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Part A. Basic decision and preference theory

1. Decisions in strategic (static) form

2. Decisions in extensive (dynamic) form
3. Ordinal preference theory

4. Decisions under risk



Decisions under risk
Overview
1. Simple and compound lotteries
2. The St. Petersburg lottery
3. Preference axioms for lotteries and von Neumann Morgenstern
utility
4. Risk attitudes
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Simple and compound lotteries

How lotteries arise

Lotteries may arise from decision situations such as

production

of umbrellas
strategy

production
of sunshades

They can be understood as

» bundles of goods;

state of the world

bad weather, %

3
good weather, 7

100

81

64

121

» extensive-form decision situations;

> “payoffs”
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Simple lotteries as bundles and trees

Lotteries as bundles of goods

13 13
Lumbrella - |:100,81, Zv 4:| and Lsunshade - |:64, 121: Zy 4:|

payment T,
in case of
good weather
rob.% had
sunshade
121 production
umbrella
8l production
64 100 payment z;

in case of
bad weather
o 1
rob. f)



Simple lotteries as bundles and trees

Expected value of a simple lottery

Definition
J4
=1
13
o - 210 =2
(prob.%) Y L |: 1 01 41 4:|
0 S dn w11 E(L) = pixi+pxo
8 ~ dz, p, & 3 E(L
=E(L) i S X = ( ) _ ﬂ
P2 P2
25 E(L) =_pixi+px1=x
2 8=E(L) 7 45°-line
(prob. %)

X1
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Simple lotteries as bundles and trees

Lottery as a decision situation in extensive form

Lottery L = [O 10; & 3 3] can be seen as a “decision” situation in

extensive form

» without a decision maker,

> nature moves

0
1 Uy
3
0
Vo
2
3
10

U3
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Are you risk averse?

Use introspection!

Problem

Problem
Do you prefer L = [95,105; 1, 1] to a certain payoff of 1002
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Compound lotteries

Lotteries as "payoffs"

Definition

Let Ly, ..., Ly be simple lotteries. =

[L1,....Ls; p1, ... pr] — a compound or two-stage lottery
where £ can be infinite.

Problem

Consider L1 = [O 10; L 3 3] and L, = [5 10; 1 I 4] Express the
compound lottery L = [Ll Ly; % %] as a simple lottery! Can you
draw the appropriate trees, one of length 2 and one of length 17



Decisions under risk
Overview
1. Simple and compound lotteries
2. The St. Petersburg lottery
3. Preference axioms for lotteries and von Neumann Morgenstern
utility
4. Risk attitudes
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The St. Petersburg lottery
Definition
» Imagine Peter throwing a fair coin j times until “head” occurs
for the first time.
» Head (H) rather than tail (T) occurs

> at the first coin toss (sequence H) with probability %
> at the second coin toss (sequence TH) with probability % and
> at the jth toss (sequence T...TH) with probability 2%

» Peter pays 2/ to Paul if “head” occurs for the first time at the
Jth toss.

> St. Petersburg lottery:

—_

11
L— 2,4,8,..., ,E,Z,g, cay 2],

» The probabilities are positive. However, do they sum up to 1?
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The St. Petersburg lottery

Infinite geometric series

Fact

Infinite geometric series Z;io c¢ =c+eq+cq’+ ...

|q] < 1 converges:

first term c

l1—factor 1—gq’

» The sum of the probabilities

1 1 1 1 _ © 1
ititetotyto=) 1y
is an infinite geometric series

with g = %

so that we obtain

1
first term _ 3 __ |
> T factor — 1_% =1 ()

v

v

v

v

with
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The St. Petersburg lottery

Use introspection!

» How much are you prepared to pay for the St. Petersburg

lottery?
» But 1 1 1
E(l)=3-24 5 4+g 8+ =

» a paradox?
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How to solve the paradox

» Limited resources?

» Expected utility?

Definition

L

Eu (L) =} pju(x)

Jj=1

— the expected utility of a simple lottery L = [x1, ..., X¢; p1, ..., Py]
with v : R — IR. v is called a von Neumann Morgenstern utility

function.

» Bounded vNM utility u?

See manuscript!
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Decisions under risk

Overview
1. Simple and compound lotteries
2. The St. Petersburg lottery

3. Preference axioms for lotteries and von Neumann
Morgenstern utility

4. Risk attitudes
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Preference axioms

» Completeness axiom: Assume L, [,. =
Ly Lyorly = Ly
» Transitivity axiom: Assume Ly =~ Ly and L, 77 L3. =
Ly 7= L3

» Continuity axiom: Assume L; 77 Ly 7 L3. = There is a
p € [0, 1] such that

Ly ~ [Ly, L3;p, 1 —p]
» Independence axiom: Assume L1, Ly,L3 and p > 0. =

(L1, Ls;p, 1= p] S (Lo L3ip 1= p] & L1 3 Lo,

16
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Preference axioms

Is the continuity axiom plausible?
Assume:

> L; — payoff of 10 €;
> L, — payoff of 0 €;

» [3 — certain death.
Li =Ly > L3

Determine your p so that:
Ly ~ Ly, L3; p, 1 —p]

p=1=[L1, 131,00 =L = L.
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Preference axioms

Independence axiom: Exercise

Problem
Assume a decision maker who is indifferent between

1 13
L = [O 100; > 2] and Ly, = [16 25; n 4]

Show the indifference between

111 131
L3 = [0,50, 100,4,2,4] and L4 = [16 25,50; - 33 2}

by verifying:

11 11
Ly = |L1,50; >, = e = |L5,50: %, = | .
3 [ 1,50,2,2] and Ly { 2.50,2,2]
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Preference axioms

Independence axiom: critics

Consider the lotteries

Ly = [12-10°,0; &%, gooo] L3 = [1-10%1

Ly = [1 +10°,0; 11010 1800] Ly [12 10°,1-10°0; 11000 100 1(1)0]
» Do you prefer L; to Ly and/or L3 to L4?
» Many people prefer L; to Ly and L3 to Ly.
» But

11 11
Li > L= [Ll’L3;2'2] - |:L2,L3;2,2:| (independence)

1 1
L3 = L4= |:L2,I_3, 5 2] [LQ,LL;, ] (independence)

2'2

1 11 .
= {Ll Ls; 5> 2] — |:L2,L4,2,2:| (transitivity)

yields a contradiction! —> see next slide
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Preference axioms

Exercise

Problem
Reduce [Ll, Ls; % %] and [Lg, Ly; % %] to simple lotteries!
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A utility function for lotteries
vNM utility function

Theorem
Preferences between lotteries obey the four axioms iff there is
u:R;: — IR such that

L4 ?\: L, < E, (Ll) > E, (Lg)

holds for all L1, L, € L.

> u represents 7~ on L;

> u — vNM utility function.
Distinguish between:

» u: Ry — R - vNM utility function (domain: payoffs);
» E,: L — R — expected utility (domain: lotteries).

21/43



A utility function for lotteries

Transformations

Definitions
u vNM utility function. v is called an affine transformation of u if
v obeys v (x) = a+ bu(x) for a€ R and b > 0.

Lemma
If u represents the preferences ~, so does any utility function v
that is an affine transformation of u.

Problem
Find a vNM utility function that is simpler than
u (x) = 100 + 3x + 9x> while representing the same preferences.
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A utility function for lotteries

Exercise

Problem
Consider:

A= [xlA,...,xa;pf‘, ...,pé‘] and LB := [xlB,...,xﬁ;plB,...,ng .

Let v be an affine transformation of u.
Show:

E, (LA> > E, (LB> S E, (LA> > E, (LB> .
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The construction of the vNM utility function
Consider:

> Lpag and Lgood (Lgood > Lbad);
» [ so that Lgood i L i Lpad-

= By the continuity axiom, there exists p (L) such that
L~ [Lgoodv Lpad; p (L) 1—=p (L)]

Problem

Find p (Lgood) and p (Lpaq)! Hint: Translate

L ~ [Lgood: Lbag; p (L), 1 — p(L)] into a statement on expected
utilities.
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The construction of the vNM utility function

L:=[x;1] =

— a vNM utility function.

» The decision maker is indifferent between x and
[Lgoodv Lpag; u (X) 1—u (X)] :

» u(x) is a value between 0 (the probability for Ls,4) and 1
(the probability for Lgooq)

> u represents the preferences of the decision maker (as shown
by Myerson, 1991, pp. 12).
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Decisions under risk
Overview
1. Simple and compound lotteries
2. The St. Petersburg lottery
3. Preference axioms for lotteries and von Neumann Morgenstern
utility
4. Risk attitudes
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Concave and convex functions

Definition
Given: f : M— R (function on a convex domain M C R). =

» f is concave if
flkx+(1—k)y) > kf(x)+(1—k)f(y)

for all x,y € M and for all k € [0,1] (with < — convex).
> f is strictly concave if

flkx+(1—k)y)>kf(x)+(1—k)f(y)

holds for all x,y € M with x # y and for all k € (0,1) (with
< — strictly convex).
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Concave and convex functions

Concavity

F@) P R, A
flz+ Q- k) >3
kfe)+ @ k) (v)

1)

x kz+ (- k)y Y x

The line connecting f (x) and f (y) lies below the graph.

Also concave:

>\
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Concave and convex functions

.. and quasi-concavity

quasil¢oncave not quasilconcave

concavity implies

concave . .
quasil¢oncavity

not concave
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Concave and convex functions

The second derivative

Lemma

Let f : M — R with convex domain M C IR be twice differentiable.

» f is concave on M C R iff
f(x) <0

holds for all x € M.
» f is convex on M C R iff

f"(x) >0

holds for all x € M.
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Concave and convex functions

Convexity

&)

kf(e)+@- k) @)

flkz+ (- k)y)
fw)

Also convex:

X

kz+@- k)y

The line connecting f (x) and f (y) lies above the graph.

_
4
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Concave and convex functions

Convexity: Exercise

Problem
Comment: If a function f : R — IR is not concave, it is convex.

32/43



Risk aversion and risk loving

Definition

Definition
Assume 77 on L. A decision maker is:

» risk neutral if

L~[E(L);1] or E, (L) =u(E(L));
> risk-averse if

LZIE(L):1] or £, (L) < u(E(L));
> risk-loving if

L2 [E(L):1]) or B (L) = u(E (L))

for all lotteries L € L.
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Risk aversion and risk loving
Risk aversion
L= [95,105; 3, 1]
E, = 100
u(100) = u (E (L)) > E, (L) = $u(95) + $u (105)

vNM utility

u(105)
u(E(L)) .7

EB,(L)

u(95)

95 E(L) 105  payoff
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Risk aversion and risk loving

Lemma

Lemma
Assume -, on L and an associated vNNM utility function u.
A decision maker is:

> risk neutral iff u is an affine function (i.e., u(x) = ax + b,
a>0)
» risk-averse iff u is concave;

> risk-loving iff u is convex.
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Risk aversion and risk loving

Exercise

Problem
Do the preferences characterized by the following utility functions
exhibit risk-averseness?

> u(x) =x%, x>0

> w(x) =2x+3

» u3(x) = In(x), x>0
> uy(x) = —e™

v
c
(&)
—~
X
~—
|
=[x
>
>
\Y
o
>
“
—
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Certainty equivalent and risk premium

Definition
For any L € L, the payoff CE (L) is the certainty equivalent of L, if

L~ [CE(L);1]
holds.

Definition
Forany L € L :

RP (L) := E (L) — CE (L)

— the risk premium.
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Certainty equivalent and risk premium

Certainty equivalent
L= [95,105; 3, 1]

vNM utility

u(105)
u(B(L)) ot

E,(L)

w (95) .......

95 CE(L) E(L) 105  payoff
H_)
risk premium
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Certainty equivalent and risk premium

Further exercises problem 1

Problem
Reconsider the figure from the previous slide and draw a
corresponding figure for risk neutral and risk-loving preferences.
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Risk aversion and risk loving in an x1-x2-diagram

» p:= (p1,...,pr) and
x = (X1, ..., xp);
» Ef 'R} — R,

x — Ef (x) = E, (x,

p)-

Lo

For ¢ =2:
\
B N i
\ \\ \ e
NS
NRAN N equal expected payoff
<, \\\\ /// s%\ —_— -
2 \equal expected utility
P / \ \ ~—~—
2 s o - B.(1)

~

T
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Risk aversion and risk loving in an x1-x2-diagram

Slope of the indifference curve

9EL A[pru(x1)+pau(x2)] 1au(X1)
_ 8x1 o ax1 o aXl
MRS = 38 = dputa)tputal] — . duba)
9xa 9xp P2 dx
P1
MRS = — for X1 = Xp.
p2
Example
Risk neutrality:
u(x) = ax+b,a>0
plau(xl)
) p1a P1
MRS () = 5l = pa =
p2 aX2 p2 p2
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Further exercises

Problem 1

Socrates has an endowment of 225 million Euro most of which is
invested in a luxury cruise ship worth 200 million Euro. The ship
sinks with a probability of % Socrates vNM utility function is given
by u (x) = y/x. What is his willingness to pay for full insurance?

Problem 2
Identify the certainty equivalent and the risk premium in the x;-x»
diagram for risk-averse preferences.

Problem 3

Let W = {wj, wo} be a set of 2 states of the world. The
contingent good 1 that pays one Euro in case of state of the world
wi and nothing in the other state is called an Arrow security.
Determine this Arrow security in an xj-xp-diagram.
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Further exercises: Problem 4

Sarah may become a paediatrician or a clerk in an insurance
company. She expects to earn 40 000 Euro as a clerk every year.
Her income as paediatrician depends on the number of children
that will be born. In case of a baby boom, her yearly income will
be 100 000 Euro, otherwise 20 000 Euro. She estimates the
probability of a babyboom at % Sarah's vNM utility function is
given by u (x) = 300 + £x.
» Formulate Sarah’s choices as lotteries!
» What is Sarah's choice?
» The Institute of Advanced Demography (IAD) has developed
a secret, but reliable, method of predicting a baby boom.
Sarah can buy the information for constant yearly rates. What
is the maximum yearly willingness to pay?
» Sketch Sarah’s decision problem in x;-x space where income
without babyboom is noted at the xj-axis and income with
babyboom at the xy-axis.
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