Advanced Microeconomics Comparative statics and duality theory

Harald Wiese

University of Leipzig

・ロ ・ ・ 日 ・ ・ 目 ・ ・ 目 ・ の へ で 1 / 62

Part B. Household theory and theory of the firm

- 1. The household optimum
- 2. Comparative statics and duality theory
- 3. Production theory
- 4. Cost minimization and profit maximization

Comparative statics and duality theory

Overview

- 1. The duality approach
- 2. Shephard's lemma
- 3. The Hicksian law of demand
- 4. Slutsky equations
- 5. Compensating and equivalent variations

Maximization and minimization problem

 Maximization problem:
 Find the bundle that maximizes the utility for a given budget line. Minimization problem: Find the bundle that minimizes the expenditure needed to achieve a given utility level.

(4 同) トイヨト イヨト

4 / 62

The expenditure function and the Hicksian demand function I

Expenditure function:

$$e : \mathbb{R}^{\ell} \times \mathbb{R} \to \mathbb{R},$$

$$(p, \overline{U}) \mapsto e(p, \overline{U}) := \min_{\substack{x \text{ with} \\ U(x) \ge \overline{U}}} px$$

The solution to the minimization problem is called the Hicksian demand function:

$$\begin{array}{rcl} \chi & : & \mathbb{R}^{\ell} \times \mathbb{R} \to \mathbb{R}^{\ell}_+, \\ & & (p, \bar{U}) \mapsto \chi \left(p, \bar{U} \right) := \arg \min_{\substack{x \text{ with} \\ U(x) \geq \bar{U}}} px \end{array}$$

5 / 62

イロン イロン イヨン イヨン 三日

The expenditure function and the Hicksian demand function II

Problem

Express

- e in terms of χ and
- V in terms of the household optima!

Lemma

For any $\alpha > 0$:

$$\chi\left(lpha$$
p, $ar{U}
ight)=\chi\left($ p, $ar{U}
ight)\,$ and e $\left(lpha$ p, $ar{U}
ight)=lpha$ e $\left($ p, $ar{U}
ight)$.

イロト 不得下 イヨト イヨト 二日

6 / 62

Obvious?!

The expenditure function and the Hicksian demand function III

Problem

Determine the expenditure function and the Hicksian demand function for the Cobb-Douglas utility function $U(x_1, x_2) = x_1^a x_2^{1-a}$ with 0 < a < 1! Hint: We know that the indirect utility function V is given by:

$$V(p,m) = U(x(p,m))$$

= $\left(a\frac{m}{p_1}\right)^a \left((1-a)\frac{m}{p_2}\right)^{1-a}$
= $\left(\frac{a}{p_1}\right)^a \left(\frac{1-a}{p_2}\right)^{1-a}m.$

Hicksian demand and the expenditure function

	utility maximization	expenditure minimization
objective function	utility	expenditure
parameters	prices p, income m	prices p , utility \bar{U}
notation for best bundle(s)	x (p, m)	$\chi\left(ho,ar{U} ight)$
name of demand function	Marshallian	Hicksian
value of	<i>V</i> (<i>p</i> , <i>m</i>)	e (p, Ū)
objective function	= U(x(p,m))	$\parallel = p \cdot \chi \left(p, ar{U} ight)$

Applying the Lagrange method (recipe)

$$L(x,\mu) = \sum_{g=1}^{\ell} p_g x_g + \mu \left[\overline{U} - U(x) \right]$$

with:

- U strictly quasi-concave and strictly monotonic utility function;
- prices p >> 0;
- µ > 0 − Lagrange multiplier translates a utility surplus (in case of U (x) > Ū) into expenditure reduction
- Increasing consumption has
 - a positive direct effect on expenditure, but
 - a negative indirect effect via a utility surplus (scope for expenditure reduction) and μ

Applying the Lagrange method (recipe)

Differentiate L with respect to x_g :

$$\frac{\partial L\left(x_{1}, x_{2}, ..., \mu\right)}{\partial x_{g}} = p_{g} - \mu \frac{\partial U\left(x_{1}, x_{2}, ..., x_{\ell}\right)}{\partial x_{g}} \stackrel{!}{=} 0 \text{ or } \frac{\partial U\left(x_{1}, x_{2}, ..., x_{\ell}\right)}{\partial x_{g}} \stackrel{!}{=}$$

and hence, for two goods g and k

$$\frac{\frac{\partial U(x_1, x_2, \dots, x_\ell)}{\partial x_g}}{\frac{\partial U(x_1, x_2, \dots, x_\ell)}{\partial x_k}} \stackrel{!}{=} \frac{p_g}{p_k} \text{ or } MRS \stackrel{!}{=} MOC$$

Note also: $\frac{\partial L(x,\mu)}{\partial \mu} = \bar{U} - U(x) \stackrel{!}{=} 0$

Applying the Lagrange method

Comparing the Lagrange multipliers

- λ the shadow price for utility maximization (translates additional income m into higher utility: λ = ∂V/∂m);
- ▶ μ the shadow price for expenditure minimization (translates additional utility \overline{U} into higher expenditure: $\mu = \frac{\partial e(p, \overline{U})}{\partial \overline{U}}$).

We note without proof

$$\mu = \frac{1}{\lambda}$$

here, duality does work

- At the budget line through point C (budget m), the household optimum is at point B and the utility is U(B) = V(p, m).
- The expenditure needed to obtain B's utility level or A's utility level is equal to m:

 x_1

$$e(p, V(p, m)) = m.$$

$$12/6$$

here, duality does work

- The minimal expenditure for the indifference curve passing through A (utility level Ū) is denoted by e (p, Ū) and achieved by bundle B.
- With income e (p, Ū) (at point C), the highest achievable utility is V (p, e (p, Ū)) = Ū.

 x_1

13/62

Conditions for duality

Theorem

Let $U : \mathbb{R}_+^{\ell} \to \mathbb{R}$ be a continuous utility function that obeys local nonsatiation and let p >> 0 be a price vector. \Rightarrow

• If x(p, m) is the household optimum for m > 0:

$$\chi(p, V(p, m)) = x(p, m)$$

$$e(p, V(p, m)) = m.$$

► If $\chi(p, \bar{U})$ is the expenditure-minimizing bundle for $\bar{U} > U(0)$: $x(p, e(p, \bar{U})) = \chi(p, \bar{U})$ $V(p, e(p, \bar{U})) = \bar{U}$.

here, duality does not work

Here, local nonsatiation is violated.

- At (p, m), the household optimum is at the bliss point with V (p, m) = 9.
- The expenditure needed to obtain this utility level is smaller than m :

Main results

Theorem

Consider a household with a continuous utility function U, Hicksian demand function χ and expenditure function e.

- Shephard's lemma: The price increase of good g by one small unit increases the expenditure necessary to uphold the utility level by χ_g.
- Roy's identity: A price increase of good g by one small unit decreases the budget available for the other goods by χ_g and indirect utility by the product of the marginal utility of income ^{∂V}/_{∂m} and χ_g.
- Hicksian law of demand: If the price of a good g increases, the Hicksian demand χ_g does not increase.
- ► The Hicksian cross demands are symmetric: $\frac{\partial \chi_g(p,\bar{U})}{\partial p_k} = \frac{\partial \chi_k(p,\bar{U})}{\partial p_g}.$
- Slutsky equations see next slide

Main results

Theorem

Money-budget Slutsky equation:

$$rac{\partial x_g}{\partial p_g} = rac{\partial \chi_g}{\partial p_g} - rac{\partial x_g}{\partial m} \chi_g.$$

Endowment Slutsky equation:

$$rac{\partial x_g^{endowment}}{\partial p_g} = rac{\partial \chi_g}{\partial p_g} + rac{\partial x_g^{money}}{\partial m} \left(\omega_g - \chi_g
ight).$$

Shephard's lemma

Overview

- 1. The duality approach
- 2. Shephard's lemma
- 3. The Hicksian law of demand
- 4. Slutsky equations
- 5. Compensating and equivalent variations

Shephard's lemma

- Assume a price increase for a good g by one small unit.
- To achieve the same utility level, expenditure must be increased by at most

$$rac{\partial e}{\partial p_g} \leq \chi_g$$

Shephard's Lemma (see manuscript):

$$rac{\partial e}{\partial p_g} = \chi_g$$

イロン イロン イヨン イヨン 三日

19/62

Roy's identity

Duality equation:

$$ar{U}=V\left(p$$
, e $\left(p$, $ar{U}
ight)
ight)$.

Differentiating with respect to p_g :

$$\begin{array}{lll} 0 & = & \displaystyle \frac{\partial V}{\partial p_g} + \displaystyle \frac{\partial V}{\partial m} \displaystyle \frac{\partial e}{\partial p_g} \\ & = & \displaystyle \frac{\partial V}{\partial p_g} + \displaystyle \frac{\partial V}{\partial m} \chi_g \ (\text{Shephard's lemma}) \end{array}$$

Roy's identity: $\frac{\partial V}{\partial p_g} = \frac{\partial V}{\partial m} \left(-\chi_g \right)$.

The Hicksian law of demand

Overview

- 1. The duality approach
- 2. Shephard's lemma

3. The Hicksian law of demand

- 4. Slutsky equations
- 5. Compensating and equivalent variations

Compensated (Hicksian) law of demand

Assume:

- p and p' price vectors from \mathbb{R}^{ℓ} ;
- ▶ $\chi(p, \overline{U}) \in \mathbb{R}^{\ell}_+$ and $\chi(p', \overline{U}) \in \mathbb{R}^{\ell}_+$ expenditure-minimizing bundles necessary to achieve a utility of at least \overline{U} .

... (see the manuscript) \Rightarrow If the price of one good increases, the Hicksian demand for that good cannot increase: $\frac{\partial \chi_g}{\partial \rho_g} \leq 0$.

Concavity and the Hesse matrix concavity

Definition

Let $f: M \to \mathbb{R}$ be a function on a convex domain $M \subseteq \mathbb{R}^{\ell}$. \Rightarrow

f is concave if

$$f(kx + (1 - k)y) \ge kf(x) + (1 - k)f(y)$$

for all $x, y \in M$ and for all $k \in [0, 1]$ (for $\leq -$ convex). • f is strictly concave if

$$f(kx + (1 - k)y) > kf(x) + (1 - k)f(y)$$

holds for all $x, y \in M$ with $x \neq y$ and for all $k \in (0, 1)$ (for < - strictly convex).

Hesse matrix

Definition

Let $f : \mathbb{R}^{\ell} \to \mathbb{R}$ be a function.

The second-order partial derivative of f with respect to x_i and x_j (if it exists) is given by

$$f_{ij}\left(x
ight):=rac{\partialrac{\partial f\left(x
ight)}{\partial x_{i}}}{\partial x_{j}}=rac{\partial^{2}f\left(x
ight)}{\partial x_{i}\partial x_{j}}.$$

If all the second-order partial derivatives exist, the Hesse matrix of f is given by

$$H_{f}(x) = \begin{pmatrix} f_{11}(x) & f_{12}(x) & & f_{1\ell}(x) \\ f_{21}(x) & f_{22}(x) & & \\ & & \\ f_{\ell 1}(x) & f_{n2}(x) & & f_{\ell \ell}(x) \end{pmatrix}$$

Problem

 24 / 62

メロト スポト メヨト メヨト 二日

Hesse matrix

Believe me (or check in the script) that

Lemma (diagonal entries)

If a function $f : \mathbb{R}^{\ell} \to \mathbb{R}$ is concave (strictly concave), the diagonal entries of its Hesse matrix are non-positive (negative). Remember: For $f : \mathbb{R} \to \mathbb{R}$, f is concave iff $f''(x) \leq 0$ for all $x \in \mathbb{R}$ (chapter on von Neumann-Morgenstern utility)

Lemma (symmetry)

If all the second-order partial derivatives of $f:\mathbb{R}^\ell\to\mathbb{R}$ exist and are continuous, then

$$f_{ij}\left(x
ight)=f_{ji}\left(x
ight)$$
 for all $i,j=1,...,\ell$

Lemma (expenditure fct. concave) The expenditure function is concave.

Hesse matrix of expenditure function

$$H_{e}(p,\bar{U}) = \begin{pmatrix} \frac{\partial^{2}e(p,\bar{U})}{(\partial p_{1})^{2}} & \frac{\partial^{2}e(p,\bar{U})}{\partial p_{1}\partial p_{2}} & \frac{\partial^{2}e(p,\bar{U})}{\partial p_{1}\partial p_{\ell}} \\ \frac{\partial^{2}e(p,\bar{U})}{\partial p_{2}\partial p_{1}} & \frac{\partial^{2}e(p,\bar{U})}{(\partial p_{2})^{2}} & \\ \frac{\partial^{2}e(p,\bar{U})}{\partial p_{\ell}\partial p_{1}} & \frac{\partial^{2}e(p,\bar{U})}{\partial p_{\ell}\partial p_{2}} & \frac{\partial^{2}e(p,\bar{U})}{(\partial p_{\ell})^{2}} \end{pmatrix}$$

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ < 26 / 62

Compensated (Hicksian) law of demand

By Shephard's lemma:

$$rac{\partial e\left(\mathbf{p},ar{U}
ight) }{\partial \mathbf{p}_{g}}=\chi_{g}\left(\mathbf{p},ar{U}
ight)$$

Forming the derivative of the Hicksian demand, we find

$$\frac{\partial \chi_{g}\left(p,\bar{U}\right)}{\partial p_{k}} = \frac{\partial \frac{\partial e\left(p,\bar{U}\right)}{\partial p_{g}}}{\partial p_{k}} = \frac{\partial^{2} e\left(p,\bar{U}\right)}{\partial p_{g} \partial p_{k}}$$

with two interesting conclusions:

$$\frac{\partial \chi_{g}\left(\boldsymbol{p},\bar{\boldsymbol{U}}\right)}{\partial \boldsymbol{p}_{g}} \leq \boldsymbol{0}$$

27 / 62

Substitutes and complements (the Hicksian definition)

2.
$$g \neq k$$
:

If the off-diagonal entries in the expenditure function's Hesse matrix are continuous, lemma "symmetry" implies

$$rac{\partial\chi_{g}\left(p,ar{U}
ight)}{\partial p_{k}}=rac{\partial\chi_{k}\left(p,ar{U}
ight)}{\partial p_{g}}.$$

Definition Goods g and k are

substitutes if

$$rac{\partial \chi_{g}\left(p,ar{U}
ight) }{\partial p_{k}}=rac{\partial \chi_{k}\left(p,ar{U}
ight) }{\partial p_{g}}\geq0;$$

complements if

$$\frac{\partial \chi_{g}\left(p,\bar{U}\right)}{\partial \rho_{k}} = \frac{\partial \chi_{k}\left(p,\bar{U}\right)}{\partial \rho_{g}} \leq 0 \Rightarrow \forall z \neq z \neq z \neq z \neq 28/62$$

Every good has at least one substitute.

For all $\alpha > 0$:

$$\chi_{g}\left(lpha$$
p, $ar{U}
ight) = \chi_{g}\left($ p, $ar{U}
ight)$.

Differentiating with the adding rule (chapter on preferences) yields

Lemma

Assume $\ell \geq 2$ and p >> 0. Every good has at least one substitute.

Slutsky equations

Overview

- 1. The duality approach
- 2. Shephard's lemma
- 3. The Hicksian law of demand
- 4. Slutsky equations
- 5. Compensating and equivalent variations

Three effects of a price increase

$$rac{\partial\chi_{1}\left(p,\,ar{U}
ight)}{\partial p_{1}} \stackrel{}{\leq} 0 ext{ and } rac{\partial x_{1}\left(p,\,m
ight)}{\partial p_{1}} \stackrel{}{\leq} 0$$

イロト 不得 とくきとくきとう き

31 / 62

- 1. Substitution effect or opportunity-cost effect: p_1 \uparrow
 - ▶ $\Rightarrow p_1/p_2 \uparrow$ ▶ $\Rightarrow x_1 \downarrow \text{ and } x_2 \uparrow$
- 2. Consumption-income effect: $p_1 \uparrow$
 - $ightarrow \Rightarrow$ overall consumption possibilities decrease
 - $\Rightarrow x_1 \downarrow$ if 1 is a normal good
- 3. Endowment-income effect: $p_1 \uparrow$
 - \blacktriangleright \Rightarrow value of endowment increases
 - $\Rightarrow x_1 \uparrow \text{ if } 1 \text{ is a normal good}$

Two different substitution effects

Definitions

In response to a price change, there are two different ways to keep real income constant:

- Old-household-optimum substitution effect
- Old-utility-level substitution effect

イロト イポト イヨト イヨト

32 / 62

Two different substitution effects Bahncard 50

Example

Two goods: train rides T and other goods G

- $p_T = 0.2$ (per kilometer), $p_G = 1$.
- "Bahncard 50":
 p_T reduced to 0.1.

Willingness to pay for the "Bahncard 50"?

イロト イポト イヨト イヨト

-

Two different substitution effects

Tax and rebate

Example

You smoke 10 cigarettes per day. The government is concerned about your health.

- Quantity tax of 10 cents, but
- rebate of 1 Euro per day.

Budget deficit in terms of the other goods?

The Slutsky equation for the money budget Derivation

Duality equation: $\chi_g(p, \bar{U}) = x_g(p, e(p, \bar{U}))$ Differentiate with respect to p_k

$$rac{\partial \chi_g}{\partial p_k} = rac{\partial x_g}{\partial p_k} + rac{\partial x_g}{\partial m} rac{\partial e}{\partial p_k}$$

$$= rac{\partial x_g}{\partial p_k} + rac{\partial x_g}{\partial m} \chi_k ext{ (Shephard's Lemma)}$$

The Slutsky equation (g = k):

$$\frac{\partial x_g}{\partial p_g} = \underbrace{\frac{\partial \chi_g}{\partial p_g}}_{\leq 0} - \underbrace{\frac{\partial x_g}{\partial m}}_{\text{for normal goods}} \chi_g.$$

35 / 62

The Slutsky equation for the money budget Implications

The Slutsky equation:

• g normal $\Rightarrow g$ ordinary

- ▶ g normal ⇒ effect of a price increase stronger on Marshallian demand than on Hicksian demand
- *g* inferior ⇒ income effect may outweigh substitution effect
 —> Giffen good

The Slutsky equation for the money budget

Assume (\hat{p}_g, \bar{U}) .

- ► By duality, $\chi_g \left(\hat{p}_g, \bar{U} \right) = x_g \left(\hat{p}_g, e\left(\hat{p}_g, \bar{U} \right) \right)$.
- ▶ g normal ⇒ Hicksian demand curves steeper than Marshallian demand curves

The Slutsky equation for the endowment budget Derivation

$$\frac{\partial x_g^{\text{endowment}}(p, \omega)}{\partial p_k} = \frac{\partial x_g^{\text{money}}(p, p \cdot \omega)}{\partial p_k} \\
= \frac{\partial x_g^{\text{money}}(p, p \cdot \omega)}{\partial p_k} + \frac{\partial x_g^{\text{money}}}{\partial m} \frac{\partial (p \cdot \omega)}{\partial p_k} \\
= \frac{\partial x_g^{\text{money}}}{\partial p_k} + \frac{\partial x_g^{\text{money}}}{\partial m} \omega_k \text{ (definition of dot product)} \\
= \left(\frac{\partial \chi_g}{\partial p_k} - \frac{\partial x_g^{\text{money}}}{\partial m} \chi_k\right) + \frac{\partial x_g^{\text{money}}}{\partial m} \omega_k \text{ (money-budget Slutsky equations)} \\
= \frac{\partial \chi_g}{\partial p_k} + \frac{\partial x_g^{\text{money}}}{\partial m} (\omega_k - \chi_k).$$

38 / 62

The Slutsky equation for the endowment budget Implications

The Slutsky equation:

- g normal and household net demander \Rightarrow g ordinary
- ▶ g normal and household net supplier ⇒ g may be non-ordinary

The Slutsky equation for the endowment budget

Application: consumption today versus consumption tomorrow

The intertemporal budget equation in future value terms:

$$(1+r) x_1 + x_2 = (1+r) \omega_1 + \omega_2.$$

The Slutsky equation:

The Slutsky equation for the endowment budget

Application: leisure versus consumption

The budget equation:

$$wx_R + px_C = w24 + p\omega_C$$

The Slutsky equation:

Thus, if the wage rate increases, it may well happen that the household works ...

The Slutsky equation for the endowment budget

Application: contingent consumption

The budget equation:

$$\frac{\gamma}{1-\gamma}x_1 + x_2 = \frac{\gamma}{1-\gamma}\left(A - D\right) + A$$

with γK – payment to the insurance if K is to be paid to the insure in case of damage D.

The Slutsky equation for consumption in case of damage:

Overview

- 1. The duality approach
- 2. Shephard's lemma
- 3. The Hicksian law of demand
- 4. Slutsky equations
- 5. Compensating and equivalent variations

Definition

- A variation is equivalent to an event, if both (the event or the variation) lead to the same indifference curve → EV (event);
- A variation is compensating if it restores the individual to its old indifference curve (prior to the event) → CV (event).

Equivalent	Compensating	
variation	variation	
in lieu of an event	because of an event	
monetary variation	monetary variation	
is equivalent	compensates for event	
(i.e., achieving the same utility)	(i.e., holding utility constant)	

The case of good air quality

Change of air quality:

► Compensation money → if some amount of money is given to the individual:

 $\mathit{CV}\left(\mathsf{degr.}\right)$ – the compensation money for the degradation of the air quality.

- Willingness to pay → if money is taken from the individual.
 EV (degr.) the willingness to pay for the prevention of the degradation.
- ► If the variation turns out to be negative, exchange -EV for EV or EV for -EV (similarly for CV).

Example

- Consumer's compensating variation: A consumer asks himself how much he is prepared to pay for a good.
- Consumer's equivalent variation the compensation payment for not getting the good. You go into a shop and ask for compensation for not taking (stealing?) the good.
- Producer's compensating variation the compensation money he gets for selling a good.
- Producer's equivalent variation: The producer asks himself how much he would be willing to pay if the good were not taken away from him.

▶ The willingness to pay for the price decrease of good g:

$$CV\left(p_{g}^{h}
ightarrow p_{g}^{\prime}
ight)=EV\left(p_{g}^{\prime}
ightarrow p_{g}^{h}
ight).$$

The compensation money for the price increase of good g:

$$EV\left(p_{g}^{h}\rightarrow p_{g}^{l}
ight)=CV\left(p_{g}^{l}\rightarrow p_{g}^{h}
ight).$$

- $CV(p_1^h \rightarrow p_1^l) < EV(p_1^h \rightarrow p_1^l)$ (for normal goods, see below);
- cv and ev if we are not sure whether a change is good or bad.

Lemma

Consider the event of a price change from p^{old} to p^{new} . Then:

$$U^{old} := V\left(p^{old}, m\right) = V\left(p^{new}, m + cv\right), \ CV = |cv| \ and$$
$$U^{new} := V\left(p^{new}, m\right) = V\left(p^{old}, m + ev\right), \ EV = |ev|.$$

Exercise

Problem

Tell the sign of cv and ev for a price increase of all goods.

Price increase of good 1:

<ロ > < 回 > < 回 > < 目 > < 目 > < 目 > 目 の Q () 51 / 62

Example

Cobb-Douglas utility function: $u(x_1, x_2) = x_1^a x_2^{1-a}$ with (0 < a < 1). By a price decrease from p_1^h to $p_1' < p_1^h$ (for example, Bahncard 50)

$$\underbrace{\left(a\frac{m}{p_{1}^{h}}\right)^{a}\left((1-a)\frac{m}{p_{2}}\right)^{1-a}}_{\text{utility at the old, high price}} = \underbrace{\left(a\frac{m+cv\left(p_{1}^{h}\rightarrow p_{1}^{l}\right)}{p_{1}^{l}}\right)^{a}\left((1-a)\frac{m+cv\left(p_{1}^{h}\rightarrow p_{1}^{l}\right)}{p_{2}}\right)^{1-a}}_{p_{2}}$$

utility at the new, lower price and compensating variation

$$cv\left(p_{1}^{h} \rightarrow p_{1}^{\prime}\right) = -\left(1 - \left(\frac{p_{1}^{\prime}}{p_{1}^{h}}\right)^{a}\right)m < 0.$$

52 / 62

Exercises

Problem

Determine the equivalent variation for a price decrease in case of Cobb-Douglas utility preferences.

Problem

Determine the compensating variation and the equivalent variation for the price decrease from p_1^h to $p_1^l < p_1^h$ and the quasi-linear utility function given by

$$u(x_1, x_2) = \ln x_1 + x_2$$
 $(x_1 > 0)!$

Assume $\frac{m}{p_2} > 1!$ Hint: the household optimum is $x(m, p) = \left(\frac{p_2}{p_1}, \frac{m}{p_2} - 1\right).$

Applying duality

Implicit definition of compensating variation

Implicit definition: $U^{old} := V(p^{old}, m) = V(p^{new}, m + cv)$ Duality equation e(p, V(p, m)) = m leads to

$$e\left(p^{old}, V\left(p^{old}, m\right)\right) = m \qquad (1)$$

$$e\left(p^{new}, V\left(p^{new}, m+cv\right)\right) = m+cv \qquad (2)$$

 \Rightarrow

$$cv = e(p^{new}, V(p^{new}, m+cv)) - m$$
(2)
= $e(p^{new}, U^{old}) - e(p^{old}, U^{old})$ (1) and implicit definition

The household is given, or is relieved of, the money necessary to uphold the old utility level.

Applying duality

Implicit definition of equivalent variation

Implicit definition: $U^{new} := V(p^{new}, m) = V(p^{old}, m + ev)$ Duality equation e(p, V(p, m)) = m leads to

$$e\left(p^{new}, V\left(p^{new}, m\right)\right) = m \qquad (1)$$

$$e\left(p^{old}, V\left(p^{old}, m + ev\right)\right) = m + ev \qquad (2)$$

 \Rightarrow

$$ev = e\left(p^{old}, V\left(p^{old}, m + ev\right)\right) - m \qquad (2)$$
$$= e\left(p^{old}, U^{new}\right) - e\left(p^{new}, U^{new}\right) \qquad (1) \text{ and implicit definition}$$

Assume $p^{new} < p^{old}$. The equivalent variation is the amount of money necessary to increase the household's income from $m = e(p^{new}, U^{new})$ to $e(p^{old}, U^{new})$.

Variations for a price change and Hicksian demand

Applying the fundamental theorem of calculus

$$cv\left(p_{g}^{h}
ightarrow p_{g}^{\prime}
ight)=-\int_{p_{g}^{\prime}}^{p_{g}^{h}}\chi_{g}\left(
ho_{g}$$
, $V\left(p_{g}^{h},m
ight)
ight)dp_{g}$

by (if you want)

$$cv\left(p_{g}^{h} \rightarrow p_{g}^{l}\right) = e\left(p_{g}^{l}, V\left(p_{g}^{h}, m\right)\right) - e\left(p_{g}^{h}, V\left(p_{g}^{h}, m\right)\right)$$
$$= -\left[e\left(p_{g}^{h}, V\left(p_{g}^{h}, m\right)\right) - e\left(p_{g}^{l}, V\left(p_{g}^{h}, m\right)\right)\right]$$
$$= -e\left(p_{g}, V\left(p_{g}^{h}, m\right)\right) \Big|_{p_{g}^{l}}^{p_{g}^{h}}$$
$$= -\int_{p_{g}^{l}}^{p_{g}^{h}} \frac{\partial e\left(p, V\left(p_{g}^{h}, m\right)\right)}{\partial p_{g}} dp_{g} \text{ (Fundamental Theorem}$$
$$= -\int_{p_{g}^{l}}^{p_{g}^{h}} \chi_{g}\left(p_{g}, V\left(p_{g}^{h}, m\right)\right) dp_{g} \text{ (Shephard's lemma)}$$

56 / 62

Variations for a price change and Hicksian demand

Applying the fundamental theorem of calculus

・ロ ・ ・ 日 ・ ・ 三 ・ ・ 三 ・ うへで 57 / 62

Variations for a price change and Hicksian demand Comparisons

Theorem

Assume any good g and any price decrease from p_g^h to $p_g^l < p_g^h$.

$$cv\left(p_{g}^{h}
ightarrow p_{g}^{\prime}
ight)=-\int_{p_{g}^{\prime}}^{p_{g}^{h}}\chi_{g}\left(p_{g},V\left(p_{g}^{h},m
ight)
ight)dp_{g}.$$

If g is a normal good:

Variations for a price change and Hicksian demand

Comparisons for normal goods

 x_g, χ_g

Variations for a price change and Hicksian demand Consumers' rent

Definition

The Hicksian consumer's rent at price $\hat{p}_g < p_g^{proh}$ is given by

$$CR^{Hicks}\left(\hat{p}_{g}\right) \quad : \quad = CV\left(p_{g}^{proh} \to \hat{p}_{g}\right)$$
$$= \quad \int_{\hat{p}_{g}}^{p_{g}^{proh}} \chi_{g}\left(p_{g}, V\left(p_{g}^{proh}, m\right)\right) dp_{g}.$$

Further exercises I

Problem 1

Determine the expenditure functions and the Hicksian demand function for $U(x_1, x_2) = \min(x_1, x_2)$ and $U(x_1, x_2) = 2x_1 + x_2$. Can you confirm the duality equations

$$\chi (p, V (p, m)) = x (p, m)$$
 and
 $x (p, e (p, \overline{U})) = \chi (p, \overline{U})$?

Further exercises II

Problem 2

Derive the Hicksian demand functions and the expenditure functions of the two utility functions:

(a)
$$U(x_1, x_2) = x_1 \cdot x_2$$
,
(b) $U(x_1, x_2) = \min(a \cdot x_1, b \cdot x_2)$ with $a, b > 0$.

Problem 3 Verify Roy's identity for the utility function $U(x_1, x_2) = x_1 \cdot x_2!$

Problem 4

Draw a figure that shows the equivalent variation following a price increase.