ price vectors;
• (y^A, x_1^A, x_2^A) and $(y^B, x_1^B, x_2^B) \rightarrow$ supply-and-demand vectors.

Then,
$$(y^A, x_1^A, x_2^A)$$
 is best at (p^A, w_1^A, w_2^A) :
 $p^A y^A - w_1^A x_1^A - w_2^A x_2^A \ge p^A y^B - w_1^A x_1^B - w_2^A x_2^B$.

Proof.

• Shuffling and reshuffling (see book) yields $\Delta p \Delta y - \Delta w_1 \Delta x_1 - \Delta w_2 \Delta x_2 \ge 0$ where:

•
$$\Delta p := \left(p^A - p^B\right);$$

• $\Delta x_1 := x_1^A - x_1^B$, etc.

Cost minimization and profit maximization Overview

- Revisiting the production set
- Ocst minimization
- Subscription Long-run and short-run cost minimization
- Profit maximization

Definition

For a factor price vector $w = (w_1, ..., w_\ell) \in \mathbb{R}^\ell_+$,

 $W \cdot X$

– the cost of using the factors of production $x \in \mathbb{R}^{\ell}_+$.

Definition

For a specific level of cost \bar{C} ,

$$\left\{x\in \mathbb{R}^\ell_+: w\cdot x=ar{C}
ight\}$$

- the isocost line.

Problem

Two factors of production 1 and 2. Slope of the isocost line? Hint: use the household analogy!

Isoclinic factor variation and the graphical derivation of the cost function

Harald Wiese (University of Leipzig)

10 / 45

Firm's cost-minimization problem and best-response function

Definition

Assume

- f the production function $\mathbb{R}^{\ell}_+ \to \mathbb{R}_+$;
- $w \in \mathbb{R}^\ell_+$ a vector of factor prices;
- $y \in \mathbb{R}_+$ an element of f's range, the output.

The firm's problem is to find the best-response function:

$$\chi^{R}(y) := \arg\min_{x \in \mathbb{R}^{\ell}_{+}} \left\{ w \cdot x : f(x) \ge y \right\}.$$

Cost function

$$C : \mathbb{R}_{+} \to \mathbb{R}_{+},$$
$$y \mapsto C(y) = w \cdot \chi^{R}(y)$$

A comparison with household theory

	Household theory:	Theory of the firm:	
	expenditure min.	cost minimization	
	expenditure $p \cdot x$	expenditure $w \cdot x$	
objective function	(for the consumption	(for the use	
	of goods x)	of factors x)	
	prices p,	factor prices w,	
parameters	utility Ū	output y	
	(indifference curve)	(isoquant)	
first-order condition	$MRS \stackrel{!}{=} \frac{p_1}{p_2}$	$MRTS \stackrel{!}{=} \frac{w_1}{w_2}$	
best bundle(s)	$\chi(p, \bar{U})$	$\chi^{R}\left(w,y ight)$ or $\chi^{R}\left(y ight)$	
name of demand fct.	Hicksian demand	Hicksian factor demand	
minimal value of	$a(p,\overline{l})$	C(y) = C(y, y)	
objective	$= p x (p, \bar{U})$	$ = \frac{c(y) - c(w, y)}{w^R(w, y)} $	
function	$= \rho \cdot \chi(\rho, 0)$	$ = \mathbf{v} \cdot \mathbf{\lambda} (\mathbf{w}, \mathbf{y}) $	

2

イロト イ団ト イヨト イヨト

Exercises

Problem

Fill in the missing term:

$$\chi^{R}(y) = \begin{cases} x \in \mathbb{R}_{+}^{\ell} : f(x) \ge y \\ \text{and, for any } x' \in \mathbb{R}_{+}^{\ell}, \quad f(x') \ge y \Rightarrow w \cdot x' \ge ?? \end{cases}$$

Problem

Define marginal cost and average cost.

Image: Image:

æ

.∋...>

A comparison with household theory

Problem

Consider the production function f given by $f\left(x_{1},x_{2}\right)=x_{1}+2x_{2}.$ Find C $\left(y\right).$

Problem

MC = 2y

variable cost to produce 10 units?

- continuous case (integral!) and
- discrete case (with cost of 2 for the first unit).

Problem

$$y = f(x_1, x_2) = x_1^{\frac{1}{2}} + x_2^{\frac{1}{2}}$$

marginal-cost function?

Cost-minimization and its dual I

15 / 45

Cost-minimization and its dual II

	Household theory:	Theory of the firm:	
	utility maximization	output maximization	
objective function	utility function	production function	
parameters	prices <i>p</i> , money budget <i>m</i>	factor prices w , cost budget \tilde{C}	
first-order condition	$MRS \stackrel{!}{=} \frac{p_1}{p_2}$	$MRTS \stackrel{!}{=} \frac{w_1}{w_2}$	
notation for best bundle(s)	x (p, m)	$x^{R}(w, \bar{C})$	
name of demand function	Marshallian demand	Marshallian factor demand	
maximal value of objective function	V(p, m) = U(x(p, m))	$f\left(x^{R}\left(w,\bar{C}\right)\right)$	

æ

(日) (同) (三) (三)

Cost minimization and profit maximization Overview

- Revisiting the production set
- Ost minimization
- **O Long-run and short-run cost minimization**
- Profit maximization

Fixed factors and short-run cost function

Definition

Assume two factors of production 1 and 2 at prices w_1 and w_2 .

- Factor 2 is fixed at x
 ₂ > 0 if it cannot be reduced below x
 ₂ "in the short run".
- The short-run cost of using the factor combination (x_1, \bar{x}_2) is:

$$w_1x_1+w_2\bar{x}_2.$$

• The short-run cost function is:

$$C_{s}(y, \bar{x}_{2}) := \min_{x_{1} \in \mathbb{R}_{+}} \{ w_{1}x_{1} + w_{2}\bar{x}_{2} \colon f(x) \ge y \}.$$

Microeconomics

Problem

$$f(x_1, x_2) = x_1^{\frac{1}{3}} x_2,$$

short-run cost function $C_s(y, \bar{x}_2)$?

18 / 45

Fixed and variable cost

Definition

Let $\mathcal{C}_s:\mathbb{R}_+ o\mathbb{R}_+$ be a short-run cost function \Rightarrow

 $F:=C_{s}\left(0
ight)$

fixed cost

$$C_{v}\left(y
ight):=C_{s}\left(y
ight)-F$$

- the variable cost of producing y.

æ

3 × 4 3 ×

Fixed and variable cost

20 / 45

Quasi-fixed cost

Definition

Let $C : \mathbb{R}_+ \to \mathbb{R}_+$ be a cost function that is not continuous at 0. In case of C(0) = 0 and $\lim_{\substack{y \to 0 \ y > 0}} C(y) > 0$,

$$F_q := \lim_{\substack{y o 0, \ y > 0}} C\left(y
ight)$$

- quasi-fixed cost.

æ

3 1 4 3 1

Cost minimization and profit maximization Overview

- Revisiting the production set
- Ost minimization
- Score Long-run and short-run cost minimization
- Profit maximization

Profit maximization (output space)

Firm's profit in output space

Definition

- a firm's profit in output space.

FOC for profit maximization:

$$MC \stackrel{!}{=} p.$$

Profit maximization (output space)

Firm's supply function I

In principle, the marginal-cost curve is the supply curve.

Profit maximization (output space) Firm's supply function II

Definition

Let $C: \mathbb{R}_+ \to \mathbb{R}_+$ be a (short-run or long-run) cost function \Rightarrow

$$\begin{array}{rcl} \mathcal{S} & : & \mathbb{R}_+ \to \mathbb{R}_+, \\ & p \mapsto \mathcal{S}\left(p\right) := \arg \max_{y \in \mathbb{R}_+} \Pi\left(y\right) \end{array}$$

- a firm's supply function.

But: if profit is negative at p = MC?

3 K K 3 K

• For the short-run supply:

$$S_{s}(p) = y^{*}$$

$$\Rightarrow \Pi_{s}(y^{*}) \ge \Pi_{s}(0) = -F$$

$$\Leftrightarrow py^{*} - C_{v}(y^{*}) - F \ge -F$$

$$\Leftrightarrow p \ge \frac{C_{v}(y^{*})}{y^{*}} =: AVC(y^{*})$$

• For the long-run supply:

$$S(p) = y^{*}$$

$$\Rightarrow \Pi(y^{*}) \ge \Pi(0) = 0$$

$$\Leftrightarrow py^{*} - C(y^{*}) \ge 0$$

$$\Leftrightarrow p \ge \frac{C(y^{*})}{y^{*}} = AC(y^{*})$$

AVC(y) – average variable cost.

Profit maximization (output space)

27 / 45

æ

• • = • • = •

Profit maximization (output space)

Exercise

Problem

Consider the short-run cost function:

$$C_{s}(y) := 6y^{2} + 15y + 54, y \geq 0$$

and the long-run cost function:

$$C(y) := \begin{cases} 6y^2 + 15y + 54, & y > 0\\ 0, & y = 0 \end{cases}$$

Determine the short-run and the long-run supply functions S_s and S.

Definition

The producer's rent at output price \hat{p} is:

$$PR(\hat{p}) := CV(0 \rightarrow S(\hat{p}))$$

= $\hat{p}S(\hat{p}) - C_v(S(\hat{p}))$
= $\int_0^{S(\hat{p})} [\hat{p} - MC(X)] dX.$

Consider

$$\begin{aligned} PR\left(\hat{p}\right) &= \hat{p}S\left(\hat{p}\right) - C_{v}\left(S\left(\hat{p}\right)\right) \text{ (definition of producer's rent)} \\ &= \hat{p}S\left(\hat{p}\right) - [F + C_{v}\left(S\left(\hat{p}\right)\right)] + F \text{ (adding } 0 = F - F) \\ &= \Pi\left(S\left(\hat{p}\right)\right) + F \text{ (definition of profit).} \end{aligned}$$

• fixed cost: producer's rent equals profit plus fixed cost

no fixed cost: producer's rent equals profit

Harald Wiese (University of Leipzig)

30 / 45

글 > 글

Profit maximization (input space)

Firm's profit in input space

Definition

Let $f : \mathbb{R}^{\ell}_{+} \to \mathbb{R}_{+}$ be a production function \Rightarrow $\Pi : \mathbb{R}^{\ell}_{+} \to \mathbb{R} \text{ and}$ $\underbrace{\Pi(x)}_{\text{profit}} : = \underbrace{pf(x)}_{\text{revenue}} - \underbrace{w \cdot x}_{\text{cost}}$ - a firm's profit in input space.

FOC (partial differentiations):

$$MVP_{i}(x) := p MP_{i} = p \frac{\partial f}{\partial x_{i}} \stackrel{!}{=} w_{i}, i = 1, ..., \ell$$

with MVP_i – factor *i*'s marginal value product at *x*.

Profit maximization (input space)

Firm's factor demand function

Definition

Let $f : \mathbb{R}_{+}^{\ell} \to \mathbb{R}_{+}$ be a production function \Rightarrow $D : \mathbb{R}_{+}^{\ell} \to \mathbb{R}_{+}^{\ell},$ $w \mapsto D(w) := \arg \max_{x \in \mathbb{R}_{+}^{\ell}} \Pi(x)$

- a firm's factor demand function.

個人 くほん くほん … ほ

Profit maximization (input space)

Exercises

Problem

Can you show that profit maximization implies cost minimization? (Hint: Divide the first-order conditions for profit maximization for two inputs!)

Problem

A farmer has a cow that produces milk according to

$$y_M = f(W, G) = W^{\frac{1}{4}}G^{\frac{1}{4}}$$

where M stands for milk, W for water and G for grass. Determine the farmer's demand function for water. All owners want their firm to maximize profit if

- prices are not affected by the firm's input and output choice,
- there is no risk involved and
- managers are fully controllable by owners.

Profit maximization with risk Example

Example

- agents A and B possess a firm;
- investment costs 100 ;
- returns 80 or 110, but probability distributions on returns differ.

	w ₁ (80)	w ₂ (110)	expected value of investment
A's prob. distribution	$\frac{2}{10}$	$\frac{8}{10}$	$\frac{2}{10} \cdot 80 + \frac{8}{10} \cdot 110 - 100 = 4$
<i>B</i> 's prob. distribution	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2} \cdot 80 + \frac{1}{2} \cdot 110 - 100 = -5$

Similarly, different risk attitudes may lead to agents' holding opposing view on investment.

Arrow security

Definition (Arrow security)

Let $W = \{w_1, ..., w_m\}$ be a set of *m* states of the world.

- The contingent good i ∈ {1, ..., m} that pays one Euro in case of state of the world w_i and nothing in other states is called an Arrow security.
- If for each state of the world w_i an Arrow security i can be bought and sold for some given price p_i, we say that financial markets are complete.

Problem

Taking note of A' probability distribution, find his willingness to pay for the Arrow security 1. Hint: Calculate the expected gain from one unit of Arrow security 1.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Arrow security

Assume m = 2. Arbitrage opportunity presented by

- $p_1 + p_2 < 1 \longrightarrow$ buy both Arrow securities!
- $p_1 + p_2 > 1 \longrightarrow$ sell both Arrow securities!

Definition

Let $W = \{w_1, ..., w_m\}$ be a set of *m* states of the world with complete financial markets. The Arrow securities are said to be priced correctly (in equilibrium) if $\sum_{i=1}^{m} p_i = 1$ holds.

- Thus, the prices of Arrow securities share the properties of probability distributions.
- Idea: The owners substitute the prices of the Arrow securities for their own probabilities. Then, their different beliefs are unimportant.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Arrow security takes away risk

The owners A and B consider the investment package:

- spend 100 Euros on the investment,
- buy 20 units of Arrow good 1 and
- sell 10 units of Arrow good 2.

State of the world w_1 : = 10080 20 revenue revenue from from investment Arrow good 1 = 100State of the world w_2 : 110 revenue revenue from from investment Arrow good 2 Therefore, the two owners are indifferent between the two cases. The Arrow securities take all the risk away from them. 🕩 🖅 🖘 🖘

Harald Wiese (University of Leipzig)

Arrow security

In case of w_1 , the investment package is profitable iff

holds, i.e., iff the investment's expected payoff (where Arrow prices take the role of probabilities) is positive.

3

ヘロト 人間 とくほ とくほ とう

Arrow security

Problem

Show that the profitability of the investment package is equivalent to the investment criterion for state of the world 2, also.

Examples where markets allow a separation:

- If markets for consumption goods exist, a household with an endowment can consume his endowment but also any other bundle which does not cost more.
- If a market for manager effort is available, an owner-manager can buy additional (on top of his own) manager effort for his firm or supply effort to other firms.
- If Arrow securities are correctly priced, the profitability of an investment decision can be assessed separately from the beliefs and risk attitudes of the several owners.
- International trade allows an economy to consume a bundle different from the bundle produced.

International trade

Problem 1

One firm with two factories

		1. unit	2. unit	3. unit	4. unit
marginal	factory 1	2	3	4	5
cost	factory 2	4	5	6	7

How to distribute 2 units among the two factories, how 4 units?

Problem 2 $y = f(x_1, x_2) = x_1^{\frac{1}{2}} x_2$ short-run input $x_2 = 50$ $w_1 = 250, w_2 = 3$ short-run marginal cost function SMC?

▲ 문 ▶ . ▲ 문 ▶

Further exercises II

Problem 3
$$y = f(x_1, x_2) = x_1^{\frac{1}{2}} x_2^{\frac{1}{2}}, w_1 = w_2 = 1$$

- a) Assume $\overline{x_2} = 1$. Sketch
 - short-run variable average cost,
 - short-run average cost,
 - short-run marginal cost

and find the short-run supply curve!

b) Find the long-run supply curve!

Problem 4

A firm has two factories A and B that obey the production functions $f_A(x_1, x_2) = x_1 \cdot x_2$ and $f_B(x_1, x_2) = x_1 + x_2$, respectively. Given the factor-price ratio $w = \frac{w_1}{w_2}$, how to distribute output in order to minimize costs?

Hints:

- You are free to assume $w_1 \leq w_2$.
- Find the cost functions for the two factories.
- Are the marginal-cost curves upward-sloping or downward-sloping?