Advanced Microeconomics Decisions in extensive form

Harald Wiese

University of Leipzig

3. 3

Part A. Basic decision and preference theory

- Decisions in strategic (static) form
- **2** Decisions in extensive (dynamic) form
- Ordinal preference theory
- Decisions under risk

Decisions in extensive form

Introduction

Introduction

- Strategies and subtrees: perfect information
- Strategies and subtrees: imperfect information
- Moves by nature, imperfect information and perfect recall

Example

Two-stage decision situation of an umbrella-producing firm:

- stage 1: action I (investing) or action nI (no investment);
- stage 2: action M (marketing activities) or nM (no marketing activities).

Introduction Example 2: Absent-minded driver

Two different sorts of nodes:

- I have to make a decision.
- I get something.

э

Strategies and subtrees: perfect information Overview

- Introduction
- Strategies and subtrees: perfect information
- Strategies and subtrees: imperfect information
- Moves by nature, imperfect information and perfect recall

Decision situation in extensive form: perfect information Partition, component, singleton

Definition

M nonempty set. $\mathcal{P}_M = \{M_1, ..., M_k\}$ is a partition of M if

$$igcup_{j=1}^k M_j = M$$
 and $M_i \cap M_\ell = arnothing$ for all $j, \ell \in \{1, ..., k\}$, $j
eq \ell$

- component (normally nonempty) element of a partition;
- $\mathcal{P}_{M}\left(m
 ight)$ component containing m;
- singleton component with one element only;

Problem

Write down two partitions of $M:=\{1,2,3\}$. Find $\mathcal{P}_{M}\left(1
ight)$ in each case.

Decision situation $\Delta =$

- Tree with nodes, often denoted by v_0 , v_1 , ...
- Initial node v₀ and exactly one trail initial node —> specific end node
- Decision nodes D: Nodes at which actions can be taken = non-terminal nodes
- Actions A_d at $d \in D$ and union A
- Terminal nodes = end nodes E : with payoff information
- $D \cup E = V$: set of all nodes

Length of trail $\langle v_0, v_3 \rangle$: 2, length of trail $\langle v_1, v_3 \rangle$: 1 Length of tree: maximal length of any trail

Problem

What is the length of this tree?

Trails Exercise: Absent-minded driver

Problem

What is the length of this tree?

æ

→

3 ×

Image: Image:

Imperfect-information decision situation

Decision situation Δ with nodes from D and E

Definition

- I (information partition) \rightarrow a partition of the decision nodes D;
- Elements of I are called information sets (which are components)
- For some $d \in D$: $I(d) = \{d\}$ (the decision maker knows where he is)
- For others: we have $I\left(d\right) = I\left(d'\right) = \left\{d, d', ...\right\}$
- $A_{d} = A_{d'}$ for all $d, d' \in I(d)$

Problem

For the absent-minded driver, specify $I(v_0)$ and A_{v_0} ? How about A_{v_1} ?

Strategies Example

- We define a strategy by
 - $s(v_0) = nl$
 - $s(v_1) = M$
 - $s(v_2) = nM$

that can also be written as [nI, M, nM].

- How many strategies do we have?
- Which strategies are best?
- What is the difference between
 - $\bullet \ \left\lfloor I,\ M,\ M \right\rfloor$ and
 - [I, M, nM]?

Definition

A strategy is a function $s: D \to A$ where A is the set of actions and $s(d) \in A_d$ for all $d \in D$.

Problem

What does
$$|S| = \prod_{d \in D} |A_d|$$
 mean? Is it correct?

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

A strategy $s \in S$ can provoke a node v or a trail $\langle v_0, v_1, ..., v_k = v \rangle$ (defined in the obvious manner). The terminal node provoked by strategy s is denoted by v_s .

Define:

$$egin{array}{ll} u\left(s
ight) & : & = u\left(v_{s}
ight), s\in S ext{ and } \\ s^{R}\left(\Delta
ight) & : & = rg\max_{s\in S}u\left(s
ight). \end{array}$$

Problem

Indicate all the nodes provoked by the strategy $\lfloor I, M, M \rfloor$ in the investment-marketing example. Which strategies are best?

イロト イポト イヨト イヨト

Two reasons:

- simple definition
- we want to distinguish between
 - [I, M, M] and
 - [I, M, nM]

above.

æ

3 K K 3 K

- ∢ 🗇 እ

Restriction of a function

Definition

Let $f: X \to Y$ be a function. For $X' \subseteq X$, $f|_{X'}: X' \to Y$

is a restriction of f to X' if $f|_{X'}(x) = f(x)$ holds for all $x \in X'$.

3

- < 🗇 > < E > < E >

Subtrees

Consider a decision node $w \in D$.

w and the nodes following w make up the set W.

- Decision situation Δ^w generated from decision situation Δ = subtree
- strategy s^w (in Δ^w) generated from strategy s (in Δ)
 = the restriction of s to W ∩ D.
 s^w = s|_{W∩D}

Subtrees

Three subtrees that begin at

• $v_0 \ (\Delta^{v_0} = \Delta)$

• *v*₁

• *v*₂

Strategy $s = \lfloor nI, M, nM \rfloor$ generates strategies

•
$$s^{v_1} = \lfloor \mathsf{M} \rfloor$$
 in Δ^{v_1}

•
$$s^{v_2} = \lfloor \mathsf{n}\mathsf{M} \rfloor$$
 in Δ^{v_2}

Subtree perfection

Definition

A strategy s is subtree-perfect if, for every $w \in D$, s^w is a best strategy in the decisional subtree Δ^w .

Problem

Are these strategies subtree-perfect:

- $\lfloor nI, M, nM \rfloor$,
- [*I*, *M*, *M*],
- [*I*, *M*, *nM*]

Exercise

Problem

Optimal strategy? Subtree-perfect strategy?

Exercise

Problem

Optimal strategy? Subtree-perfect strategy?

Backward induction for perfect information Exercise

Backward induction means

- starting with the smallest subtrees,
- noting the best actions,
- and working towards the initial node

Backward induction for perfect information Solution: first step

Backward induction for perfect information

Solution: second and third step

э

Backward induction for perfect information

without drawing several trees

- Backward-induction trails (how many?) versus
- backward-induction strategies (how many?)

Subtree perfection and backward induction for perfect information

Theorem

If Δ is of finite length (trails do not go on forever), the set of subtree-perfect strategies and the set of backward-induction strategies coincide.

Thus, you can find all subtree-perfect strategies by applying backward induction.

The money-pump argument

Definition (Transitivity axiom)

If a person prefers x to y and y to z then she should also prefer x to z.

The money-pump argument supports the transitivity axiom. Assume prefrences are not transitive:

- $x \prec y \prec z \prec x$;
- agent starts with x;
- agent exchanges:
 - x against y and offers $\varepsilon (x \prec y \varepsilon) \longrightarrow y \varepsilon$.
 - y against z and offers ε $(y \prec z \varepsilon) \longrightarrow z 2\varepsilon$.
 - z against x and offers $\varepsilon (z \prec x \varepsilon) \longrightarrow x 3\varepsilon$.
- agent ends up with $x 3\varepsilon$

イロト イポト イヨト イヨト

The money pump

The decision tree

8 strategies:

[accept, accept, accept],
[accept, reject, accept] and
[reject, accept, reject]

Problem

Write down all strategies that lead to payoff $y - \varepsilon$.

Harald Wiese (University of Leipzig)

The money pump

Backward induction

Assume
$$x \prec y \prec z \prec x$$
 and also
• $x \prec y - \varepsilon \prec z - 2\varepsilon \prec x - 3\varepsilon$ and
• $x - 3\varepsilon \prec y - \varepsilon$

Backward induction does not support the money-pump argument!

Harald Wiese (University of Leipzig)

æ

Strategies and subtrees: imperfect information Overview

- Introduction
- 2 Decision trees and actions
- Strategies and subtrees: perfect information
- **9** Strategies and subtrees: imperfect information
- Moves by nature, imperfect information and perfect recall

Strategies and subtrees: imperfect information $_{\ensuremath{\mathsf{Example}}}$

Definition

A strategy is a function $s: D_1 \rightarrow A$ with

•
$$s(d) \in A_d$$
 for all $d \in D$ and

•
$$s(d) = s(d')$$
 for all $d, d' \in I(d)$.

Problem

Strategies? Best strategies?

Strategies and subtrees: imperfect information Subtrees

Consider a decision node $w \in D$.

w and the nodes following w make up the set W.

- Decision situation Δ^w generated from decision situation Δ
 - = subtree

if W does not cut into an information set

i.e., if there is no information set that belongs to W and to $V \backslash W$ at the same time

 strategy s^w (in subtree Δ^w) generated from strategy s (in Δ) = the restriction of s to W ∩ D s^w = s|_{W∩D}

Go back to absent-minded driver and check for subtrees!

Strategies and subtrees: imperfect information $\ensuremath{\mathsf{Problem}}$

Subtrees? How many strategies? One example!

Harald Wiese (University of Leipzig)

Strategies and subtrees: imperfect information Nodes provoked by s

Problem

Consider the mixed strategy σ given by

$$\sigma(s) = \begin{cases} \frac{1}{3}, & s = \lfloor I, M, nM \rfloor \\ \frac{1}{6}, & s = \lfloor nI, M, nM \rfloor \\ \frac{1}{12}, & s \text{ otherwise} \end{cases}$$

Is σ well-defined? What is the probability for node v_3 ?

Behavioral strategies

Definition

Decision situation of imperfect information Δ

- $\beta = (\beta_d)_{d \in D}$ tuple of probability distributions, where β_d is a probability distribution on A_d that obeys $\beta_d = \beta_{d'}$ for all $d, d' \in I(d)$
- β is called a behavioral strategy.

Best behavioral strategy for the absent-minded driver?

Behavioral strategies

Absent-minded driver

•
$$\beta_{\text{exit}} := \beta_{v_0} (\text{exit})$$
 – the probability for exit;

• expected payoff:

optimal behavioral strategy:

$$\beta^*_{\mathsf{exit}} = \arg \max_{\beta_{\mathsf{exit}}} \left(-3\beta^2_{\mathsf{exit}} + 2\beta_{\mathsf{exit}} + 1 \right) = \frac{1}{3}$$

3

Definition

At $v \in D$, the experience X(v) is the sequence (tuple) of information sets and actions at these information sets as they occur along the trail from v_0 to v. An information set is the last entry of an experience.

Absent-minded driver example:

• $X(v_0) = (I(v_0))$ and • $X(v_1) = (I(v_0), \text{ go on}, I(v_1)).$

Definition

 Δ is characterized by perfect recall if for all $v, v' \in D$ with I(v) = I(v') we have X(v) = X(v').

Problem

Does perfect information imply perfect recall?

Experience and perfect recall

Exercises and interpretation

Problem

Show that this decision situation exhibits imperfect recall!

Problem

Strategies | I, M | and | I, nM | provoke which nodes?

- Shouldn't the strategy |I, M tell the decision maker that he is at v_1 ?
- Interpretation: magic ink that disappears after use < A

· · · · · · · · ·

Summary

- perfect information → every information set contains only one element;
- (properly) imperfect information → there is at least one information set with more than one element;
- perfect recall → in every information set, all decision nodes are associated with the same "experience";
- imperfect recall → two decision nodes exist that belong to the same information set but result from different "experiences".

- (a) Pure strategies, information sets, proper subtrees?
- (b) Optimal mixed strategies?
- (c) Perfect recall?
- (d) Optimal behavioral strategies?

Equivalence of mixed and behavioral strategies

Kuhn's equivalence theorem

Theorem

Decision situation with perfect recall.

A given probability distribution on the set of terminal nodes is achievable by a mixed strategy iff it is achievable by a behavioral strategy (payoff equivalence).

Kuhn's theorem continues to hold when moves by nature are included (see following section).

Moves by nature Overview

- Introduction
- 2 Decision trees and actions
- Strategies and subtrees: perfect information
- Strategies and subtrees: imperfect information
- Moves by nature, imperfect information and perfect recall

Moves by nature Uncertainty about the weather

- nature is denoted by "0";
- uncertainty about the weather in both cases but
 - perfect information in the left-hand tree;
 - imperfect information in the right-hand tree with nature moving first

Harald Wiese (University of Leipzig)

Moves by nature Strategies

Nature:

 D_0 = nature's decision nodes

 $\beta_0 \to$ tuple of probability distributions $(\beta_d)_{d \in D_0}$ on A_0 (actions choosable by nature)

• Decider:

 $D_1 =$ decision maker's decision nodes

The information partition I partitions D_1 !

A strategy is a function $s: D_1 \to A$ with feasible actions where s(d) = s(d') for all $d, d' \in I(d)$.

Subtrees may start at nodes from $D = D_0 \cup D_1$. In particular, the whole tree is always a subtree of itself.

Experience defined at $v \in D_1$! In case of $v' \in D_0$, I(v') is not defined!

Problem

Indicate the probability distributions on the set of terminal nodes provoked by the strategies [I, nI, S, U] and by [nI, nI, S, S] by writing the probabilities near these nodes!

Problem

Does this decision tree reflect perfect or imperfect recall? How many subtrees can you identify?

∃ >

Problem

Does this decision tree reflect perfect or imperfect recall? How many subtrees can you identify?

3. 3

Moves by nature

Exercise 4

- (a) Pure strategies?
- (b) Perfect recall?
- (c) Optimal strategies?

Harald Wiese (University of Leipzig)

2

Moves by nature Backward induction

Backward induction means

- starting with the smallest subtrees,
- noting the best substrategies,
- and working towards the initial node

- (a) subtrees?
- (b) backward-induction strategies?
- (c) subtree-perfect strategies?
- (d) perfect recall?

Further exercises: Problem 1

- (a) How many subtrees?
- (b) How many strategies? Which are the best?
- (c) Backward induction!

Further exercises: Problem 2

- (a) True or false? In this decision situation, any behavioral strategy can be characterized by specifying two probabilities.
- (b) Perfect recall?
- (c) Best mixed strategy and the best behavioral strategy?