Advanced Microeconomics Final Winter 2014/2015

27th February 2015

You have to accomplish this test within 60 minutes.

PRÜFUNGS-NR.:

STUDIENGANG:

NAME, VORNAME:

UNTERSCHRIFT DES STUDENTEN:

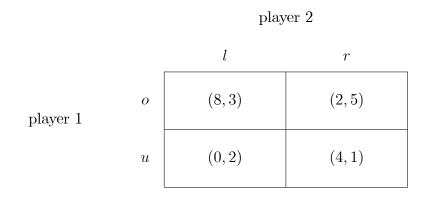
ANFORDERUNGEN/REQUIREMENTS:

Lösen Sie die folgenden Aufgaben!/Solve all the exercises! Schreiben Sie, bitte, leserlich!/Write legibly, please! Sie können auf Deutsch schreiben!/You can write in English! Begründen Sie Ihre Antworten!/Give reasons for your answers!

	1	2	3	4	5	\sum
-						

Problem 1 (12 points)

Consider the following two person game with mixed strategies. Calculate both reaction functions and illustrate them graphically. Determine all equilibria in pure and properly mixed strategies.



Solution

First of all we determine the payoff functions:

$$\begin{aligned} u_1(\sigma_1, \sigma_2) &= 8\sigma_1 \sigma_2 + 2\sigma_1 (1 - \sigma_2) + 4 (1 - \sigma_1) (1 - \sigma_2), \\ u_2(\sigma_1, \sigma_2) &= 3\sigma_1 \sigma_2 + 5\sigma_1 (1 - \sigma_2) + 2 (1 - \sigma_1) \sigma_2 + (1 - \sigma_1) (1 - \sigma_2). \end{aligned}$$

We compute the reaction function of agent 1 by examining the derivative of the payoff function:

$$\frac{\partial u_1}{\partial \sigma_1} = 8\sigma_2 + 2(1 - \sigma_2) - 4(1 - \sigma_2)$$
$$= 10\sigma_2 - 2 \stackrel{!}{=} 0$$

and get

$$\sigma_1^R(\sigma_2) = \begin{cases} 0, & \sigma_2 < \frac{1}{5} \\ [0,1], & \sigma_2 = \frac{1}{5} \\ 1, & \sigma_2 > \frac{1}{5}. \end{cases}$$

Now, consider the payoff function of agent 2. We have

$$\frac{\partial u_2}{\partial \sigma_2} = 3\sigma_1 - 5\sigma_1 + 2(1 - \sigma_1) - (1 - \sigma_1)$$
$$= -3\sigma_1 + 1 \stackrel{!}{=} 0$$

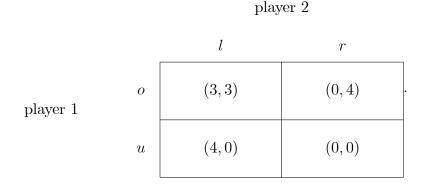
which yields

$$\sigma_2^R(\sigma_1) = \begin{cases} 0, & \sigma_1 > \frac{1}{3} \\ [0,1], & \sigma_1 = \frac{1}{3} \\ 1, & \sigma_1 < \frac{1}{3} \end{cases}$$

Hence, there is only one equilibrium in mixed strategies given by $\sigma_1 = \frac{1}{3}$ and $\sigma_2 = \frac{1}{5}$.

Problem 2 (12 points)

Consider the infinite repetition (discount factor δ) of this stage game:



The payoff of player i is given by

$$u_{i}(s) = (1 - \delta) \sum_{t=0}^{\infty} \delta^{t} g_{i}(s(d_{t})),$$

where $\delta \in (0, 1)$, $g_i(s)$ denotes the stage-payoff of player *i*, and d_t is the node resulting from action combinations $s(d_0)$ through $s(d_{t-1})$.

- a) Determine the Worst-Punishment point!
- b) Let δ be sufficiently large. According to the Folk-Theorems, can (3,3) be an equilibrium payoff in the infinitely repeated game?
- c) Consider the strategy of player 1, where first, she plays o, but chooses u for all remaining stages, whenever player 2 chose r for at least one stage before. For player 2, is it better to always play l or always play r?

Hint: $\sum_{t=0}^{k} \delta^{t} = \frac{1-\delta^{k+1}}{1-\delta}$ and $\sum_{t=0}^{\infty} \delta^{t} = \frac{1}{1-\delta}$ if $|\delta| < 1$. Solution

a) The Worst-Punishment point is given by

$$W = \left(\min_{a_2} \max_{a_1} g_1(a_1, a_2), \min_{a_1} \max_{a_2} g_2(a_1, a_2) \right)$$

= $\left(\min\{0, 4\}, \min\{0, 4\} \right)$
= $(0, 0).$

- b) According to the Folk-Theorem, if δ is sufficiently large, any payoff within the convex hull of the game which lies north-east of the Worst-Punishment point can be an equilibrium payoff. (3,3) does lie in the convex hull of the game and obviously lies north-east of the Wort-Punishment point. Hence, (3,3) can be an equilibrium payoff.
- c) If player 2 always chooses l his payoff is

$$(1-\delta)\cdot\left(\sum_{t=0}^{\infty}\delta^t\cdot 3\right) = (1-\delta)\frac{3}{1-\delta} = 3$$

If player 2 always chooses r his payoff is

$$(1-\delta)4.$$

The first payoff is at least as high as the second payoff iff

$$3 \geq (1-\delta)4 \iff$$

$$4\delta \geq 1 \iff$$

$$\delta \geq \frac{1}{4}.$$

If the discount factor is small $(\delta < \frac{1}{4})$, punishment does not hurt too much, hence, player 2 does not want to cooperate and always plays r.

Problem 3 (20 points)

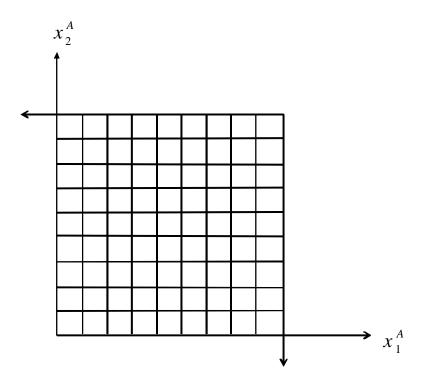
Consider an exchange economy with two agents A and B. Their preferences are given by the utility functions

$$u_A(x_1^A, x_2^A) = \min\{x_1^A, 2x_2^A\}, \quad u_B(x_1^B, x_2^B) = x_1^B + x_2^B$$

and their endowments are equal to

$$\omega^A = (2,4), \quad \omega^B = (7,5).$$

- (a) Use the graphic below to sketch endowments, the indifference curves of both agents, that run through the endowments, the better set of agent A and the exchange lens.
- (b) Determine the location of all Pareto-efficient points analytically, and illustrate them in the graphic below.
- (c) Determine the Walrasian equilibrium analytically.



Solution

(b) Since agents 1's preferences describes perfect complements and agent 2's preferences are monotonic, player 1 does not waste resources. Hence, on the contract curve, we have

$$x_2^A\left(x_1^A\right) = \frac{1}{2}x_1^A$$

(c) For player 2 and given p_1 and p_2 , the household optima are either his budget line or corner solutions. As the contract curve lies within the Edgeworth Box, we must have

$$\frac{p_1}{p_2} \stackrel{!}{=} MRS^B.$$

We then find

$$\frac{p_1}{p_2} \stackrel{!}{=} 1$$

and obtain $p_1 = p_2$. We use the budget equation

$$p_1 x_1^A + p_2 x_2^A = 2p_1 + 4p_2$$

and get, by the contract curve,

$$\frac{3}{2}p_1x_1^A = 6p_1$$

and thus

$$x_1^A = 4, \ x_2^A = 2.$$

The Walrasian equilibrium is given by the price vector (p_1, p_1) with $p_1 > 0$ and the corresponding demand system ((4, 2), (5, 7)).

Problem 4 (14 points)

Consider a market where two firms compete simultaneously in outputs. Both firms face a quadratic cost function $C_i(x_i) = x_i^2$. While firm 1 maximizes its profit, firm 2 maximizes its revenue. The inverse demand function is given by

$$p\left(X\right) = 14 - X.$$

Determine the Cournot equilibrium!

Solution:

First, we calculate the reaction function of firm 1. Firm one maximizes its profit

$$\Pi_1(x_1, x_2) = (14 - x_1 - x_2) x_1 - x_1^2.$$

We form the derivative and get

$$\frac{\partial \Pi_1}{\partial x_1} = 14 - 4x_1 - x_2 \stackrel{!}{=} 0$$
$$\iff x_1^R(x_2) = \frac{1}{4}(14 - x_2)$$

Firm 2 maximizes its revenue

$$R_2(x_1, x_2) = (14 - x_1 - x_2) x_2.$$

We calculate the reaction function:

$$\frac{\partial R_2}{\partial x_2} = 14 - x_1 - 2x_2 \stackrel{!}{=} 0$$
$$\iff x_2^R (x_1) = \frac{1}{2} (14 - x_1).$$

The equilibrium is the intersection of the reaction functions:

$$x_1 = \frac{1}{4} \left(14 - 7 + \frac{1}{2} x_1 \right)$$
$$= \frac{7}{4} + \frac{1}{8} x_1$$
$$\iff \frac{7}{8} x_1 = \frac{7}{4}$$
$$\iff x_1^C = 2, x_2^C = 6$$

Problem 5 (2 points)

Calculate the Herfindahl index for five firms supplying the quantities $x_1 = x_2 = 2, x_3 = x_4 = 4$, and $x_5 = 8$. Solution:

$$X = 20$$

$$H = \frac{4+4+16+16+64}{400} = \frac{104}{400}$$

$$= \frac{26}{100} = 0.26$$