Advanced Microeconomics

Pretest Winter 2009/2010

You are assumed to accomplish this test within 120 minutes.

PRÜFUNGS-NR.:

STUDIENGANG:

NAME, VORNAME:

UNTERSCHRIFT DES STUDENTEN:

ANFORDERUNGEN/REQUIREMENTS:

Lösen Sie die folgenden Aufgaben!/Solve all the exercises! Schreiben Sie, bitte, leserlich!/Write legibly, please! Sie können auf Deutsch schreiben!/You can write in English! Begründen Sie Ihre Antworten!/Give reasons for your answers!

Problem 1 (10 points)

Consider the relation 'nearly as fast as' denoted by \sim , and defined on some set of sprinters:

Sprinter A is 'nearly as fast as' sprinter B if the time they need to accomplish a 100m track differs by at most 0.01 seconds, i.e., $A \sim B$ if $||t_A - t_B|| \leq 0.01$ $(t_i \text{ denotes sprinter } i$'s record time to run 100m).

Define a specific set of sprinters with their record times (not below 9 seconds!) such that this relation is neither complete nor transitive! How about symmetry?

Problem 2 (10 points)

Recall the second welfare theorem:

Theorem. Assume an exchange economy \mathcal{E} with convex and continuous preferences for all consumers and local non-satiation for at least one household. Let $(\hat{x}^i)_{i\in N}$ be any Pareto-efficient allocation. Then, there exists a price vector \hat{p} and an endowment $(\omega^i)_{i\in N}$ such that $(\hat{x}^i)_{i\in N}$ is a Walras allocation for \hat{p} .

Graphically sketch a situation where preferences are not convex and hence no combination of $(\omega^i)_{i\in N}$ and \hat{p} supports the Pareto-efficient allocation $(\hat{x}^i)_{i\in N}$.

Problem 3 (15 points)

Consider the problem of a monopolist faced with the inverse demand function $p(q) = a - b \cdot q$, in which a can either be high, a^h , or low, a^l . The monopolist produces with constant marginal and average cost c. Assume $a^h > a^l > c$ and b > 0. Think of the monopolist as setting the quantity, q, and not the price, p.

- (a) Formulate this monopolist's problem as a decision problem in strategic form. Determine $s^{R,W}$!
- (b) Assume $a^h = 6, a^l = 4, b = 2, c = 1$ so that you obtain the plot given in the figure. Show that any strategy $q \notin \left[\frac{a^l - c}{2 \cdot b}, \frac{a^h - c}{2 \cdot b}\right]$ is dominated by either $s^{R,W}(a^h)$ or $s^{R,W}(a^l)$. Show also that no strategy $q \in \left[\frac{a^l - c}{2 \cdot b}, \frac{a^h - c}{2 \cdot b}\right]$ dominates any other strategy $q' \in \left[\frac{a^l - c}{2 \cdot b}, \frac{a^h - c}{2 \cdot b}\right]$.
- (c) Determine all rationalizable strategies with respect to W.

Problem 4 (10 points) Show: A function f that is concave is also quasi-concave. Remember the

Definition. $f: \mathbb{R}^{\ell} \to \mathbb{R}$ is called quasi-concave if

$$f(kx + (1 - k)y) \ge \min(f(x), f(y))$$

holds for all $x, y \in R^{\ell}$ and all $k \in [0, 1]$.

Problem 5 (15 points)

Consider the following utility function $U(x_1, x_2) = \min \{x_1, 2 \cdot x_2\}$. Determine the Marshallian and Hicksian demand functions, the expenditure function, and the indirect utility function!

Problem 6 (20 points)

In some exchange economy agent A has the utility function

$$U^{A}(x_{1}^{A}, x_{2}^{A}) = \min\left\{x_{1}^{A}, 2 \cdot x_{2}^{A}\right\}$$

and agent B has the utility function

$$U^B(x_1^B, x_2^B) = x_1^B + x_2^B.$$

Initial endowments are given by $\omega^A = (4, 8)$ and $\omega^B = (7, 1)$.

- (a) Draw a suitable Edgeworth box in the diagram below! Do not forget
 - the initial endowments of both actors,
 - two indifference curves, one for each agent, which passes through the initial endowments (*Hint: be very careful!*),
 - all bundles (x_1^A, x_2^A) such that $U^A(x_1^A, x_2^A) \ge U^A(\omega_1^A, \omega_2^A))!$
- (b) Determine the greatest utility payoff that agent B can achieve through voluntary exchange with agent A!
- (c) Draw the contract curve!
- (d) Can you find arguments for why equilibrium prices p_1, p_2 must obey $p_1 = p_2 > 0$? In that case, what are the good bundles chosen in a Walras equilibrium? Why can we not have an equilibrium in case of $p_1 < p_2$?

Problem 7 (15 points)

Find all the equilibria in pure and properly mixed strategies:

Please draw the best responses!

Problem 8 (10 points)

Explain the problem of adverse selection and discuss solutions!

Problem 9 (5 points)

Determine the certainty equivalent for the lottery $L = (1, 4, 9; \frac{1}{2}, \frac{1}{4}, \frac{1}{4})$ where the vNM utility function is given by $u(x) = \sqrt{x}$.

Problem 10 (10 points)

- (a) Which of the following figures are decision trees or game trees?
- (b) Which of the games identified in (a) exhibit
 - perfect/imperfect information and/or
 - perfect/imperfect recall.

Give a short explanation of your answers!

(c) List player 1's strategies in what is depicted in figure 1!

