Advanced Microeconomics

Decisions in extensive form

Harald Wiese

University of Leipzig

Part A. Basic decision and preference theory

- 1. Decisions in strategic (static) form
- 2. Decisions in extensive (dynamic) form
- 3. Ordinal preference theory
- 4. Decisions under risk

Decisions in extensive form

Introduction

- 1. Introduction
- 2. Strategies and subtrees: perfect information
- 3. Strategies and subtrees: imperfect information
- 4. Moves by nature, imperfect information and perfect recall

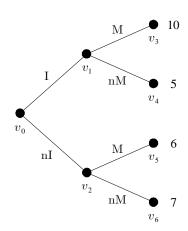
Introduction

Example 1: Marketing decision

Example

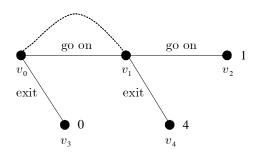
Two-stage decision situation of an umbrella-producing firm:

- stage 1: action I (investing) or action nI (no investment);
- stage 2: action M (marketing activities) or nM (no marketing activities).



Introduction

Example 2: Absent-minded driver



Two different sorts of nodes:

- I have to make a decision.
- ▶ I get something.

Overview

- 1. Introduction
- 2. Strategies and subtrees: perfect information
- 3. Strategies and subtrees: imperfect information
- 4. Moves by nature, imperfect information and perfect recall

Decision situation in extensive form: perfect information

Partition, component, singleton

Definition

M nonempty set. $\mathcal{P}_M = \{M_1, ..., M_k\}$ is a partition of M if

$$igcup_{j=1}^k M_j = M$$
 and $M_j \cap M_\ell = \varnothing$ for all $j,\ell \in \{1,...,k\}$, $j
eq \ell$

- component (normally nonempty) element of a partition;
- $ightharpoonup \mathcal{P}_{M}\left(m\right)$ component containing m;
- singleton component with one element only;

Problem

Write down two partitions of $M:=\{1,2,3\}$. Find $\mathcal{P}_{M}\left(1\right)$ in each case.

Perfect-information decision situation

Decision situation $\Delta =$

- ▶ Tree with nodes, often denoted by v_0 , v_1 , ...
- ▶ Initial node v₀ and exactly one trail initial node —> specific end node
- Decision nodes D:
 Nodes at which actions can be taken
 = non-terminal nodes
- ▶ Actions A_d at $d \in D$ and union A
- ▶ Terminal nodes = end nodes E : with payoff information
- ▶ $D \cup E = V$: set of all nodes

Trails

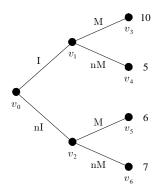
Exercise: Umbrella case

Length of trail $\langle v_0, v_3 \rangle$: 2, length of trail $\langle v_1, v_3 \rangle$: 1

Length of tree: maximal length of any trail

Problem

What is the length of this tree?

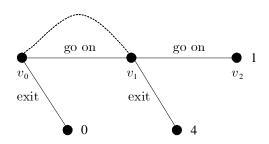


Trails

Exercise: Absent-minded driver

Problem

What is the length of this tree?



Imperfect-information decision situation

Decision situation Δ with nodes from D and E

Definition

- I (information partition) → a partition of the decision nodes D;
- Elements of I are called information sets (which are components)
- ▶ For some $d \in D$: $I(d) = \{d\}$ (the decision maker knows where he is)
- ▶ For others: we have $I(d) = I(d') = \{d, d', ...\}$
- $ightharpoonup A_d = A_{d'}$ for all $d, d' \in I(d)$

Problem

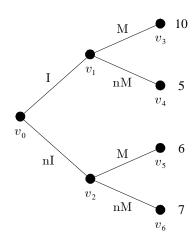
For the absent-minded driver, specify $I(v_0)$ and A_{v_0} ? How about A_{v_0} ?

Example

- ► We define a strategy by
 - $s(v_0) = nI$
 - $\triangleright s(v_1) = M$
 - $ightharpoonup s(v_2) = nM$

that can also be written as | nI, M, nM |.

- How many strategies do we have?
- Which strategies are best?
- ▶ What is the difference between
 - ▶ | I, M, M | and
 - ► [I, M, nM|?



definition

Definition

A strategy is a function $s:D\to A$ where A is the set of actions and $s(d)\in A_d$ for all $d\in D$.

Problem

What does
$$|S| = \prod_{d \in D} |A_d|$$
 mean? Is it correct?

nodes provoked by strategy

Definition

A strategy $s \in S$ can provoke a node v or a trail $\langle v_0, v_1, ..., v_k = v \rangle$ (defined in the obvious manner). The terminal node provoked by strategy s is denoted by v_s . Define:

$$u(s) : = u(v_s), s \in S \text{ and}$$

 $s^R(\Delta) : = \arg \max_{s \in S} u(s).$

Problem

Indicate all the nodes provoked by the strategy $\lfloor I, M, M \rfloor$ in the investment-marketing example. Which strategies are best?

definition: why so complete?

Two reasons:

- simple definition
- we want to distinguish between
 - ightharpoonup [I, M, M] and
 - ► [I, M, nM]

above.

Restriction of a function

Definition

Let $f: X \to Y$ be a function.

For $X' \subseteq X$,

$$f|_{X'}: X' \to Y$$

is a restriction of f to X' if $f|_{X'}(x) = f(x)$ holds for all $x \in X'$.

Subtrees

Consider a decision node $w \in D$. w and the nodes following w make up the set W.

- ▶ Decision situation Δ^w generated from decision situation Δ = subtree
- ▶ strategy s^w (in Δ^w) generated from strategy s (in Δ) = the restriction of s to $W \cap D$. $s^w = s|_{W \cap D}$

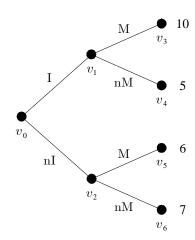
Subtrees

Three subtrees that begin at

- $ightharpoonup v_0 \ (\Delta^{v_0} = \Delta)$
- V₁
- ► *V*₂

Strategy $s = \lfloor nI, M, nM \rfloor$ generates strategies

- $ightharpoonup s^{v_1} = |\mathsf{M}| \mathsf{in} \; \Delta^{v_1}$
- $ightharpoonup s^{v_2} = |\mathsf{nM}| \mathsf{in} \Delta^{v_2}$



Subtree perfection

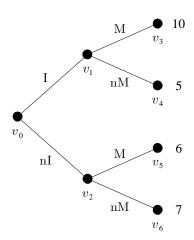
Definition

A strategy s is subtree-perfect if, for every $w \in D$, s^w is a best strategy in the decisional subtree Δ^w .

Problem

Are these strategies subtree-perfect:

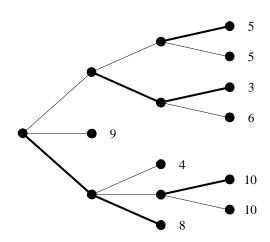
- ► [nI, M, nM],
- ► [*I*, *M*, *M*],
- ► [*I*, *M*, *nM*]



Exercise

Problem

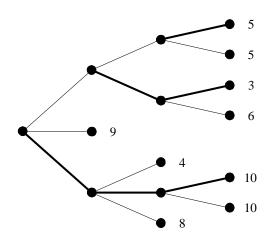
Optimal strategy? Subtree-perfect strategy?



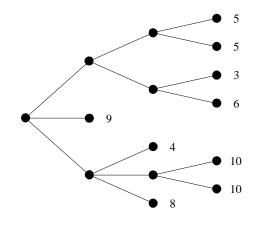
Exercise

Problem

Optimal strategy? Subtree-perfect strategy?



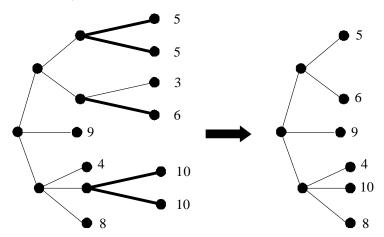
Exercise



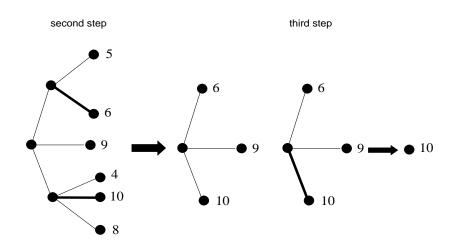
Backward induction means

- starting with the smallest subtrees,
- noting the best actions,
- and working towards the initial node

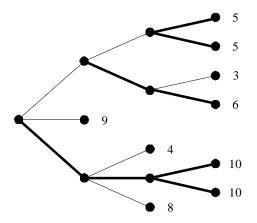
Solution: first step



Solution: second and third step



without drawing several trees



- ► Backward-induction trails (how many?) versus
- backward-induction strategies (how many?)

Subtree perfection and backward induction for perfect information

Theorem

If Δ is of finite length (trails do not go on forever), the set of subtree-perfect strategies and the set of backward-induction strategies coincide.

Thus, you can find all subtree-perfect strategies by applying backward induction.

The money pump

The money-pump argument

Definition (Transitivity axiom)

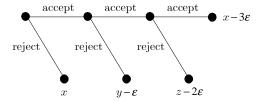
If a person prefers x to y and y to z then she should also prefer x to z.

The money-pump argument supports the transitivity axiom. Assume prefrences are not transitive:

- \triangleright $x \prec y \prec z \prec x$;
- agent starts with x;
- agent exchanges:
 - x against y and offers ε (x \le y \varepsilon) -> y \varepsilon.
 - y against z and offers ε $(y \prec z \varepsilon) \longrightarrow z 2\varepsilon$.
 - z against x and offers ε ($z \prec x \varepsilon$) $\longrightarrow x 3\varepsilon$.
- ▶ agent ends up with $x 3\varepsilon$

The money pump

The decision tree



8 strategies:

```
[accept, accept, accept],
[accept, reject, accept] and
[reject, accept, reject]
```

Problem

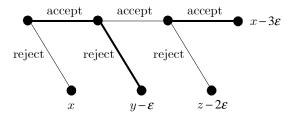
Write down all strategies that lead to payoff $y - \varepsilon$.

The money pump

Backward induction

Assume $x \prec y \prec z \prec x$ and also

- $\triangleright x \prec y \varepsilon \prec z 2\varepsilon \prec x 3\varepsilon$ and
- $\triangleright x 3\varepsilon \prec y \varepsilon$

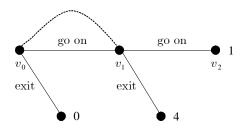


Backward induction does not support the money-pump argument!

Overview

- 1. Introduction
- 2. Decision trees and actions
- 3. Strategies and subtrees: perfect information
- 4. Strategies and subtrees: imperfect information
- 5. Moves by nature, imperfect information and perfect recall

Example



Definition

A strategy is a function $s: D_1 \rightarrow A$ with

- ▶ $s(d) \in A_d$ for all $d \in D$ and
- s(d) = s(d') for all $d, d' \in I(d)$.

Problem

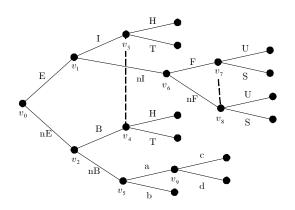
Strategies? Best strategies?

Subtrees

Consider a decision node $w \in D$. w and the nodes following w make up the set W.

- Decision situation Δ^w generated from decision situation Δ
 = subtree
 if W does not cut into an information set
 i.e., if there is no information set that belongs to W and to
 V\W at the same time
- ▶ strategy s^w (in subtree Δ^w) generated from strategy s (in Δ) = the restriction of s to $W \cap D$ $s^w = s|_{W \cap D}$

Go back to absent-minded driver and check for subtrees!



Subtrees? How many strategies? One example!

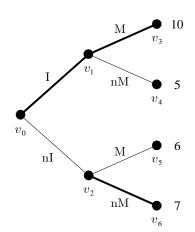
Nodes provoked by s

Problem

Consider the mixed strategy σ given by

$$\sigma(s) = \begin{cases} \frac{1}{3}, & s = \lfloor I, M, nM \rfloor \\ \frac{1}{6}, & s = \lfloor nI, M, nM \rfloor \\ \frac{1}{12}, & s \text{ otherwise} \end{cases}$$

Is σ well-defined? What is the probability for node v_3 ?



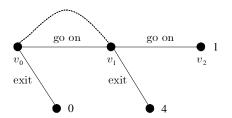
Behavioral strategies

Definition

Decision situation of imperfect information Δ

- $\beta = (\beta_d)_{d \in D} \text{ tuple of probability distributions, where } \beta_d \text{ is a probability distribution on } A_d \text{ that obeys } \beta_d = \beta_{d'} \text{ for all } d, d' \in I\left(d\right)$
- \triangleright β is called a behavioral strategy.

Best behavioral strategy for the absent-minded driver?



Behavioral strategies

Absent-minded driver

- $\beta_{\text{exit}} := \beta_{\nu_0} (\text{exit})$ the probability for exit;
- expected payoff:

$$\underbrace{\beta_{\text{exit}}}_{\text{exit probability}} \cdot 0 + \underbrace{\left(1 - \beta_{\text{exit}}\right)\beta_{\text{exit}}}_{\text{exit probability}} \cdot 4 + \underbrace{\left(1 - \beta_{\text{exit}}\right)\left(1 - \beta_{\text{exit}}\right)}_{\text{probability}} \cdot 1$$
 exit probability probability at v_0 at v_1 of going on
$$= -3\beta_{\text{exit}}^2 + 2\beta_{\text{exit}} + 1$$

optimal behavioral strategy:

$$eta_{ ext{exit}}^* = rg\max_{eta_{ ext{exit}}} \left(-3eta_{ ext{exit}}^2 + 2eta_{ ext{exit}} + 1
ight) = rac{1}{3}.$$

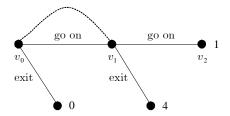
Experience

Definition

At $v \in D$, the experience X(v) is the sequence (tuple) of information sets and actions at these information sets as they occur along the trail from v_0 to v. An information set is the last entry of an experience.

Absent-minded driver example:

- $X(v_0) = (I(v_0))$ and
- $X(v_1) = (I(v_0), \text{ go on, } I(v_1)).$



Experience and perfect recall

Definition

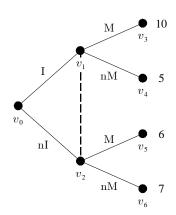
 Δ is characterized by perfect recall if for all $v, v' \in D$ with I(v) = I(v') we have X(v) = X(v').

Problem

Does perfect information imply perfect recall?

Experience and perfect recall

Exercises and interpretation



Problem

Show that this decision situation exhibits imperfect recall!

Problem

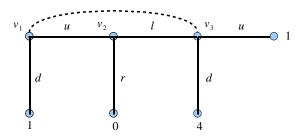
Strategies $\lfloor I, M \rfloor$ and $\lfloor I, nM \rfloor$ provoke which nodes?

- Shouldn't the strategy [I, M] tell the decision maker that he is at v₁?
- Interpretation: magic ink that disappears after use

Summary

- ▶ perfect information → every information set contains only one element;
- ▶ (properly) imperfect information → there is at least one information set with more than one element;
- ▶ perfect recall → in every information set, all decision nodes are associated with the same "experience";
- imperfect recall → two decision nodes exist that belong to the same information set but result from different "experiences".

Exercise



- (a) Pure strategies, information sets, proper subtrees?
- (b) Optimal mixed strategies?
- (c) Perfect recall?
- (d) Optimal behavioral strategies?

Equivalence of mixed and behavioral strategies

Kuhn's equivalence theorem

Theorem

Decision situation with perfect recall.

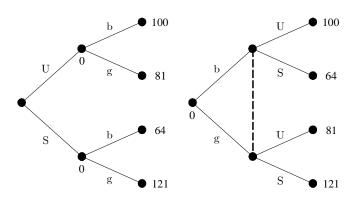
A given probability distribution on the set of terminal nodes is achievable by a mixed strategy iff it is achievable by a behavioral strategy (payoff equivalence).

Kuhn's theorem continues to hold when moves by nature are included (see following section).

Overview

- 1. Introduction
- 2. Decision trees and actions
- 3. Strategies and subtrees: perfect information
- 4. Strategies and subtrees: imperfect information
- Moves by nature, imperfect information and perfect recall

Uncertainty about the weather



- nature is denoted by "0";
- uncertainty about the weather in both cases but
 - perfect information in the left-hand tree;
 - imperfect information in the right-hand tree with nature moving first

Strategies

Nature:

 $D_0=$ nature's decision nodes $eta_0 o$ tuple of probability distributions $(eta_d)_{d \in D_0}$ on A_0 (actions choosable by nature)

Decider:

 D_1 = decision maker's decision nodes The information partition I partitions D_1 !

A strategy is a function $s: D_1 \to A$ with feasible actions where s(d) = s(d') for all $d, d' \in I(d)$.

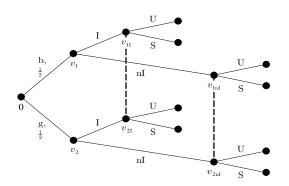
Subtrees may start at nodes from $D = D_0 \cup D_1$. In particular, the whole tree is always a subtree of itself.

Experience defined at $v \in D_1$! In case of $v' \in D_0$, I(v') is not defined!

Exercise 1

Problem

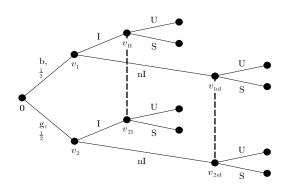
Indicate the probability distributions on the set of terminal nodes provoked by the strategies $\lfloor I, nI, S, U \rfloor$ and by $\lfloor nI, nI, S, S \rfloor$ by writing the probabilities near these nodes!



Exercise 2

Problem

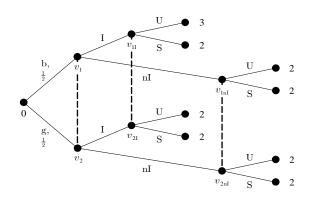
Does this decision tree reflect perfect or imperfect recall? How many subtrees can you identify?



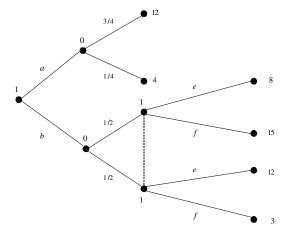
Exercise 3

Problem

Does this decision tree reflect perfect or imperfect recall? How many subtrees can you identify?

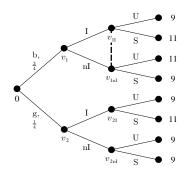


Exercise 4



- (a) Pure strategies?
- (b) Perfect recall?
- (c) Optimal strategies?

Backward induction

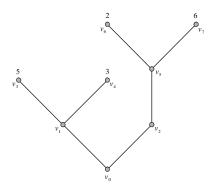


- (a) subtrees?
- (b) backward-induction strategies?
- (c) subtree-perfect strategies?
- (d) perfect recall?

Backward induction means

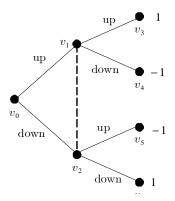
- starting with the smallest subtrees,
- noting the best substrategies,
- and working towards the initial node

Further exercises: Problem 1



- (a) How many subtrees?
- (b) How many strategies? Which are the best?
- (c) Backward induction!

Further exercises: Problem 2



- (a) True or false? In this decision situation, any behavioral strategy can be characterized by specifying two probabilities.
- (b) Perfect recall?
- (c) Best mixed strategy and the best behavioral strategy?