Advanced Microeconomics Ordinal preference theory

Harald Wiese

University of Leipzig

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Part A. Basic decision and preference theory

- 1. Decisions in strategic (static) form
- 2. Decisions in extensive (dynamic) form
- 3. Ordinal preference theory
- 4. Decisions under risk

Ordinal preference theory

Overview

- 1. The vector space of goods and its topology
- 2. Preference relations
- 3. Axioms: convexity, monotonicity, and continuity
- 4. Utility functions
- 5. Quasi-concave utility functions and convex preferences

6. Marginal rate of substitution

The vector space of goods

Assumptions

- households are the only decision makers;
- finite number ℓ of goods defined by
 - place
 - time
 - contingencies
- example: an apple of a certain weight and class to be delivered

- in Leipzig
- on April 1st, 2015,
- if it does not rain the day before

The vector space of goods

Exercise: Linear combination of vectors

Problem

Consider the vectors $x = (x_1, x_2) = (2, 4)$ and $y = (y_1, y_2) = (8, 12)$. Find x + y, 2x and $\frac{1}{4}x + \frac{3}{4}y!$

The vector space of goods

Notation

► For $\ell \in \mathbb{N}$: $\mathbb{R}^{\ell} := \{(x_1, ..., x_{\ell}) : x_g \in \mathbb{R}, g = 1, ..., \ell\}.$

- 0 ∈ ℝ^ℓ null vector (0, 0, ..., 0);
 vectors are called points (in ℝ^ℓ).
- Positive amounts of goods only:

$$\mathbb{R}^\ell_+ := \left\{ x \in \mathbb{R}^\ell : x \ge \mathsf{0} \right\}$$

Vector comparisons:

- $x \ge y :\Leftrightarrow x_g \ge y_g$ for all g from $\{1, 2, ..., \ell\}$;
- $x > y :\Leftrightarrow x \ge y$ and $x \ne y$;
- $x \gg y :\Leftrightarrow x_g > y_g$ for all g from $\{1, 2, ..., \ell\}$.

Distance between x and y

euclidian distance: c

city-block distance: a+b

infinity distance: max(a, b)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Distance

Definition In \mathbb{R}^{ℓ} :

euclidian (or 2-) norm: ||x - y|| := ||x - y||_2 := \sqrt{\sum_{g=1}^{\ell} (x_g - y_g)^2}
infinity norm: ||x - y||_{\infty} := \max_{g=1,...,\ell} |x_g - y_g|
city-block norm: ||x - y||_1 := \sum_{g=1}^{\ell} |x_g - y_g|

Distance

Exercise

Problem

What is the distance (in \mathbb{R}^2) between (2,5) and (7,1), measured by the 2-norm $\|\cdot\|_2$ and by the inifinity norm $\|\cdot\|_{\infty}$?

Distance and balls

Definition
Let
$$x^* \in \mathbb{R}^{\ell}$$
 and $\varepsilon > 0. \Rightarrow$
 $\mathcal{K} = \left\{ x \in \mathbb{R}^{\ell} : ||x - x^*|| < \varepsilon \right\}$

- (open) ε -ball with center x^* .

- $||x x^*|| = \varepsilon$ holds for all x on the circular line;
- ▶ *K* all the points within

Problem

Assuming the goods space \mathbb{R}^2_+ , sketch three 1-balls with centers (2,2) , (0,0) and (2,0) , respectively.

Distance and balls

Boundedness

Definition

A set M is bounded if there exists an ε -ball K such that $M \subseteq K$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

The set $[0,\infty) = \{x \in \mathbb{R} : x \ge 0\}$ is not bounded.

Sequences and convergence

Sequence

Definition A sequence $(x^j)_{j \in \mathbb{N}}$ in \mathbb{R}^{ℓ} is a function $\mathbb{N} \to \mathbb{R}^{\ell}$.

Examples

► In \mathbb{R}^2 :

▶
$$(1, 2), (2, 3), (3, 4), ...$$

▶ $(1, \frac{1}{2}), (1, \frac{1}{3}), (1, \frac{1}{4}), (1, \frac{1}{5}), ...$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Sequences and convergence

Convergence

Definition

 $\left(x^j\right)_{j\in\mathbb{N}}$ in \mathbb{R}^ℓ converges towards $x\in\mathbb{R}^\ell$ if for every $\varepsilon>0$ there is an $N\in\mathbb{N}$ such that

$$||x^j - x|| < \varepsilon$$
 for all $j > N$

holds.

• Convergent – a sequence that converges towards some $x \in \mathbb{R}^{\ell}$.

Examples

- ▶ 1, 2, 3, 4, ... is not convergent towards any $x \in \mathbb{R}$;
- ▶ 1, 1, 1, 1, ... converges towards 1;
- $1, \frac{1}{2}, \frac{1}{3}, \dots$ converges towards zero.

Sequences and convergence Lemma 1

Lemma
Let
$$(x^j)_{j \in \mathbb{N}}$$
 be a sequence in \mathbb{R}^{ℓ} .
 \blacktriangleright If $(x^j)_{j \in \mathbb{N}}$ converges towards x and $y \Rightarrow x = y$.
 $\flat (x^j)_{j \in \mathbb{N}} = (x_1^j, ..., x_{\ell}^j)_{j \in \mathbb{N}}$ converges towards $(x_1, ..., x_{\ell})$ iff x_g^j
converges towards x_g for every $g = 1, ..., \ell$.

Problem Convergent?

(1, 2) , (1, 3) , (1, 4) , ...

or

$$\left(1,\frac{1}{2}
ight)$$
 , $\left(1,\frac{1}{3}
ight)$, $\left(1,\frac{1}{4}
ight)$, $\left(1,\frac{1}{5}
ight)$, \dots .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Boundary point

Definition

A point $x^* \in \mathbb{R}^{\ell}$ is a boundary point of $M \subseteq \mathbb{R}^{\ell}$ iff there is a sequence of points in M and another sequence of points in $\mathbb{R}^{\ell} \setminus M$ so that both converge towards x^* .

Interior point

Definition

A point in M that is not a boundary point is called an interior point of M.

Note: Instead of \mathbb{R}^ℓ , we can consider alternative sets, for example $\mathbb{R}^\ell_+.$

Closed set

Definition

A set $M \subseteq \mathbb{R}^{\ell}$ is closed iff every converging sequence in M with convergence point $x \in \mathbb{R}^{\ell}$ fulfills $x \in M$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem

Are the sets

•
$$\{0\} \cup (1, 2),$$

• $K = \{x \in \mathbb{R}^{\ell} : ||x - x^*|| < \varepsilon\},$
• $K = \{x \in \mathbb{R}^{\ell} : ||x - x^*|| \le \varepsilon\}$

closed?

Preference relations

Overview

- 1. The vector space of goods and its topology
- 2. Preference relations
- 3. Axioms: convexity, monotonicity, and continuity
- 4. Utility functions
- 5. Quasi-concave utility functions and convex preferences

6. Marginal rate of substitution

Relations and equivalence classes

Definition

Definition

Relations R (write xRy) might be

- complete (xRy or yRx for all x, y)
- transitive (xRy and yRz implies xRz for all x, y, z)
- reflexive (xRx for all x);

Problem

For any two inhabitants from Leipzig, we ask whether one is the father of the other. Fill in "yes" or "no":

property is the father of reflexive transitive complete

Preference relation

Definition

 \blacktriangleright (weak) preference relation \precsim – a relation on \mathbb{R}^ℓ_+ that is

• complete
$$(x \preceq y \text{ or } y \preceq x \text{ for all } x, y)$$

- transitive $(x \preceq y \text{ and } y \preceq z \text{ implies } x \preceq z \text{ for all } x, y, z)$ and
- reflexive $(x \preceq x \text{ for all } x)$;
- indifference relation:

$$x \sim y :\Leftrightarrow x \precsim y \text{ and } y \precsim x;$$

strict preference relation:

$$x \prec y :\Leftrightarrow x \precsim y$$
 and not $y \precsim x$.

Problem Fill in:

property indifference strict preference reflexive transitive complete

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

transitivity of strict preference

We want to show

 $x \prec y \land y \prec z \Rightarrow x \prec z$

Proof: $x \prec y$ implies $x \preceq y, y \prec z$ implies $y \preceq z$. Therefore, $x \prec y \land y \prec z$ implies $x \preceq z$. Assume $z \preceq x$. Together with $x \prec y$, transitivity implies $z \preceq y$, contradicting $y \prec z$. Therefore, we do not have $z \preceq x$, but $x \prec z$.

Better and indifference set

$\begin{array}{l} \text{Definition} \\ \text{Let} \succsim \text{be a preference relation on } \mathbb{R}_+^\ell \Rightarrow \end{array}$

▶
$$B_y := \{x \in \mathbb{R}^\ell_+ : x \succsim y\}$$
 – better set B_y of y ;

$$\blacktriangleright \hspace{0.1 in} W_y := \left\{ x \in \mathbb{R}_+^\ell : x \precsim y \right\} - \text{worse set} \hspace{0.1 in} W_y \hspace{0.1 in} \text{of} \hspace{0.1 in} y;$$

▶
$$I_y := B_y \cap W_y = \left\{ x \in \mathbb{R}^\ell_+ : x \sim y \right\}$$
 - y's indifference set;

indifference curve – the geometric locus of an indifference set.

Indifference curve

numbers to indicate preferences:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Indifference curves must not intersect

Two different indifference curves, Thus $C \sim B$

But $C \sim A \wedge A \sim B \Rightarrow C \sim B$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Contradiction!

Exercise

Problem

Sketch indifference curves for a goods space with just 2 goods and, alternatively,

- good 2 is a bad,
- good 1 represents red matches and good 2 blue matches,
- good 1 stands for right shoes and good 2 for left shoes.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Lexicographic preferences

In two-good case:

$$x \precsim_{lex} y :\Leftrightarrow x_1 < y_1 \text{ or } (x_1 = y_1 \text{ and } x_2 \leq y_2).$$

Problem

What do the indifference curves for lexicographic preferences look like?

Axioms: convexity, monotonicity, and continuity Overview

- 1. The vector space of goods and its topology
- 2. Preference relations
- 3. Axioms: convexity, monotonicity, and continuity
- 4. Utility functions
- 5. Quasi-concave utility functions and convex preferences

6. Marginal rate of substitution

Convex combination

Definition Let x and y be elements of \mathbb{R}^{ℓ} . \Rightarrow

$$kx + (1 - k)y$$
, $k \in [0, 1]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- the convex combination of x and y.

Convex and strictly convex sets

Definition

A set $M \subseteq \mathbb{R}^{\ell}$ is convex if for any two points x and y from M, their convex combination is also contained in M.

A set *M* is strictly convex if for any two points *x* and *y* from *M*, $x \neq y$,

kx + (1 - k)y, $k \in (0, 1)$

is an interior point of M for any $k \in (0, 1)$.

Convex and concave preference relation

Definition

- A preference relation \succeq is
 - convex if all its better sets B_y are convex,
 - strictly convex if all its better sets B_y are strictly convex,
 - concave if all its worse sets W_{y} are convex,
 - strictly concave if all its worse sets W_{ν} are strictly convex.

Preferences are defined on \mathbb{R}^{ℓ}_+ (!):

Exercise

Problem

Are these preferences convex or strictly convex?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Monotonicity of preferences

Monotonicity

Definition

A preference relation \succeq obeys:

- weak monotonicity if x > y implies $x \succeq y$;
- ► strict monotonicity if x > y implies x ≻ y;
- Iocal non-satiation at y if in every ε-ball with center y a bundle x exists with x ≻ y.

Problem

Sketch the better set of $y = (y_1, y_2)$ in case of weak monotonicity!

Exercise: Monotonicity and convexity

Which of the properties

- (strict) monotonicity and/or
- (strict) convexity

do the preferences depicted by the indifference curves in the graphs below satisfy?

Monotonicity of preferences

Bliss point

 x_1

<ロト <回ト < 注ト < 注ト

æ

Continuous preferences

Definition

A preference relation \precsim is continuous if for all $y \in \mathbb{R}^\ell_+$ the sets

$$W_y = \left\{ x \in \mathbb{R}^\ell_+ : x \precsim y \right\}$$

and

$$B_{y}=\left\{x\in \mathbb{R}^{\ell}_{+}: y\precsim x
ight\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

are closed.

Lexicographic preferences are not continuous

Consider the sequence

$$(x^{j})_{j\in\mathbb{N}} = \left(2+\frac{1}{j},2\right) \to (2,2)$$

・ロト ・四ト ・ヨト ・ヨト

3

All its members belong to the better set of (2, 4). But (2, 2) does not.

Overview

- 1. The vector space of goods and its topology
- 2. Preference relations
- 3. Axioms: convexity, monotonicity, and continuity
- 4. Utility functions
- 5. Quasi-concave utility functions and convex preferences

6. Marginal rate of substitution

Definition

Definition For an agent $i \in N$ with preference relation \succeq^i ,

$$U^i: \mathbb{R}^\ell_+ \mapsto \mathbb{R}$$

- utility function if

$$U^{i}\left(x
ight)\geq U^{i}\left(y
ight)\Leftrightarrow x\succsim^{i}y$$
, $x,y\in\mathbb{R}_{+}^{\ell}$

holds.

- U^i represents the preferences \succeq^i ;
- ordinal utility theory.

Examples of utility functions

Examples

Cobb-Douglas utility functions (weakly monotonic):

$$U(x_1, x_2) = x_1^a x_2^{1-a}$$
 with $0 < a < 1$;

perfect substitutes:

$$U(x_1, x_2) = ax_1 + bx_2$$
 with $a > 0$ and $b > 0$;

perfect complements:

$$U(x_1, x_2) = \min(ax_1, bx_2)$$
 with $a > 0$ and $b > 0$.

Dixit-Stiglitz preferences for love of variety

$$U\left(x_{1},...,x_{\ell}
ight) = \left(\sum_{j=1}^{\ell} x_{j}^{rac{arepsilon-1}{arepsilon}}
ight)^{rac{arepsilon}{arepsilon-1}} ext{ with } arepsilon > 1$$

where $\bar{X} := \sum_{j=1}^{\ell} x_j$ implies

$$\begin{split} U\left(\frac{\bar{X}}{\ell},...,\frac{\bar{X}}{\ell}\right) &= \left(\sum_{j=1}^{\ell} \left(\frac{\bar{X}}{\ell}\right)^{\frac{\varepsilon-1}{\varepsilon}}\right)^{\frac{\varepsilon}{\varepsilon-1}} = \left(\sum_{j=1}^{\ell} \bar{X}^{\frac{\varepsilon-1}{\varepsilon}} \left(\frac{1}{\ell}\right)^{\frac{\varepsilon-1}{\varepsilon}}\right)^{\frac{\varepsilon}{\varepsilon-1}} \\ &= \left(\ell \bar{X}^{\frac{\varepsilon-1}{\varepsilon}} \left(\frac{1}{\ell}\right)^{\frac{\varepsilon-1}{\varepsilon}}\right)^{\frac{\varepsilon}{\varepsilon-1}} = \ell^{\frac{\varepsilon}{\varepsilon-1}} \bar{X}^{\frac{1}{\ell}} = \ell^{\frac{\varepsilon}{\varepsilon-1}-1} \bar{X} = \ell^{\frac{1}{\varepsilon-1}}. \end{split}$$

and hence, by $\frac{\partial U}{\partial \ell} > 0$, a love of variety.

Exercises

Problem

Draw the indifference curve for perfect substitutes with a = 1, b = 4 and the utility level 5!

Problem

Draw the indifference curve for perfect complements with a = 1, b = 4 (a car with four wheels and one engine) and the utility level for 5 cars! Does x_1 denote the number of wheels or the number of engines?

Equivalent utility functions

Definition (equivalent utility functions)

Two utility functions U and V are called equivalent if they represent the same preferences.

Lemma (equivalent utility functions)

Two utility functions U and V are equivalent iff there is a strictly increasing function $\tau : \mathbb{R} \to \mathbb{R}$ such that $V = \tau \circ U$.

Problem

Which of the following utility functions represent the same preferences?

a)
$$U_1(x_1, x_2, x_3) = (x_1 + 1)(x_2 + 1)(x_3 + 1)$$

b) $U_2(x_1, x_2, x_3) = \ln(x_1 + 1) + \ln(x_2 + 1) + \ln(x_3 + 1)$
c) $U_3(x_1, x_2, x_3) = -(x_1 + 1)(x_2 + 1)(x_3 + 1)$
d) $U_4(x_1, x_2, x_3) = -[(x_1 + 1)(x_2 + 1)(x_3 + 1)]^{-1}$
e) $U_5(x_1, x_2, x_3) = x_1x_2x_3$

Existence

Existence is not guaranteed

Assume a utility function U for lexicographic preferences:

- ▶ U(A') < U(B') < U(A'') < U(A'') < U(B'') < U(B'') < U(B''');
- ▶ within (U(A'), U(B')) at least one rational number (q') etc.
- ▶ q' < q'' < q''';
- injective function $f: [r', r'''] \rightarrow Q;$
- not enough rational numbers;
- contradiction —> no utility function for lexicographic preferences

Existence

Existence of a utility function for continuous preferences

Theorem

If the preference relation \precsim^{i} of an agent *i* is continuous, there is a continuous utility function U^{i} that represents \precsim^{i} .

Wait a second for the definition of a continuous function, please!

Existence

Exercise

Problem

Assume a utility function U that represents the preference relation \precsim .

Can you express weak monotonicity, strict monotonicity and local non-satiation of \leq through U rather than \leq ?

Continuous functions

Definition

Fix $x \in \mathbb{R}^{\ell}$.

Consider sequences in the domain $(x^j)_{j \in \mathbb{N}}$ that converge towards x.

Convergence of sequences in the range $(f(x^j))_{j \in \mathbb{N}}$ towards $f(x) \longrightarrow f$ continuous at x

No convergence or convergence towards $y \neq f(x) \xrightarrow{\sigma} no$

Continuous functions

Counterexample

Specific sequence in the domain $(x^j)_{j \in \mathbb{N}}$ that converges towards x but sequence in the range $(f(x^j))_{j \in \mathbb{N}}$ does not converge towards f(x)

Quasi-concave utility functions and convex preferences Overview

- 1. The vector space of goods and its topology
- 2. Preference relations
- 3. Axioms: convexity, monotonicity, and continuity
- 4. Utility functions
- 5. Quasi-concave utility functions and convex preferences

6. Marginal rate of substitution

Quasi-concavity

Definition

•
$$f: \mathbb{R}^\ell o \mathbb{R}$$
 is quasi-concave if

$$f(kx + (1 - k)y) \ge \min(f(x), f(y))$$

holds for all $x, y \in \mathbb{R}^{\ell}$ and all $k \in [0, 1]$.

f is strictly quasi-concave if

$$f(kx + (1 - k)y) > \min(f(x), f(y))$$

holds for all $x, y \in \mathbb{R}^{\ell}$ with $x \neq y$ and all $k \in (0, 1)$.

Note: quasi-concave functions need not be concave (to be introduced later).

Quasi-concavity

Examples

Example

Every monotonically increasing or decreasing function $f: \mathbb{R} \to \mathbb{R}$ is quasi-concave.

Quasi-concavity

A counter example

(日)、(四)、(E)、(E)、(E)

Better and worse sets, indifference sets

Definition

Let U be a utility function on \mathbb{R}^{ℓ}_+ .

- ► $B_{U(y)} := B_y = \{x \in \mathbb{R}^{\ell}_+ : U(x) \ge U(y)\}$ the better set B_y of y;
- ▶ $W_{U(y)} := W_y = \{x \in \mathbb{R}^{\ell}_+ : U(x) \le U(y)\}$ the worse set W_y of y;

►
$$I_{U(y)} := I_y = B_y \cap W_y = \{x \in \mathbb{R}^{\ell}_+ : U(x) = U(y)\} - y$$
's indifference set (indifference curve) I_y .

Concave indifference curve

Definition

Let U be a utility function on \mathbb{R}^{ℓ}_+ .

• I_y is concave if U(x) = U(y) implies

$$U(kx + (1-k)y) \ge U(x)$$

for all x, $y \in \mathbb{R}^\ell_+$ and all $k \in [0,1]$.

• I_y is strictly concave if U(x) = U(y) implies

$$U(kx + (1-k)y) > U(x)$$

for all $x, y \in \mathbb{R}^{\ell}_+$ with $x \neq y$ and all $k \in (0, 1)$.

Concave indifference curve

Examples and counter examples

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Lemma

Lemma

Let U be a continuous utility function on \mathbb{R}^{ℓ}_+ . A preference relation \succeq is convex iff:

- all the indifference curves are concave, or
- U is quasi-concave.

 $\begin{array}{cccc} U's \mbox{ better} & \Leftarrow & U \mbox{ strictly} & \Longrightarrow & U \mbox{ quasi-concave} & \Leftrightarrow & U's \mbox{ better} \\ sets \mbox{ strictly} & & & & & \\ & & & & & & \\ U's \mbox{ better} & \Rightarrow & U's \mbox{ indifference} \\ sets \mbox{ strictly} & & & & & \\ sets \mbox{ strictly} & & & & & \\ convex \mbox{ and} & & & & \\ convex \mbox{ and} & & & \\ local \\ nonsatiation & & & \\ \end{array}$

Overview

- 1. The vector space of goods and its topology
- 2. Preference relations
- 3. Axioms: convexity, monotonicity, and continuity
- 4. Utility functions
- 5. Quasi-concave utility functions and convex preferences

6. Marginal rate of substitution

Mathematics: Differentiable functions

Definition

Let $f: M \to \mathbb{R}$ be a real-valued function with open domain $M \subseteq \mathbb{R}^{\ell}$.

f is differentiable if all the partial derivatives

$$f_{i}\left(x
ight):=rac{\partial f}{\partial x_{i}}\;(i=1,...,\ell)$$

exist and are continuous.

$$f'\left(x
ight):=\left(egin{array}{c} f_{1}\left(x
ight)\ f_{2}\left(x
ight)\ \ldots\ f_{\ell}\left(x
ight)\end{array}
ight)$$

-f's derivative at x.

Mathematics: Adding rule

Theorem

Let $f : \mathbb{R}^{\ell} \to \mathbb{R}$ be a differentiable function and let $g_1, ..., g_{\ell}$ be differentiable functions $\mathbb{R} \to \mathbb{R}$. Let $F : \mathbb{R} \to \mathbb{R}$ be defined by

$$F(x) = f(g_1(x), ..., g_\ell(x))$$
.

 $\frac{dF}{dx} = \sum_{i=1}^{\ell} \frac{\partial f}{\partial g_i} \frac{dg_i}{dx}.$

 \Rightarrow

Marginal rate of substitution Economics

►
$$I_y = \{(x_1, x_2) \in \mathbb{R}^2_+ : (x_1, x_2) \sim (y_1, y_2)\}.$$

► $I_y : x_1 \mapsto x_2.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

Definition and exercises

Definition

If the function I_y is differentiable and if preferences are monotonic,

$$\left|\frac{dI_{y}\left(x_{1}\right)}{dx_{1}}\right|$$

- the MRS between good 1 and good 2 (or of good 2 for good 1).

Problem

What happens if good 2 is a bad?

Perfect substitutes

Problem

Calculate the MRS for perfect substitutes (U (x_1 , x_2) = $ax_1 + bx_2$ with a > 0 and b > 0.)!

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Solve $ax_1 + bx_2 = k$ for $x_2!$
- ▶ Form the derivative of *x*² with respect to *x*₁!
- Take the absolute value!

Lemma 1

Lemma

Let \succeq be a preference relation on \mathbb{R}^{ℓ}_+ and let U be the corresponding utility function.

If U is differentiable, the MRS is defined by:

$$MRS\left(x_{1}\right) = \left|\frac{dI_{y}\left(x_{1}\right)}{dx_{1}}\right| = \frac{\frac{\partial U}{\partial x_{1}}}{\frac{\partial U}{\partial x_{2}}}.$$

 $\frac{\partial U}{\partial x_1}$, $\frac{\partial U}{\partial x_2}$ – marginal utility.

Lemma: proof

Proof.

- $U(x_1, I_y(x_1))$ constant along indifference curve;
- differentiating $U(x_1, I_y(x_1))$ with respect to x_1 (adding rule):

$$0 = \frac{\partial U}{\partial x_1} + \frac{\partial U}{\partial x_2} \frac{dI_y(x_1)}{dx_1}$$

• $\left|\frac{dI_y(x_1)}{dx_1}\right|$ can be found even if I_y were not given explicitly (implicit-function theorem).

Problem

Again: What is the MRS in case of perfect substitutes?

Lemma 2

Lemma

Let U be a differentiable utility function and I_y an indifference curve of U.

 I_y is concave iff the MRS is a decreasing function in x_1 .

Cobb-Douglas utility function

$$U(x_1, x_2) = x_1^a x_2^{1-a}, 0 < a < 1$$
$$MRS = \frac{\frac{\partial U}{\partial x_1}}{\frac{\partial U}{\partial x_2}} = \frac{a x_1^{a-1} x_2^{1-a}}{(1-a) x_1^a x_2^{-a}} = \frac{a}{1-a} \frac{x_2}{x_1}.$$

 Cobb-Douglas preferences are monotonic so that an increase of x₁ is associated with a decrease of x₂ along an indifference curve.

 Therefore, Cobb-Douglas preferences are convex (Cobb-Douglas utility functions are quasi-concave).

Further exercises

Problem 1

Define strict anti-monotonicity. Sketch indifference curves for each of the four cases:

Problem 2 (Strictly) monotonic, (strictly) convex or continuous?

(a) U(x₁, x₂) = x₁ ⋅ x₂,
(b) U(x₁, x₂) = min {a ⋅ x₁, b ⋅ x₂} where a, b > 0 holds,
(c) U(x₁, x₂) = a ⋅ x₁ + b ⋅ x₂ where a, b > 0 holds,
(d) lexicographic preferences

Further exercises

Problem 3 (difficult)

Let U be a continuous utility function representing the preference relation \preceq on \mathbb{R}^{ℓ}_+ . Show that \preceq is continuous as well. Also, give an example for a continuous preference relation that is represented by a discontinuous utility function. Hint: Define a function U' that differs from U for x = 0, only