Advanced Microeconomics Decisions under risk

Harald Wiese

University of Leipzig

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 へ (~ 1/43

Part A. Basic decision and preference theory

- 1. Decisions in strategic (static) form
- 2. Decisions in extensive (dynamic) form
- 3. Ordinal preference theory
- 4. Decisions under risk

Decisions under risk

Overview

- 1. Simple and compound lotteries
- 2. The St. Petersburg lottery
- 3. Preference axioms for lotteries and von Neumann Morgenstern utility

3 / 43

4. Risk attitudes

Simple and compound lotteries

How lotteries arise

Lotteries may arise from decision situations such as

state of the world

イロン イロン イヨン イヨン 三日

4 / 43

		bad weather, $\frac{1}{4}$	good weather, $\frac{3}{4}$
strategy	production of umbrellas	100	81
	production of sunshades	64	121

They can be understood as

- bundles of goods;
- extensive-form decision situations;
- "payoffs"

Simple lotteries as bundles and trees

Lotteries as bundles of goods

$$\mathcal{L}_{umbrella} = \begin{bmatrix} 100, 81; \frac{1}{4}, \frac{3}{4} \end{bmatrix} \text{ and } \mathcal{L}_{sunshade} = \begin{bmatrix} 64, 121; \frac{1}{4}, \frac{3}{4} \end{bmatrix}$$

$$\stackrel{payment x_{2}}{(\text{prob. } \frac{3}{4})}$$
121
$$e^{\text{sunshade}}{e^{\text{production}}}$$
81
$$e^{\text{umbrella}}{e^{\text{production}}}$$

$$e^{\text{truth relation}}{e^{\text{truth relation}}}$$

$$e^{\text{truth relation}}{e^{\text{truth relation}}}$$

$$e^{\text{truth relation}}{e^{\text{truth relation}}}$$

$$e^{\text{truth relation}}{e^{\text{truth relation}}}$$

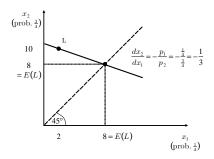
5/43

Simple lotteries as bundles and trees

Expected value of a simple lottery

Definition

$$E(L) = \sum_{j=1}^{\ell} p_j x_j, L = [x_1, ..., x_{\ell}; p_1, ..., p_{\ell}].$$



$$L = \begin{bmatrix} 2, 10; \frac{1}{4}, \frac{3}{4} \end{bmatrix}$$
$$E(L) = p_1 x_1 + p_2 x_2$$
$$\Leftrightarrow x_2 = \frac{E(L)}{p_2} - \frac{p_1}{p_2} x_1$$

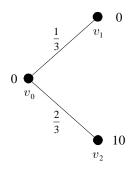
$$E(L) \underbrace{=}_{45^{\circ}\text{-line}} p_1 x_1 + p_2 x_1 = x_1$$

Simple lotteries as bundles and trees

Lottery as a decision situation in extensive form

Lottery $L = [0, 10; \frac{1}{3}, \frac{2}{3}]$ can be seen as a "decision" situation in extensive form

- without a decision maker,
- nature moves



Are you risk averse?

Use introspection!

Problem Do you prefer $L_1 = [0, 10; \frac{1}{3}, \frac{2}{3}]$ to $L_2 = [5, 10; \frac{1}{4}, \frac{3}{4}]$?

Problem

Do you prefer $L = \begin{bmatrix} 95, 105; \frac{1}{2}, \frac{1}{2} \end{bmatrix}$ to a certain payoff of 100?

Compound lotteries

Lotteries as "payoffs"

Definition

Let $L_1, ..., L_{\ell}$ be simple lotteries. \Rightarrow $[L_1, ..., L_{\ell}; p_1, ..., p_{\ell}]$ – a compound or two-stage lottery where ℓ can be infinite.

Problem

Consider $L_1 = [0, 10; \frac{1}{3}, \frac{2}{3}]$ and $L_2 = [5, 10; \frac{1}{4}, \frac{3}{4}]$. Express the compound lottery $L = [L_1, L_2; \frac{1}{2}, \frac{1}{2}]$ as a simple lottery! Can you draw the appropriate trees, one of length 2 and one of length 1?

Decisions under risk

Overview

- 1. Simple and compound lotteries
- 2. The St. Petersburg lottery
- 3. Preference axioms for lotteries and von Neumann Morgenstern utility
- 4. Risk attitudes

The St. Petersburg lottery

Definition

- Imagine Peter throwing a fair coin j times until "head" occurs for the first time.
- Head (H) rather than tail (T) occurs
 - at the first coin toss (sequence H) with probability $\frac{1}{2}$,
 - at the second coin toss (sequence TH) with probability $\frac{1}{4}$ and
 - at the *j*th toss (sequence T...TH) with probability $\frac{1}{2^j}$.
- Peter pays 2^j to Paul if "head" occurs for the first time at the jth toss.
- St. Petersburg lottery:

$$L = \left[2, 4, 8, \dots, 2^{j}, \dots; \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots, \frac{1}{2^{j}}, \dots\right].$$

The probabilities are positive. However, do they sum up to 1?

The St. Petersburg lottery

Infinite geometric series

Fact Infinite geometric series $\sum_{j=0}^{\infty} cq^{j} = c + cq + cq^{2} + ...$ with |q| < 1 converges:

$$\frac{\text{first term}}{1 - \text{factor}} = \frac{c}{1 - q}$$

The sum of the probabilities

•
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^j} + \dots = \sum_{i=1}^{\infty} \frac{1}{2^j}$$

• with
$$q = \frac{1}{2}$$

so that we obtain

•
$$\frac{\text{first term}}{1-\text{factor}} = \frac{\frac{1}{2}}{1-\frac{1}{2}} = 1$$
 (!)

The St. Petersburg lottery

Use introspection!

- How much are you prepared to pay for the St. Petersburg lottery?
- But

$$E(L) = \frac{1}{2} \cdot 2 + \frac{1}{4} \cdot 4 + \frac{1}{8} \cdot 8 + ... = \infty$$

▶ a paradox?

How to solve the paradox

- Limited resources?
- Expected utility?

Definition

$$E_{u}\left(L\right)=\sum_{j=1}^{\ell}p_{j}u\left(x_{j}\right)$$

- the expected utility of a simple lottery $L = [x_1, ..., x_\ell; p_1, ..., p_\ell]$ with $u : \mathbb{R} \to \mathbb{R}$. *u* is called a von Neumann Morgenstern utility function.

Bounded vNM utility u?

See manuscript!

Decisions under risk

Overview

- 1. Simple and compound lotteries
- 2. The St. Petersburg lottery
- 3. Preference axioms for lotteries and von Neumann Morgenstern utility
- 4. Risk attitudes

• Completeness axiom: Assume L_1, L_2 . \Rightarrow

 $L_1 \succsim L_2$ or $L_2 \succsim L_1$

• Transitivity axiom: Assume $L_1 \succeq L_2$ and $L_2 \succeq L_3$. \Rightarrow

 $L_1 \succeq L_3$

Continuity axiom: Assume L₁ ≿ L₂ ≿ L₃. ⇒ There is a p ∈ [0, 1] such that

$$L_2 \sim [L_1, L_3; p, 1-p]$$

• Independence axiom: Assume L_1 , L_2 , L_3 and p > 0. \Rightarrow

$$[L_1, L_3; p, 1-p] \precsim [L_2, L_3; p, 1-p] \Leftrightarrow L_1 \precsim L_2$$

Is the continuity axiom plausible?

Assume:

- L₁ payoff of 10 €;
- L₂ payoff of 0 €;
- L₃ certain death.

$$L_1 \succ L_2 \succ L_3$$

Determine your p so that:

$$L_2 \sim [L_1, L_3; p, 1-p]$$

17 / 43

 $p=1 \Rightarrow [L_1, L_3; 1, 0] = L_1 \succ L_2.$

Independence axiom: Exercise

Problem

Assume a decision maker who is indifferent between

$$L_1 = \left[0, 100; \frac{1}{2}, \frac{1}{2}\right]$$
 and $L_2 = \left[16, 25; \frac{1}{4}, \frac{3}{4}\right]$.

Show the indifference between

$$L_3 = \left[0, 50, 100; \frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right] \text{ and } L_4 = \left[16, 25, 50; \frac{1}{8}, \frac{3}{8}, \frac{1}{2}\right]$$

by verifying:

$$L_3 = \left[L_1, 50; \frac{1}{2}, \frac{1}{2}\right] \text{ and } L_4 = \left[L_2, 50; \frac{1}{2}, \frac{1}{2}\right].$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Independence axiom: critics

Consider the lotteries

$$\begin{array}{ll} L_1 = \begin{bmatrix} 12 \cdot 10^6, 0; \frac{10}{100}, \frac{90}{100} \end{bmatrix} & L_3 = \begin{bmatrix} 1 \cdot 10^6; 1 \end{bmatrix} \\ L_2 = \begin{bmatrix} 1 \cdot 10^6, 0; \frac{11}{100}, \frac{89}{100} \end{bmatrix} & L_4 = \begin{bmatrix} 12 \cdot 10^6, 1 \cdot 10^6, 0; \frac{10}{100}, \frac{89}{100}, \frac{1}{100} \end{bmatrix} \end{array}$$

- Do you prefer L_1 to L_2 and/or L_3 to L_4 ?
- Many people prefer L_1 to L_2 and L_3 to L_4 .

But

$$L_{1} \succ L_{2} \Rightarrow \left[L_{1}, L_{3}; \frac{1}{2}, \frac{1}{2}\right] \succ \left[L_{2}, L_{3}; \frac{1}{2}, \frac{1}{2}\right] \text{ (independence)}$$

$$L_{3} \succ L_{4} \Rightarrow \left[L_{2}, L_{3}; \frac{1}{2}, \frac{1}{2}\right] \succ \left[L_{2}, L_{4}; \frac{1}{2}, \frac{1}{2}\right] \text{ (independence)}$$

$$\Rightarrow \left[L_{1}, L_{3}; \frac{1}{2}, \frac{1}{2}\right] \succ \left[L_{2}, L_{4}; \frac{1}{2}, \frac{1}{2}\right] \text{ (transitivity)}$$

yields a contradiction! —> see next slide

Exercise

Problem Reduce $[L_1, L_3; \frac{1}{2}, \frac{1}{2}]$ and $[L_2, L_4; \frac{1}{2}, \frac{1}{2}]$ to simple lotteries!

A utility function for lotteries

vNM utility function

Theorem

Preferences between lotteries obey the four axioms iff there is $u: \mathbb{R}_+ \to \mathbb{R}$ such that

$$L_1 \succeq L_2 \Leftrightarrow E_u(L_1) \ge E_u(L_2)$$

holds for all $L_1, L_2 \in \mathcal{L}$.

- u represents \succeq on \mathcal{L} ;
- u vNM utility function.

Distinguish between:

- $u: \mathbb{R}_+ \to \mathbb{R}$ vNM utility function (domain: payoffs);
- $E_u : \mathcal{L} \to \mathbb{R}$ expected utility (domain: lotteries).

A utility function for lotteries

Transformations

Definitions

u vNM utility function. *v* is called an affine transformation of *u* if *v* obeys v(x) = a + bu(x) for $a \in \mathbb{R}$ and b > 0.

Lemma

If u represents the preferences \succeq , so does any utility function v that is an affine transformation of u.

Problem

Find a vNM utility function that is simpler than $u(x) = 100 + 3x + 9x^2$ while representing the same preferences.

A utility function for lotteries

Problem Consider:

$$\mathcal{L}^{\mathcal{A}} := \left[x_{1}^{\mathcal{A}}, ..., x_{\ell_{\mathcal{A}}}^{\mathcal{A}}; p_{1}^{\mathcal{A}}, ..., p_{\ell_{\mathcal{A}}}^{\mathcal{A}}
ight] ext{ and } \mathcal{L}^{\mathcal{B}} := \left[x_{1}^{\mathcal{B}}, ..., x_{\ell_{\mathcal{B}}}^{\mathcal{B}}; p_{1}^{\mathcal{B}}, ..., p_{\ell_{\mathcal{B}}}^{\mathcal{B}}
ight].$$

Let v be an affine transformation of u. Show:

$$E_{u}\left(L^{A}\right) \geq E_{u}\left(L^{B}\right) \Leftrightarrow E_{v}\left(L^{A}\right) \geq E_{v}\left(L^{B}\right).$$

23 / 43

The construction of the vNM utility function

Consider:

•
$$L_{bad}$$
 and L_{good} $(L_{good} \succ L_{bad})$;

• L so that $L_{good} \succeq L \succeq L_{bad}$.

 \Rightarrow By the continuity axiom, there exists $p\left(L
ight)$ such that

$$L \sim \left[L_{good}, L_{bad}; p\left(L\right), 1 - p\left(L\right)
ight]$$

Problem

Find $p(L_{good})$ and $p(L_{bad})$! Hint: Translate $L \sim [L_{good}, L_{bad}; p(L), 1 - p(L)]$ into a statement on expected utilities.

The construction of the vNM utility function

 $L:=[x;1] \Rightarrow$

$$u(x):=p(L)$$

- a vNM utility function.
 - ▶ The decision maker is indifferent between x and $[L_{good}, L_{bad}; u(x), 1 u(x)]$.
 - ▶ u(x) is a value between 0 (the probability for L_{bad}) and 1 (the probability for L_{good})
 - ► u represents the preferences of the decision maker (as shown by Myerson, 1991, pp. 12).

Decisions under risk

Overview

- 1. Simple and compound lotteries
- 2. The St. Petersburg lottery
- 3. Preference axioms for lotteries and von Neumann Morgenstern utility
- 4. Risk attitudes

Definition

Given: $f: M \rightarrow \mathbb{R}$ (function on a convex domain $M \subseteq \mathbb{R}$). \Rightarrow

► f is concave if

$$f(kx + (1 - k)y) \ge kf(x) + (1 - k)f(y)$$

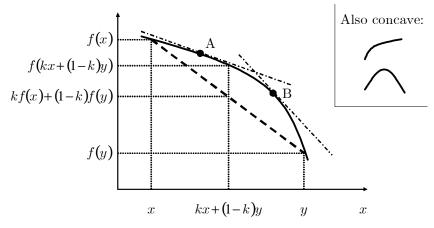
for all $x, y \in M$ and for all $k \in [0, 1]$ (with $\leq -$ convex). • f is strictly concave if

$$f(kx + (1 - k)y) > kf(x) + (1 - k)f(y)$$

holds for all $x, y \in M$ with $x \neq y$ and for all $k \in (0, 1)$ (with < - strictly convex).

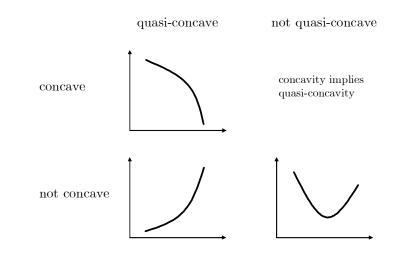
27/43

Concavity



The line connecting f(x) and f(y) lies below the graph.

... and quasi-concavity



The second derivative

Lemma

Let $f : M \to \mathbb{R}$ with convex domain $M \subseteq \mathbb{R}$ be twice differentiable.

• f is concave on $M \subseteq \mathbb{R}$ iff

 $f''(x) \leq 0$

holds for all $x \in M$.

• f is convex on $M \subseteq \mathbb{R}$ iff

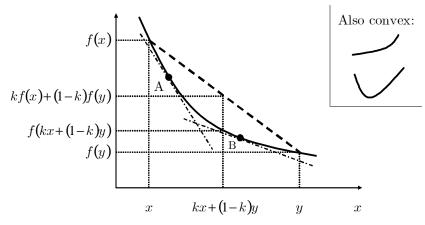
 $f''(x) \ge 0$

<ロ> (四) (四) (三) (三) (三) (三)

30/43

holds for all $x \in M$.

Convexity



The line connecting f(x) and f(y) lies above the graph.

・ロ ・ ・ 日 ・ ・ 目 ・ ・ 目 ・ つ へ で 31 / 43

Convexity: Exercise

Problem

Comment: If a function $f : \mathbb{R} \to \mathbb{R}$ is not concave, it is convex.

Risk aversion and risk loving Definition

 $\begin{array}{l} \mbox{Definition} \\ \mbox{Assume} \succsim \mbox{on } \mathcal{L}. \mbox{ A decision maker is:} \end{array}$

risk neutral if

$$L \sim [E(L); 1]$$
 or $E_u(L) = u(E(L));$

risk-averse if

$$L \precsim [E(L); 1]$$
 or $E_u(L) \le u(E(L));$

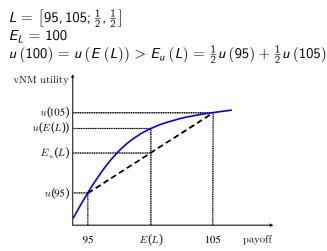
risk-loving if

$$L \succeq [E(L); 1]$$
 or $E_u(L) \ge u(E(L))$

for all lotteries $L \in \mathcal{L}$.

Risk aversion and risk loving

Risk aversion



Risk aversion and risk loving

Lemma

Lemma

Assume \succsim on ${\cal L}$ and an associated vNM utility function u. A decision maker is:

- risk neutral iff u is an affine function (i.e., u (x) = ax + b, a > 0);
- risk-averse iff u is concave;
- risk-loving iff u is convex.

Risk aversion and risk loving

Exercise

Problem

Do the preferences characterized by the following utility functions exhibit risk-averseness?

•
$$u_1(x) = x^2, x > 0$$

• $u_2(x) = 2x + 3$
• $u_3(x) = ln(x), x > 0$
• $u_4(x) = -e^{-x}$
• $u_5(x) = \frac{x^{1-\theta}}{1-\theta}, \theta > 0, \theta \neq 1$

Certainty equivalent and risk premium

Definition

For any $L \in \mathcal{L}$, the payoff CE(L) is the certainty equivalent of L, if

 $L \sim [CE(L); 1]$

holds.

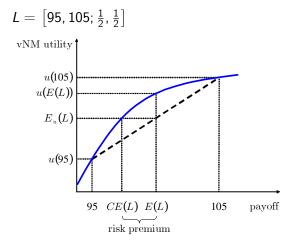
Definition For any $L \in \mathcal{L}$:

RP(L) := E(L) - CE(L)

- the risk premium.

Certainty equivalent and risk premium

Certainty equivalent



・ロ ・ < 回 ト < 三 ト < 三 ト 三 の へ () 38 / 43

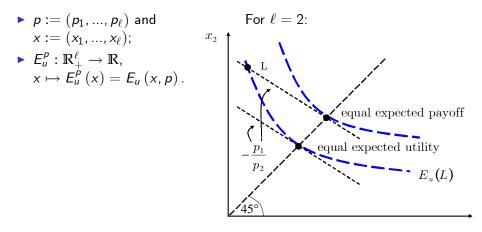
Certainty equivalent and risk premium

Further exercises problem 1

Problem

Reconsider the figure from the previous slide and draw a corresponding figure for risk neutral and risk-loving preferences.

Risk aversion and risk loving in an x1-x2-diagram



 x_1

< 回 > < 三 > < 三 > 40/43

Risk aversion and risk loving in an x1-x2-diagram Slope of the indifference curve

$$MRS = \frac{\frac{\partial E_{\mu}^{u}}{\partial x_{1}}}{\frac{\partial E_{\mu}^{u}}{\partial x_{2}}} = \frac{\frac{\partial [p_{1}u(x_{1})+p_{2}u(x_{2})]}{\partial x_{1}}}{\frac{\partial [p_{1}u(x_{1})+p_{2}u(x_{2})]}{\partial x_{2}}} = \frac{p_{1}\frac{\partial u(x_{1})}{\partial x_{1}}}{p_{2}\frac{\partial u(x_{2})}{\partial x_{2}}}$$
$$MRS = \frac{p_{1}}{p_{2}} \text{ for } x_{1} = x_{2}.$$

Example

Risk neutrality:

$$u(x) = ax + b, a > 0$$

MRS (x₁) = $\frac{p_1 \frac{\partial u(x_1)}{\partial x_1}}{p_2 \frac{\partial u(x_2)}{\partial x_2}} = \frac{p_1 a}{p_2 a} = \frac{p_1}{p_2}$

Further exercises

Problem 1

Socrates has an endowment of 225 million Euro most of which is invested in a luxury cruise ship worth 200 million Euro. The ship sinks with a probability of $\frac{1}{5}$. Socrates vNM utility function is given by $u(x) = \sqrt{x}$. What is his willingness to pay for full insurance?

Problem 2

Identify the certainty equivalent and the risk premium in the x_1 - x_2 diagram for risk-averse preferences.

Problem 3 Let $W = \{w_1, w_2\}$ be a set of 2 states of the world. The contingent good 1 that pays one Euro in case of state of the world w_1 and nothing in the other state is called an Arrow security. Determine this Arrow security in an x_1 - x_2 -diagram.

Further exercises: Problem 4

Sarah may become a paediatrician or a clerk in an insurance company. She expects to earn 40 000 Euro as a clerk every year. Her income as paediatrician depends on the number of children that will be born. In case of a baby boom, her yearly income will be 100 000 Euro, otherwise 20 000 Euro. She estimates the probability of a babyboom at $\frac{1}{2}$. Sarah's vNM utility function is given by $u(x) = 300 + \frac{4}{5}x$.

- Formulate Sarah's choices as lotteries!
- What is Sarah's choice?
- The Institute of Advanced Demography (IAD) has developed a secret, but reliable, method of predicting a baby boom. Sarah can buy the information for constant yearly rates. What is the maximum yearly willingness to pay?
- Sketch Sarah's decision problem in x₁-x₂ space where income without babyboom is noted at the x₁-axis and income with babyboom at the x₂-axis.