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The vector space of goods and inputs

Set of goods bundles:

R` := f(z1, ..., z`) : zg 2 R, g = 1, ..., `g .

we allow for zg < 0;

goods of a negative amount � input or factors of production;

goods of a positive amount �output or produced goods.
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The vector space of goods and inputs
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De�nition of a production set

De�nition

A production set Z � R` is the set of input-output combinations such
that:

Z is nonempty,

Z is closed,

for every bundle of inputs (z1, ..., zm) 2 Rm
�, there is a bundle of

outputs (zm+1, ..., z`) 2 R`�m
+ such that:0@z1, ..., zm| {z }

inputs

, zm+1, ..., z`| {z }
outputs

1A 2 Z

holds;
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De�nition of a production set

De�nition8<:
0@zm+1, ..., z`| {z }

outputs

1A 2 R`�m
+ :

0@z1, ..., zm| {z }
inputs

, zm+1, ..., z`| {z }
outputs

1A 2 Z

9=; is

bounded for every input bundle

0@z1, ..., zm| {z }
inputs

1A 2 Rm
�,

Z does not contain any element z > 0 and

z 2 Z implies �z /2 Z .
The elements in Z �production vectors, production plans or input-output
vectors.

Harald Wiese (University of Leipzig) Advanced Microeconomics 7 / 48



De�nition of a production set
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Divine production: Then let us all with one accord sing praises to our
heavenly Lord, who hath made heaven and earth from naught ...
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Further axioms

De�nition

A production set Z � R` obeys

the possibility of inaction if 0 2 Z holds,
the property of free disposal if z 2 Z and z 0 � z implies z 0 2 Z ,
nonincreasing returns to scale if z 2 Z implies kz 2 Z for all
k 2 [0, 1],
nondecreasing returns to scale if z 2 Z implies kz 2 Z for all k � 1,
Z -convexity if Z is convex.
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Further axioms
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Nonincreasing returns to scale are violated in (b) and (c).
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Returns to scale

Returns to scale are:

nonincreasing if production can be scaled down;
nondecreasing if production can be scaled up.

Z -convexity and possibility of inaction imply nonincreasing returns to
scale.
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Production theory
Overview

1 The production set
2 E¢ ciency
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Input e¢ ciency and output e¢ ciency
Input improvement

De�nition

Let Z � R` be a production set. A point

z =

0@z1, ..., zm| {z }
inputs

, zm+1, ..., z`| {z }
outputs

1A
is not input-e¢ cient if another input-output vector

ẑ =

0@ẑ1, ..., ẑm| {z }
inputs

, zm+1, ..., z`| {z }
outputs

1A
exists such that (ẑ1, ..., ẑm) > (z1, ..., zm) .
ẑ �an input improvement over z .
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Input e¢ ciency and output e¢ ciency
Output improvement

De�nition

Let Z � R` be a production set. A point

z =

0@z1, ..., zm| {z }
inputs

, zm+1, ..., z`| {z }
outputs

1A
is not output-e¢ cient if another input-output vector

ẑ =

0@z1, ..., zm| {z }
inputs

, ẑm+1, ..., ẑ`| {z }
outputs

1A
exists such that (ẑm+1, ..., ẑ`) > (zm+1, ..., z`) .
ẑ �an output improvement over z .
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Input e¢ ciency and output e¢ ciency
Improvement

De�nition

Let Z � R` be a production set. A point

z =

0@z1, ..., zm| {z }
inputs

, zm+1, ..., z`| {z }
outputs

1A
is not e¢ cient if another input-output vector

ẑ =

0B@ ẑ1, ..., ẑ`| {z }
inputs and outputs

1CA
exists such that ẑ > z holds.
ẑ �an improvement over z .
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Production function and isoquant

De�nition

Let Z � R` be a production set. A function f : R`�1
+ ! R+ de�ned by

f (x1, ..., x`�1) = max fy 2 R+ : (�x1, ...,�x`�1, y) 2 Zg .

�the production function for y .

Problem
Find the production functions for the production set

Z =
�
(z1, z2) 2 R2 j z2 � � (z1)2 if z1 � 0 and z2 � �

1
2
z1 if z1 < 0

�
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Production function and isoquant

De�nition

Let f be a production function on R`�1
+ .

Bx̂ :=
n
x 2 R`�1

+ : f (x) � f (x̂)
o

�the better set Bx̂ of x̂ ;

Wx̂ :=
n
x 2 R`�1

+ : f (x) � f (x̂)
o

�the worse set Wx̂ of x̂ ;

Ix̂ := Bx̂ \Wx̂ =
n
x 2 R`�1

+ : f (x) = f (x̂)
o

� x̂�s isoquant Ix̂ .
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Production function and isoquant
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Production function and isoquant
Indi¤erence curves vs isoquants

De�nition
A production function f obeys:

weak monotonicity i¤ x > x 0 implies f (x) � f (x 0) ,
strict monotonicity i¤ x > x 0 implies f (x) > f (x 0), and

local non-satiation at x 0 i¤ a bundle x with f (x) > f (x 0) can be
found in every ε-ball with center x 0.

Cardinality of production functions vs ordinality of preferences!
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Factor variations

Partial factor variation: We change one factor only and keep the
other factors constant.

Proportional factor variation: We change all the factors while keeping
proportions constant.

Isoquant factor variation: We change the factors so as to keep output
constant.

Isoclinic factor variation: We change the factors so as to keep the
marginal rate of technical substitution constant.
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Partial and proportional factor variations
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Isoquant and isoclinic factor variation

isoclinic
factor variation

isoquant
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Partial factor variation

The marginal productivity of factor i :

MPi :=
∂f
∂xi
.

Average productivity of factor i :

APi :=
f (xi )
xi

.
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Partial factor variation
Exercises

Problem
Suggest a de�nition of production elasticity. Do you see how the
production elasticity depends on the marginal and the average
productivity?

Problem
Calculate factor 1�s production elasticity for the Cobb-Douglas production
function f given by f (x1, x2) = xa1 x

b
2 , a, b � 0.
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Marginal something equals average something

Lemma
Let f : R ! R be any di¤erentiable (production) function )
df
dx

��
x=0 =

f (x )
x

���
x=0

if f (0) = 0 holds.

Not di¢ cult to show.

Examples
Average product equals marginal product for the �rst �very small� unit,
price equals marginal revenue for the �rst �very small� unit.
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Marginal something equals average something

Lemma
Let f : R ! R be any di¤erentiable (production) function. Assume x > 0
)

df
dx
>
f (x)
x

, d f (x )x
dx

> 0.

Problem

Provide a proof by applying the quotient rule of di¤erentiation to d f (x )x
dx .
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Marginal something equals average something
Summary

If the marginal productivity is above the average productivity, the
average productivity increases.

If the marginal productivity equals the average productivity, the
average productivity is constant.

This holds for:
�marginal revenue and average revenue (price),
�marginal cost and average cost and
�marginal pro�t and average pro�t.
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Proportional factor variation: returns to scale

De�nition
Proportional factor variation:

(x1, ..., x`) 7! t (x1, ..., x`) = (tx1, ..., tx`) .

with

x �the factors of production and

t �scalar.
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Proportional factor variation: returns to scale

De�nition

A production function f : R`
+ ! R+ is characterized

by constant returns to scale if

f (tx) = tf (x) for all t � 0;

by increasing returns to scale if

f (tx) � tf (x) for all t � 1;

by decreasing returns to scale if

f (tx) � tf (x) for all t � 1

hold for all x 2 R`
+, respectively.
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Returns to scale
Scale elasticity

De�nition

Let f : R`
+ ! R+ be a production function. The scale elasticity at

x = (x1, ..., x`) is:

εy ,t =

df (tx )
f (tx )
dt
t

������
t=1

=
df (tx)
dt

t
f (tx)

����
t=1

.

Lemma
We have

increasing returns to scale at x 2 R`
+ i¤ εy ,t � 1 holds,

decreasing returns to scale at x 2 R`
+ in case of εy ,t � 1 and

constant returns to scale at x 2 R`
+ i¤ εy ,t = 1 is true.
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Returns to scale
Scale elasticity

Problem
Calculate the scale elasticity for the Cobb-Douglas production function f
given by f (x1, x2) = xa1 x

b
2 , a, b � 0.
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Isoquant factor variation: Marginal rate of technical
substitution

De�nition
If the function Iy is di¤erentiable and if the production function is
monotonic,

MRTS =

����dIy (x1)dx1

����
�the marginal rate of technical substitution between factor 1 and factor 2
(or of factor 2 for factor 1).

Lemma
Let f be a di¤erentiable production function )

MRTS (x1) =
∂f
∂x1
∂f
∂x2

.
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Marginal rate of technical substitution
Pareto Improvement

E¢ ciency requires:

MRTSA
!
= MRTSB

Example

(3 =)

����dxA2dxA1
���� = MRTSA < MRTSB = ����dxB2dxB1

���� (= 5)
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Edgeworth box

If inputs are attributable to speci�c outputs:
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Edgeworth box
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Production curve

De�nition
Production curve � the locus of all the points of tangency between two
isoquants.
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Transformation curve (production-possibility frontier)
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Problem
Using a transformation curve, discuss output e¢ ciency.

Problem
Production curve and transformation curve for
x1 = x2 = 100, yA = xA1 + x

A
2 and yB =

�
xB1
� 1
2
�
xB2
� 1
2
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Transformation curve
Marginal rate of transformation

De�nition
Assume that the transformation curve de�nes a di¤erentiable function
yA 7! yB .

MRT :=
����dyBdyA

����
�the marginal rate of transformation between good A and good B.
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Convexity of the production set and concavity of the
production function

Lemma
Let

Z be a production set where the �rst `� 1 entries are always
nonpositive;

f be the production function associated with Z ;

Z obey free disposal.

) Z is convex i¤ the corresponding production function f is concave.

See manuscript.
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Convex production sets versus convex better sets

Example
Consider the following production function:

f (x , y) = xy .

It obeys strict quasi-concavity (Cobb-Douglas preferences!).

It is not concave:

f (k (0, 0) + (1� k) (1, 1)) = f (1� k, 1� k) = (1� k)2 < 1� k
= k � 0+ (1� k) � 1
= kf (0, 0) + (1� k) f (1, 1) .

for 0 < k < 1.
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Convex production sets versus convex better sets
Exercise

Problem
Show that every concave function is quasi-concave.
Remember:
f : R` ! R is quasi-concave if

f
�
kx + (1� k) x 0

�
� min

�
f (x) , f

�
x 0
��

holds for all x , x 0 2 R` and all k 2 [0, 1] .
f : R` ! R is concave if

f
�
kx + (1� k) x 0

�
� kf (x) + (1� k) f

�
x 0
�

holds for all x , x 0 2 R` and for all k 2 [0, 1].
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Convex production sets versus convex better sets

Lemma

Let f be a continuous production function on R`
+ )

f concave

⇓
f quasi­
concave

f �s isoquants
concave

f strictly
concave

⇓
f strictly
quasi­
concave

⇒

⇒

f �s isoquants
strictly
concave

⇒

⇔ f �s better
sets convex

c

⇐f �s better
sets
strictly
convex

f �s production
set under
free disposal
strictly convex

⇔ ⇔ f �s production
set under
free disposal
convex

⇓

c
f �s better
sets strictly
convex
and local
nonsatiation

⇒
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What about concave utility functions?

There are functions that are not concave but still quasi-concave:

Example

Consider the utility functions U and V given by U (x , y) = xy and
V (x , y) = x

1
3 y

1
3 . We can apply the increasing function τ : R ! R given

by τ (U) = U
1
3 and obtain

(τ � U) (x , y) = τ (U (x , y))

= τ (xy)

= (xy)
1
3

= V (x , y)

U and V represent the same preferences, but

U is neither convex nor concave but quasi-concave;

V is concave ) V is quasi-concave.
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Further exercises

Problem 1
Sketch a few isoquants that re�ect decreasing returns to scale.

Problem 2
Determine the production set for the production function
y = f (x1, x2) = min fx1, x2g , x1, x2 � 0.
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Further exercises

Problem 3
Let f be a homogeneous function of degree λ (i.e., f (tx) = tλ � f (x)).
Show

∑
i

∂f
∂xi
xi = λtλ�1f (x)

and, for λ = 1, Euler�s theorem,

∑
i

∂f
∂xi
xi = f (x) .

Hint: Calculate ∂f (tx )
∂t and

∂[tλf (x )]
∂t .
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